Measurements of Light-flavor Hadron Production with ALICE

Alberto Calivà on behalf of the ALICE Collaboration

Istituto Nazionale di Fisica Nucleare SEZIONE DI NAPOLI Gruppo Collegato di Salerno

20th International Conference on Hadron Spectroscopy and Structure

June 5-9, 2023 Genova (Italy)

Introduction

Light-flavor hadrons: bulk of particle production in high-energy hadronic collisions at the LHC

Multi-differential measurements of their production yields provide information on a large variety of phenomena such as

- hadronization mechanism
- strangeness enhancement
- hadronic interactions
- collectivity effects

 \bigcirc . . .

Universal scaling of yields and hadron chemistry with charged-particle multiplicity

μ') + 0.05 ±<u>€</u> 0.04 ia 0.03 +

smooth transition from pp to AA collisions

Strangeness enhancement

Nature Phys. 13, 535–539 (2017) Eur. Phys. J. C 80, 167 (2020)

Ratio of (multi-)strange hadron yields and pion yields:

- Smooth evolution with multiplicity across different collision systems and energies
- Steep rise at low multiplicity ($dN_{ch}/d\eta \leq 50$)
- Decreasing slope with increasing multiplicity until saturation at $dN_{\rm ch}/d\eta \approx 100$
- Larger increase for hadrons with larger strangeness content

Different phenomenological models are used to describe this effect

 \rightarrow not fully understood

Strangeness in and out of jets

Jet: anti-k_T, R<0.4

Underlying event: perpendicular cone R<0.4

 $\Lambda, K_s^0, \Xi^{\pm}$ and Ω^{\pm} production in pp collisions and p-Pb collisions with a hard scattering > tagged by a charged jet with $p_{T,jet}$ > 10 GeV/c

arXiv:2211.08936 (2022)

• p_T spectra of strange hadrons inside jets are less steep wrt UE \bullet p_T-differential density in inclusive measurements lower and softer than those in the UE \rightarrow in this measurement events with $p_{T,jet} > 10 \text{ GeV}/c$ are selected

Baryon-to-meson ratios

Jet: anti-k_T, R<0.4

Underlying event: perpendicular cone R<0.4

Baryon-to-meson ratios

- Different values at low p_T in jets and in the UE
- Enhancement at intermediate p_{T} not present within jet
 - \rightarrow different production mechanisms?
- Baryon-to-meson ratio in the UE consistent with inclusive ratio

arXiv:2211.08936 (2022)

Baryon-to-baryon ratios

Jet: anti-k_T, R<0.4

Underlying event: perpendicular cone R<0.4

Baryon-to-baryon ratios

- Different values in jets and in the UE except for Ω/Ξ (large uncertainties in jets) \rightarrow different production mechanisms?
- Inclusive measurements consistent with those in the UE for all ratios

arXiv:2211.08936 (2022)

Phys. Lett. B 827 (2022) 136984

ALI-PUB-52778

Λ/K_{s}^{0} : pp vs. p-Pb collisions

 Λ/K_s^0 measured in p-Pb collisions systematically higher for $2 < p_T < 8$ GeV/c wrt that in pp collisions.

 \rightarrow jet fragmentation in p-Pb collisions not happening in the vacuum?

However, the difference is not significant (less than 2σ) \rightarrow will be studied with higher precision in Run 3

Strangeness with two-particle correlation

Strangeness production in and out of jet via two-particle correlation method:

- Trigger primary particle as proxy for the jet (highest p_T and p_T > 3 GeV/*c*)
- $\Delta\eta$ and $\Delta\phi$ of strange hadron wrt trigger particle define in-jet and out-of-jet regions

• K^0_s and Ξ^{\pm} production toward and transverse to leading studied in different event multiplicity classes

• Toward leading p_T spectra are harder than those transverse to leading

Strangeness enhancement in and out of jets

- Full and transverse-to-leading yields of strange hadrons show a similar rise with multiplicity
- Weak multiplicity dependence of the toward-leading yield

Strangeness enhancement in and out of jets

- Weak multiplicity dependence of the toward-leading yield
- Full Ξ^{\pm}/K_{s}^{0} ratio consistent with transverse-to-leading ratio
- Strangeness enhancement both in and out-of-jet on two different levels

Effective energy

Forward emission of baryons in pp collisions reduces the effective energy, i.e. the energy available for particle production

Energy of leading baryons can be measured using the Zero-Degree Calorimeters (ZDC)

 $E_{\rm eff} = \sqrt{s} - E_{\rm leading} \approx \sqrt{s} - E_{\rm ZDC}$

Effective energy

Forward emission of baryons in pp collisions reduces the effective energy, i.e. the energy available for particle production

Energy of leading baryons can be measured using the Zero-Degree Calorimeters (ZDC)

 $E_{\rm eff} = \sqrt{s} - E_{\rm leading} \approx \sqrt{s} - E_{\rm ZDC}$

Forward energy (E_{ZDC}) is anti-correlated with the charged-particle multiplicity at mid-rapidity $\langle n_{ch} \rangle_{|\eta| < 0.5}$ measured using SPD clusters

Strangeness production measured as a function of effective energy by fixing $\langle n_{\rm ch} \rangle_{|\eta| < 0.5}$ (2 values)

Strangeness production per charged particle:

- increases with charged-particle multiplicity at midrapidity (left)
- is anti-correlated with the ZDC energy (right)

Stronger variation for baryons with larger strangeness content

Scaling with *E*_{eff} consistent for the two multiplicity classes within uncertainties

Strange hadron yields per charged particle increases with the E_{eff} for fixed $\langle n_{\text{ch}} \rangle_{|\eta| < 0.5}$

Scaling with *E*_{eff} consistent for the two multiplicity classes within uncertainties Pythia Monash 2013 fails to reproduce the results

- Strange hadron yields per charged particle increases with the E_{eff} for fixed $\langle n_{ch} \rangle_{|\eta| < 0.5}$

Scaling with *E*_{eff} consistent for the two multiplicity classes within uncertainties Trend well described by Pythia8 Ropes (p_T distributions not reproduced)

- Strange hadron yields per charged particle increases with the E_{eff} for fixed $\langle n_{ch} \rangle_{|\eta| < 0.5}$

Short-lived resonances

Hadronic resonances have lifetimes comparable to that of the hadron gas phase (few fm/c)

 \rightarrow reconstructed yields and p_{T} spectra affected by rescattering and re-generation effects

Relative contribution of these competing effects depends on:

- The resonance lifetime relative to that of the hadron gas
- The resonance mean free path
- The density of the hadronic medium

Short-lived resonances

Hadronic resonances have lifetimes comparable to that of Resonances can be used to extract T_{kin} using hadron the hadron gas phase (few fm/c) resonance gas model in partial chemical equilibrium

 \rightarrow reconstructed yields and p_{T} spectra affected by rescattering and re-generation effects

Relative contribution of these competing effects depends on:

- The resonance lifetime relative to that of the hadron gas
- The resonance mean free path
- The density of the hadronic medium

Phys. Rev. C 102, 024909 (2020)

- \rightarrow no assumptions regarding the flow velocity profile and the freeze-out hypersurface
- \rightarrow consistent results with Blast-wave fits

Rescattering and regeneration

Phys. Rev. C 106 (2002) 034907

- Rescattering and regeneration effects studied by measuring yield ratios of different resonances to corresponding stable hadron vs. $dN_{ch}/d\eta$ Significant suppression of K^*/K with increasing multiplicity • Almost flat trend for ϕ/K

Rescattering and regeneration

Phys. Rev. C 106 (2002) 034907

Resonances in small systems

- Hardening of p_T spectra + shift of the maximum (similar to radial flow)
- Suppression of K^*/K ratio with increasing multiplicity
- Stronger suppression for higher multiplicity at low p_{T}

 \rightarrow Short-lived hadronic phase in small collision systems?

Measurement of K^{*} production in pp collisions shows effects that are similar to heavy-ion collisions:

Resonances with different lifetimes

Resonances with different lifetimes

Models do not simultaneously describe both K^*/K and Λ^*/Λ

Exotic resonances

arXiv:2206.06216 [nucl-ex]

Vovchenko et al, PRC 100 (2019) 5, 054906

- Measurements of f₀(980) production in different collision systems used to study its internal structure
- Different scenarios are tested: $s\overline{s}$, KK molecule, tetraquark \rightarrow No conclusive statement

Double- ϕ production

Model / Data

Measurement of ϕ -meson pair production used to constrain particle production models

> average yield of single and double- ϕ underestimated by different tunes of Pythia8

Deuteron number fluctuations

arXiv:2204.10166 [nucl-ex]

New observable based on event-by-event (anti)deuteron fluctuations to distinguish SHM and coalescence

$$\frac{\kappa_2}{\kappa_1} = \frac{\langle (n - \langle n \rangle)^2 \rangle}{\langle n \rangle}$$

Cumulant ratio favors canonical statistical model

Coalescence Model A: full correlation of *p* and *n* **Coalescence Model B**: independent *p* and *n* fluctuations

Correlation volume

arXiv:2204.10166 [nucl-ex]

Pearson correlation $\rho_{\overline{p}\overline{d}}$ clearly indicates a correlation volume for baryon number conservation of 1.6 units of rapidity

Correlation volume

arXiv:2204.10166 [nucl-ex]

Pearson correlation $\rho_{\overline{p}\overline{d}}$ clearly indicates a correlation volume for baryon number conservation of 1.6 units of rapidity

> different from net-proton fluctuation result

ults (
$$\Delta y_{\rm corr}$$
 = 5)

Precise µ_B measurement at LHC

New measurement of antimatter/matter imbalance at the LHC

$$\overline{h}/h \propto \exp\left[-2\left(B+\frac{S}{3}\right)\frac{\mu_{B}}{T}-2I_{3}\frac{\mu_{I_{3}}}{T}\right]$$

Uncertainties reduced wrt thermal model fit by one order of magnitude > direct cancellation of correlated uncertainties in antimatter-to-matter ratios

Light nuclei production

Closing in on the production mechanism of light (anti)nuclei via production measurements in different collision systems and energies

New results in Pb-Pb collisions with smaller uncertainties \rightarrow entered the precision era! Data challenge the existing models (thermal model and coalescence)

arXiv:2211.14015 [nucl-ex]

Hadron production vs. R_T

Underlying event activity classifier

arXiv:2301.10120 [nucl-ex]

*p*_¬ (GeV/*c*)

Different relative hadron abundances and p_T dependence in different regions and R_{T} intervals

 \rightarrow different production mechanisms in hard-scattering and soft-QCD processes?

Enhanced coalescence probability in jets

arXiv:2211.15204 [nucl-ex]

Enhanced deuteron coalescence probability in jets \rightarrow nucleons are closer in phase space within jets wrt UE

Results qualitatively described by nucleon coalescence and reaction-based deuteron production (e.g., $p + n \rightarrow d + \gamma$) implemented in PYTHIA 8.3

- In jet: Toward Transverse
- **Underlying Event:** Transverse

Coalescence parameter

$$B_2 = \left(\frac{1}{2\pi p_{\rm T}^{\rm d}} \frac{{\rm d}^2 N_{\rm d}}{{\rm d}y {\rm d}p_{\rm T}^{\rm d}}\right) / \left(\frac{1}{2\pi p_{\rm T}^{\rm p}} \frac{{\rm d}^2 N_{\rm p}}{{\rm d}y {\rm d}p_{\rm T}^{\rm p}}\right)$$

Proportional to the deuteron coalescence probability

Nuclei production in and out of jets

- Larger difference between B_2^{jet} and B_2^{UE} in p-Pb wrt pp collisions
- Underlying event $B_2^{UE}(p Pb) < B_2^{UE}(pp)$
 - particle-emitting source is larger in p-Pb wrt pp collisions larger average distance between nucleons
- \rightarrow smaller coalescence probability

Nuclei production in and out of jets

- Larger difference between B_2^{jet} and B_2^{UE} in p-Pb wrt pp collisions
- Underlying event $B_2^{UE}(p Pb) < B_2^{UE}(pp)$
 - particle-emitting source is larger in p-Pb wrt pp collisions larger average distance between nucleons
- \rightarrow smaller coalescence probability

n jet
$$B_2^{\text{in-jet}}(p - Pb) > B_2^{\text{in-jet}}(pp)$$

Stronger momentum correlations between nucleons in p-Pb wrt pp collisions? Larger baryon density in p-Pb wrt pp collisions?

Hint of a larger d/p within jets in p-Pb wrt pp collisions \rightarrow jets in p-Pb not fragmenting in the vacuum?

d/p in jet: pp vs. p-Pb

- Different hadron abundances might affect coalescence probability

Summary

on hadron production

measurements > multi-differential measurements > rare probes

Exciting times are ahead

Detailed characterization of a large variety of phenomena

- LHC Run 3: entering the precision era of hadron production

