Equations of state for Neutron Stars, Supernovae and Neutron Star Mergers

Adriana R. Raduta

HADRON 2023, Genova, Italy, June 5th to 9th 2023

Executive Agency for Higher Education, Research, Development and Innovation Funding

Overview

- Neutron Stars (NS): formation, properties, composition, observables
 - Equations of State (EoSs)
 - NS as laboratories for cold dense matter physics

- Core-collapse supernovae, binary neutron star mergers
 - temperature, density, charge fraction domains
 - Equations of State
 - Observables

Neutron stars

• NSs are residues of supernovas

 \rhd NS are born hot $\,\mathcal{T}\approx 10-100~{\rm MeV}\approx 10^{11}-10^{12}~{\rm K}\qquad \mathcal{T}_{{\rm M}_\odot}\approx 1.57\cdot 10^7~{\rm K}$

 \triangleright $t(1 h) \approx 10^9 K \approx 100 keV$; cooling by ν and γ emission

 \bullet mass range: $1 {\rm M}_{\odot} \lesssim \textit{M} \lesssim 2 {\rm M}_{\odot}$

 \rhd $M_{\rm min},$ $M_{\rm max}$ inform on formation, EoS and composition

• radii $R \approx 10-15 \ {
m km}$

$$R_{\mathrm{M}_{\odot}} = 6.96 \cdot 10^5 \mathrm{~km}$$

- average density $\approx 2 \cdot 10^{14} {\rm g/cm}^3 \approx \rho_0$ $\rho_{\rm M_\odot} \approx 1.4 {\rm g/cm}^3$
- highly non-uniform $0 \lesssim
 ho \lesssim 5 10
 ho_0$ what are NS made of?
- compactness $0.1 \lesssim GM/c^2R \lesssim 0.35$ $C_{BH}=0.5$
- surface gravity is $7 \cdot 10^{12} \text{ m/s}^2$ $g_{Earth} = 9.8 \text{ m/s}^2$
- fast spinning: $\nu = 716 \text{ Hz} (\text{PSR J1748-2446})$
- huge magnetic fields: $B = 10^{15}$ G

 $B_{Earth;core} = 25 \text{ G}, B_{RMN} = 10^5 \text{ G}$

= nac

NS are labs for dense matter, General Relativity, physics of magnetic fields ...

Adriana R. Raduta	HADRON 2023	June 5, 2023	3 / 23

Structure and Composition

CRUST inhomogeneous (crystal) nuclei, neutrons, electrons **uncertainties:** inner crust, due to $E_{sym}(n)$

CORE - This talk homogeneous struct. **uncertain composition:** nucleons, hyperons, pions, quarks, electrons, muons, due to $E(n, Y_e)$

Equation of State P(e) key for structure

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Observables: Masses

[Suleiman et al., PRC104, 015801] DNS: binaries with two neutron stars, MSP: millisecond pulsars with f > 50 Hz , SLOW: slowly rotating pulsars with f < 50 Hz , X/OPT measurement via X-ray or optical obs. , GW: measurements using detection of GW

Massive NS

PSR J1614-2230 ($M = 1.908 \pm 0.016 M_{\odot}$) [Demorest+, 2010; Arzoumanian+, 2018]; PSR J0348+0432 ($M = 2.01 \pm 0.04 M_{\odot}$) [Antoniadis+, 2013]; MSP J0740+6620 ($M = 2.08^{+0.07}_{-0.07} M_{\odot}$) [Fonseca+, 2021]; PSR J1810+1744 ($M = 2.13 \pm 0.04 M_{\odot}$ [Romani+, 2021]

Relevant for the composition of the core

HADRON 2023

June 5, 2023 5 / 23

Observables: Radii

Two measurements:

 $\begin{tabular}{l} & \triangleright \mbox{ PSR J0030+0451 by NICER} \\ $R(1.44^{0.15}_{-0.14} {\rm M}_{\odot}) = 13.02^{+1.24}_{-1.04} {\rm km} \mbox{ [Miller+, 2019]} \\ $R(1.34^{+0.15}_{-0.16} {\rm M}_{\odot}) = 12.71^{+1.14}_{-1.19} {\rm km} \mbox{ [Riley+, 2019]} \end{tabular} \end{tabular}$

hightarrow J0740+6620 by NICER+XMM Newton $R(2.08 \pm 0.07 M_{\odot}) = 13.7^{+2.6}_{-1.5} \text{ km} \text{ [Miller+, 2021]}$ $R(2.072^{+0.067}_{-0.066} M_{\odot}) = 12.39^{+1.30}_{-0.98} \text{ km} \text{ [Riley+, 2021]}$

 \bullet uncertainties still large but enough to rule out a number of EoS

• more measurements from NICER and future LOFT, Athena missions

Data from COMPOSE, https://compose.obspm.fr/

Observables: Tidal deformabilities

 \triangleright the tidal deformability, Λ , describes how much body is deformed by tidal forces, which arise wher two massive bodies orbit each other;

 \rhd GW170817 - detection of GW emitted by the merging of two NS with $M_T=2.73^{+0.04}_{-0.01}~{\rm M}_\odot$ and $0.72\leq q=M_2/M_1\leq 1$

 \rhd tidal deformability 70 < $\Lambda_{1.4} \leq 580$ [Abbott+, PRL 2018], constraint on the NS EoS over $2n_{\rm sat} \lesssim n \lesssim 3n_{\rm sat}$

• enough to rule out a number of realistic EoS

Data from COMPOSE, https://compose.obspm.fr/

Equations of state: Cold nuclear matter

 $E/A(n, \delta)$ is Taylor expanded in terms of deviation from isospin asymmetry, $\delta = (n_n - n_p)/n$, and saturation density, $\chi = (n - n_{sat})/3n_{sat}$, with $n = n_n + n_p$.

$$E/A(n,\delta) = E/A(n,0) + S(n) \delta^{2} + \dots$$

=
$$\sum_{i\geq 0} \frac{1}{i!} X_{sat}^{(i)} \chi^{i} + \sum_{j\geq 0} \frac{1}{j!} X_{sym}^{(j)} \chi^{j} \delta^{2} + \dots$$

energy SNM symmetry energy

$$X_{\rm sat}^{(i)} = 3^{i} n_{\rm sat}^{i} \left(\frac{\partial^{i}(E/A)}{\partial n^{i}} \right)_{n=n_{\rm sat},\delta=0}; \quad X_{\rm sym}^{(j)} = 3^{j} n_{\rm sat}^{j} \left(\frac{\partial^{j} S(n)}{\partial n^{j}} \right)_{n=n_{\rm sat},\delta=0}$$

i=0, 2, ... binding energy per nucleon E_{sat} , incompressibility K_{sat} , etc. at n_{sat} j=0, 1, 2, ... symmetry energy J_{sym} and its slope L_{sym} , curvature K_{sym} , etc. at n_{sat}

- ▷ EoS exist for phenomenological and microscopic models
- \triangleright large uncertainties away from $(n_{sat}, \delta \approx 0)$

Adriana R. Raduta

イロト 不得 トイヨト イヨト 二日

How to build a Neutron Star? - I. Nucleonic stars

- a model of eff. interaction is needed
- for any n_B , composition is determined by solving for $n_B = \sum_{i \in B} n_i$, $\sum_{i \in B} n_i + \sum_{\alpha \in L} n_\alpha = 0$, $\mu_n = \mu_p + \mu_e$
- one obtains $n_i(n_B)$, $e(n_B)$, $P(n_B)$ $\rightarrow P(e)$ equation of state
- P(e) enters the hydrostatic eqs.
 NS structure and composition
- mapping between P(e) and M R
- uncertainties in potentials → uncertainties in P(e), properties of NS
- dominated by $E_{sym}(n)$
- correlations among properties of NS and NM

Exotic particles: Why? Which? How?

- Why? To minimize the energy.
- Which?
 - heavy baryons: Λ, Σ^{-,0,+}, Ξ^{-,0} hyperons, Δ(1232)-resonances [Glendenning, PLB, 1982; Sedrakian+, PPNP (2023)]
 - mesons: π, K [Glendenning, PLB, 1982]
 - d* hexaquark [Mantziris+, A&A, 2020]
 - other? please, suggest!
 - onset depends on interactions, e.g., NY, N Δ , YY, N π
- scarce experimental info:
 - few hundreds scattering events for NΛ and NΣ;
 - spectroscopic data of single- and double-hypernuclei;
 - pion-nucleus scattering and pion photo-production, electron scattering on nuclei and electromagnetic excitations
- $U_{\Lambda}^{(N)} \approx -28 \mathrm{MeV}$, $U_{\Xi}^{(N)} \approx -18 \mathrm{MeV} \ U_{\Sigma}^{(N)} \approx 30 \mathrm{MeV}$, [Millener et al., 1998]
- $-30~{
 m MeV} + U_N^{(N)} \le U_\Delta^{(N)} \le U_N^{(N)}$ [Drago+, 2014; Kolomeitsev+, 2017]
- onset densities $n \approx 2 3n_{\rm sat}$
- not every species is present

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

How to build a Neutron Star? - II. Stars with exotic cores

- a model of eff. interaction
- the hadronic blend: NA, NY, NY Δ , NY π , NK; add leptons (e^- , μ^-)
- tune the coupling constants to get U^(N)_Y, U^(N)_Δ, etc.; use flavor sym. group arguments,
- for any n_B composition is determined by solving for $n_B = \sum_{i \in B} n_i$, $\sum_{i \in B} n_i + \sum_{\alpha \in L} n_\alpha = 0$,
 - $\begin{aligned} \sum_{i \in B} \mu_i + \sum_{\alpha \in L} \mu_\alpha &= 0, \\ \mu_i &= Q_B \mu_B + Q_Q \mu_Q + Q_S \mu_s, \\ \mu_\alpha &= Q_Q \mu_Q + Q_L \mu_L, \\ [\mu_S = 0; \ \mu_L = 0 \text{ or } \mu_L \neq 0] \end{aligned}$
- "switch-on" particles with $\mu_i > m_i c^2$, $\mu_\alpha > m_\alpha c^2$
- one gets $n_i(n_B)$, $n_L(n_B)$, $P(n_B)$, $e(n_B)$, etc. $\rightarrow P(e)$ equation of state
- solve Tolman-Oppenheimer-Volkoff (TOV) eqs.; NS structure and composition
- how M R gets modified? tidal deformabilities? moments of inertia?

NS with exotic cores: Structure

- exotic species soften the EoS
 - exotic NS have lower M_{max}
 - exotic NS have smaller R, Λ
- best studied case: onset of hyperons
- onset of Δs, π, K also studied; various blends;
- agreement with all astrophys. observations $M_{max} \gtrsim 2 M_{\odot}$; joint mass and radii from NICER; tidal deformability from GW170817
- none species is confirmed nor ruled out
- degeneracy in P(e)

NS with exotic cores: Composition

- onset and abundances are decided upon rest mass, interaction potential, charge
- uncertainties in NN, NY, $N\Delta \rightarrow$ uncertainties in composition, especially at high n_B

not every "allowed" species is present

- ► hyperonic NS: only Λ , Ξ^- and $\Sigma^$ $n_{\Lambda} \approx 2n_{\rm sat}$, $M_{\Lambda} \approx 1.5 M_{\odot}$ $n_{\Xi^-} \approx 2.5 n_{\rm sat}$, $M_{\Xi^-} \approx 1.6 - 1.8 M_{\odot}$
- Δ -admixed hyperonic NS: only Δ^- , Λ , $\Xi^$ $n_{\Delta^-} \approx 1.7 n_{sat}$, $M_{\Delta^-} \approx 1 M_{\odot}$ $n_{\Lambda} \approx 2 n_{sat}$, $M_{\Lambda} \approx 1.3 M_{\odot}$

[Raduta+, MNRAS (2020)]

Hot astrophysical environments

- in core-collapse supernovae, proto-neutron stars, binary NS mergers wide ranges of baryonic densities $[10^{-10} \le n_B \le 1 10 \text{ fm}^{-3}]$, temperature $[0 \le T \le 100 \text{ MeV}]$, charge fraction $[0 \le Y_q \le 0.6]$ are populated
- numerical simulations require EoS tables; thermodyn. and composition are stored in 2D tables

[Pons+, ApJ 667, 282; Janka+, Phys Rep 442, 38; Fischer+, AA 499, 1;

Shibata+, Living Rev. Rel.14, 6; O'Connor+, ApJ 730, 70; Hempel+, ApJ 48, 70;

Mezzacappa+, 1507.05680; Rosswog, Int J Mod Phys D24, 1530012; Baiotti+,

Rep Prog Phys 80, 096901; O'Connor+, ApJ 865, 81; Burrows+, MNRAS 491,

2715; Ruiz+, PRD101, 064042; Janka, Ann Rev Nucl Part Phys 62, 407;

Bauswein+, PRD86, 063001; Koppel+, ApJ872, L16; Bauswein+, PRL125]

[Fischer+, EPJA (2014)]

Heavy baryons in hot and dense matter

- thermal excitation of new d.o.f.
- ν_e trapping modifies the composition
- high T: hyperons and Δs appear at $n_B < n_{sat}$
- high T favor exotic species
- Λ and Δ^- dominate

 thermodyn. potentials, microscopic quantities will depend on *T*, *Y*_{p/L}, particle d.o.f. and nucleonic EOS

• effects on properties and stability of hot stars

Thermal properties

Speed of sound: $c_S^2 = dP/de|_{S,N_b,N_q}$

$$c_{S}^{2}=1/hk_{S}=p\gamma/e;~k_{S}=-1/V\cdot dV/dp|_{S,N_{b},N_{q}};~~\gamma=\partial\ln p/\partial\ln e|_{S}$$

- strong n_B- and EOS- dependence;
- for Gibbs treatment of phase coex., $c_S^2 = 0$
- heavy baryons, mesons: c_s^2 decreases over a narrow n_B domain
- transition to quarks: c_s^2 decreases over large n_B domain
- signatures of exotica are seen in numerical simulations

< ロ > < 同 > < 回 > < 回 >

CompOSE

online repository for EOS (https://compose.obspm.fr/)

- stores thermodyn., composition, microscopic, transport properties in standardized format
- tabulation with respect to temperature (*T*), charge fraction (Y_Q), part. number density (n_B)
- wide ranges: $0.1 \le T \text{ [MeV]} \le 100$; $0.01 \le Y_Q \le 0.6$; $10^{-10} \le n_B \text{ [fm}^{-3}] \le 1-2$
- fine mesh; allows interpolation
- various types of EOS: cold neutron stars; neutron matter; "general purpose", ready for input in simulations; from microscopic, phenomenological, schematic models; various particle d.o.f.

provides tools

- to sort by type; approach; particle composition; prop. of NM; group of authors
- to compute thermodyn. quantities, thermal coefficients,
- to extract information for arbitrary thermodyn. conditions,

modular; constantly upgrading

[Typel, Oertel, Klaehn, Phys.Part.Nucl. (2015); Typel et al., Eur.Phys.J.A (2022)]

CompOSE

Activities	🕴 Firefox Web Browser 👻					ma	ır8 13:26 ●							
	Ele Edit View History Bookma													
9	😆 🔿 Eos Table	× +												
:6	$\leftarrow \rightarrow \ \ \sigma \ \ \omega$	0 8 htt	tps://compose. obspm.ft /table/fam=3/part=3/f	iomo=3										
_						\sim -								
•	=						mpOSE 🖇	ompStar Onl quations of S	ine Supern tate	onae				
0	B EoS 1					(\mathbf{c})								
	All families													
1	Nodels with hyperons and	EoS												
2	hybrid (quark-hadron) model	Family: Cold Neutron Star EoS Particles: models with hyperons												
	Holographic models	C.M. Homogeneous Matter: Relativistic density functional models												
• 1	functional models	511010 2.5	o enclass											
	Nicroscopic calculations • Relativistic density functional	Nparam (Name	Panily	Particles Content	C.M. Hamageneous	C.H. Interageneous	Particles	T ania MeV	T max MeV	T pils	nb min fer ⁴	nb max tw ⁻¹	ak pts (
	models * Thomas-Fermi calculation	1	DSIGNTI-S	Cold Neutron Star EaS	models with hyperons	Relativistic density functional models	-	rpe0s		+	1	0.03	1.9	107
: 🔜	Non unified models (crust model matched)	1	DSIGN(7)-1 with crust	Cold Neutron Stor EaS	models with hyperons	Relativistic density functional models	Non unified models (crust model matched)	npehito			1	16-07	3	1191
. 🔊	ASE models Unified models	1	DSIGNE)-4 with crust	Cold Neutron Star EaS	models with hyperons	Relativistic density functional models	Non-unified models (crust model matched)	rpeli			1	16-07	3	1129
~	SNA models Al	1	DSIGN#1-5 with crust	Cold Neutron Star Ex5	models with hyperons	Relativistic density functional models	Non-unified models (crust model matched)	npeMBo			1	16-07	1.9	1623
	All Nodels with kaon condensate	1	DSICMPI-1	Cold Neutron Stor Ex5	models with hyperons	Relativistic density functional models	-	rpells			1	0.03	3	301
	nucleonic models 🔹	1	OPGRIGM1131 (with hyperans)	Cold Neutron Stor Ex5	models with hyperons	Relativistic density functional models	Non-unified models (crust model matched)	reeth	•		1	7.9e-15	13	347
	All Cool Matter FoS	1	DSICMPL2	Cold Neutron Stor Ex5	models with hyperons	Relativistic density functional models	-	-			1	0.03	3	301
	Neutron Matter EoS	1	DSICMP) 4	Cold Neutron Stor Ex5	models with hyperons	Relativistic density functional models	-	-			1	0.03	3	301
	Neutron star crust EoS	1	DSIGNE1.6 with crust	Cold Neutron Stor Ex5	mode's with hyperons	Relativolis: density functional models	Non-unified models (crust-model moltched)	rpeli	0		1	1e-07	1.9	1423
	 Bibliography Downloads 	1	OPORION[114] (with hyperans)	Cold Neutron Stor Ex5	mode's with hyperons	Relativolis density functional models	Non-unified models (crus) model matched)	rpells	0	•	1	7.9e-13	1.2	303
	+1 Login	1	ENSIGNP1 hadronic cold realism stars) with crust	Cold Neutron Stor Ex5	mode's with hyperons	Relativoble density functional models	Non-unified models (crus) model molahed)	rpends	0	•	1	1e 07	3	1191
	External Links	1	DISCHE) 3 with crisit	Cold Neutron Stor Ex5	models with hyperons	Relativistic density functional models	Non-unified models (crus) model molubed)	opeNBs	0	•	1	1e 07	3	1129
	Contacts	3	DSCM1.6	Cold Neutron Star Ex5	models with hyperons	Relativistic density functional models		-	٥		1	0.03	1.9	187
		3	Discory-a	Cold Neutron Star EuS	made's with hyperons	Relativistic density functional models		rpetts	0	•	1	0.03	3	301
		1	DECOMPLE WITH CARE	Cold Residion Star EuS	madels with hyperons	Relativistic density functional models	Non-unified models (crast madel matched)	rpets	4		1	1e-07		1191
		1	OPOR(OM1YR) (with hyperanc)	Cold Revalues Star Ball	models with hyperons	Relativistic density functional readers	Non-unified models (crast madel matched)	rpetts			1	7.08-13	1.1	238
:::		1	DMI(CMP) Hadranic (cold resilton stars)	Cold Relation Star Bats	models with hyperons	Relativistic density functional readers	-	open Is			1	0.01		301
		1	CPGR(3D+stellar4) (with hypercent)	Cold Neutron Star East	models with hyperons	Relativistic density functional readers	Non-unified models (crust model reatched)	rpetts	÷ .		= \$	7.00-15	a.ss ∳)	u (*

Conclusions

- Neutron Stars (NS): formation, properties, composition, observables
 - Equations of State (EoSs)
 - NS as laboratories for cold dense matter physics

- Core-collapse supernovae, binary neutron star mergers
 - temperature, density, charge fraction domains
 - Equations of State
 - Observables

Heavy baryons

Baryon	В	Q	S	<i>I</i> 3	J ⁿ	rest mass		mean life
						(MeV)		(s)
n	1	0	0	1/2	$1/2^{+}$	939.565	udd	879.4(6)
р	1	1	0	1/2	$1/2^{+}$	938.272	uud	$> 3.6\cdot 10^{29}$ years
Λ	1	0	-1	0	$1/2^{+}$	1115.683	uds	$2.60\cdot 10^{-10}$
Σ^+	1	1	-1	-1	$1/2^{+}$	1189.37	uus	$8.02\cdot10^{-11}$
Σ^0	1	0	-1	0	$1/2^{+}$	1192.642	uds	$7.4 \cdot 10^{-20}$
Σ^{-}	1	-1	-1	1	$1/2^{+}$	1197.449	dds	$1.48\cdot10^{-10}$
Ξ^0	1	0	-2	-1/2	$1/2^{+}$	1314.83	uss	$2.90 \cdot 10^{-10}$
Ξ	1	-1	-2	1/2	$1/2^{+}$	1321.31	dss	$1.64\cdot 10^{-10}$
Δ^{++}	1	2	0	-3/2	$3/2^{+}$	1232	uuu	$5.63 \cdot 10^{-24}$
Δ^+	1	1	0	-1/2	$3/2^{+}$	1232	uud	$5.63 \cdot 10^{-24}$
Δ^0	1	0	0	1/2	$3/2^{+}$	1232	udd	$5.63 \cdot 10^{-24}$
Δ^{-}	1	-1	0	3/2	$3/2^{+}$	1232	ddd	$5.63 \cdot 10^{-24}$

HADRON 2023

Phenomenological RMF (I)

$$\mathcal{L} = \sum_{j \in \mathcal{B}} \overline{\psi}_j \left(i \gamma_\mu \partial^\mu - m_j + g_{\sigma j} \sigma + g_{\sigma^* j} \sigma^* \right. \\ \left. + g_{\delta j} \vec{\delta} \cdot \vec{l}_j - g_{\omega j} \gamma_\mu \omega^\mu - g_{\phi j} \gamma_\mu \phi^\mu - g_{\rho j} \gamma_\mu \vec{\rho}^\mu \cdot \vec{l}_j \right) \psi_j \\ \left. + \frac{1}{2} (\partial_\mu \sigma \partial^\mu \sigma - m_\sigma^2 \sigma^2) - \frac{1}{3} g_2 \sigma^3 - \frac{1}{4} g_3 \sigma^4 \right. \\ \left. + \frac{1}{2} (\partial_\mu \sigma^* \partial^\mu \sigma^* - m_{\sigma^*}^2 \sigma^{*2}) + \frac{1}{2} (\partial_\mu \vec{\delta} \partial^\mu \vec{\delta} - m_{\delta}^2 \vec{\delta}^2) \right. \\ \left. - \frac{1}{4} W^\dagger_{\mu\nu} W^{\mu\nu} - \frac{1}{4} P^\dagger_{\mu\nu} P^{\mu\nu} - \frac{1}{4} \vec{R}^\dagger_{\mu\nu} \vec{R}^{\mu\nu} \right. \\ \left. + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu + \frac{1}{4} c_3 (\omega_\mu \omega^\mu)^2 + \frac{1}{2} m_\phi^2 \phi_\mu \phi^\mu + \frac{1}{2} m_\rho^2 \vec{\rho}_\mu \vec{\rho}^\mu \right.$$

where ψ_j denotes the field of baryon j, and $W_{\mu\nu}$, $P_{\mu\nu}$, $\vec{R}_{\mu\nu}$ are the vector meson field tensors of the form

$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu}$$

(日)

Phenomenological RMF (II)

In the mean field approximation, the meson fields are replaced by their respective mean-field expectation values, which are given in uniform matter as

$$\begin{split} m_{\sigma}^{2}\bar{\sigma} &+ g_{2}\bar{\sigma}^{2} + g_{3}\bar{\sigma}^{3} = \sum_{i\in B} g_{\sigma i}n_{i}^{s}; \quad m_{\sigma^{*}}^{2}\bar{\sigma}^{*} = \sum_{i\in B} g_{\sigma^{*}i}n_{i}^{s}; \quad m_{\delta}^{2}\bar{\delta} = \sum_{i\in B} g_{\delta i}t_{3i}n_{i}^{s} \\ m_{\omega}^{2}\bar{\omega} &+ c_{3}\bar{\omega}^{3} = \sum_{i\in B} g_{\omega i}n_{i}; \quad m_{\phi}^{2}\bar{\phi} = \sum_{i\in B} g_{\phi i}n_{i}; \quad m_{\rho}^{2}\bar{\rho} = \sum_{i\in B} g_{\rho i}t_{3i}n_{i} , \end{split}$$

$$n_i^s = \langle \bar{\psi}_i \psi_i \rangle = rac{1}{\pi^2} \int_0^{k_{Fi}} k^2 rac{M_i^*}{\sqrt{k^2 + M_i^{*2}}} dk \; ,$$

and the number density by

$$n_i = \langle ar{\psi}_i \gamma^0 \psi_i
angle = rac{1}{\pi^2} \int_0^{k_{Fi}} k^2 dk = rac{k_{Fi}^3}{3\pi^2} \; .$$

The effective baryon mass M_i^* depends on the scalar mean fields as

$$M_i^* = M_i - g_{\sigma i} \bar{\sigma} - g_{\sigma^* i} \bar{\sigma}^* - g_{\delta i} t_{3i} \bar{\delta}$$

and the effective chemical potentials, $(\mu_i^*)^2 = (M_i^*)^2 + k_{F_i}^2$, are related to the chemical potentials via

$$\mu_i^* = \mu_i - g_{\omega i} \bar{\omega} - g_{\rho i} t_{3i} \bar{\rho} - g_{\phi i} \bar{\phi} - \Sigma_0^R .$$

イロト 不得 トイヨト イヨト 二日