

A laboratory for QCD: how to employ LHC to study hadron-hadron interactions V. Mantovani Sarti (TUM)

Hadron2023, June 05-09 2023 Genova

valentina.mantovani-sarti@tum.de

Strong interaction between hadrons

 Understanding how QCD evolves from highenergy to low-energy regime

How do hadrons emerge?

How do hadrons interact? 2-body and many-body interactions

How is the QCD spectrum organized? Bound states/resonances Conventional and exotic states

The many facets of QCD

 Interplay between elastic and inelastic contributions in the strong interaction

Bound states, resonances, ... Heavy quark sector

Coupled-channel dynamics, annihilation,... Important to assess existence and nature of bound states

• Large amount of data at 2-body and many-body level for interactions involving u and d quarks (NN, NNN)

What about interactions involving strange and charm hadrons?

Understanding and measuring the hadronic interactions

Understanding and measuring the hadronic interactions

С

≠ 0

The femtoscopy technique at the LHC

Access to the **short-range dynamics** between hadrons^[1,2]:

$$C(k^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

Emitting source anchored to p-p correlation data [3]

→ Universal emitting source for particles in small colliding systems

 \rightarrow Interparticle distances ~1-2 fm

 p_2

Two-particle wave function^[4] \rightarrow Profile of $C(k^*)$ vs nature of the interaction

 $C(k^*)$ $\begin{cases} > 1 & \text{Attractive} \\ < 1 & \text{Repulsive} \\ \gtrless 1 & \text{Bound state} \end{cases}$

M.Lisa, S. Pratt et al, Ann.Rev.Nucl.Part.Sci. 55 (2005), 357-402
 L. Fabbietti, VMS and O. Vazquez Doce ARNPS 71 (2021), 377-402
 ALICE coll., PLB, 811 (2020), 135849
 D. Mihaylov et al., EPJC 78 (2018), 5, 394

From small to large colliding systems

- Coulomb (++)
- Strong interaction

- As the source size increases:
 - less sensitive to short-range interaction
 - decrease of the signal strength

р

p

Probing different ranges of the interaction

ORIGINS Excellence Cluster

• For an attractive potential supporting a bound state \rightarrow Interplay between the (large) scattering length a_0 and the source size

8

Effect of bound states on the correlation function

- For an attractive potential supporting a bound state
 - \rightarrow Interplay between the (large) scattering length a_0 and the source size

The p Ω^- interaction and first test of lattice potentials

- Available N Ω lattice potentials at physical quark ٠ masses^[1]
- Very attractive potential in ${}^{5}S_{2}$ state ٠ \rightarrow Formation of a loose bound state with B.E~1.5 MeV
 - \rightarrow Looking for another dibaryon after deuteron!

Inelastic channels (e.g. $p\Omega^- \rightarrow \Lambda \Xi^-$) in 3S_1 not ٠ yet calculated on the lattice \rightarrow First measurements of $\Lambda \Xi^-$ by ALICE indicates a weak coupling^[2]

[1] HAL QCD Coll. PLB 792 (2019) [2] ALICE Coll. arXiv:2204.10258, accepted by PLB

$\Pi \Pi p - \Omega^{-}$ correlation function in pp at 13 TeV

ALICE Coll. Nature 588, 232–238 (2020)

- Enhancement above Coulomb \rightarrow Observation of the strong interaction
- Missing potential of the ³S₁ channel
 → Test of two cases:
 - Inelastic channels dominated by absorption
 - Neglecting inelastic channels → Favoured!
- So far, no indication of a bound state
 → Extend the measurements to p-Pb and Pb-Pb in Run 3 and Run 4
- Access to Ω-Ω in Run 3 and Run 4 with ALICE^[1]

Meson-baryon interactions with strangeness

S = -1 Strangeness

K⁻p correlations measured by ALICE in different colliding systems^[1]

 \rightarrow Improve understanding on $\Lambda(1405)$ molecular state^[2]

[1]pp: ALICE Coll. PRL 124 (2020)
Pb-Pb:ALICE Coll. PLB 822 (2021)
pp,p-Pb,Pb-Pb: ALICE Coll. EPJC 83 (2023)
[2] M. Mai EPJ.ST 230 (2021), 6, 1593-1607

RIGINS

Meson-baryon interactions with strangeness

Similar scenario for $\Xi(1620)$ state?

[4] CMS Coll. arXiv: 2301.05290

[4] Belle coll. PRL 122 (2019)

 \rightarrow Shed light on the nature of this state^[4]

[3] ALICE Coll. PRC 103 (2021), CMS Coll. arXiv:2301.05290

K⁻p correlations measured by ALICE in different colliding systems^[1]

 \rightarrow Improve understanding on $\Lambda(1405)$ molecular state^[2]

[1]pp: ALICE Coll. PRL 124 (2020)
Pb-Pb:ALICE Coll. PLB 822 (2021)
pp,p-Pb,Pb-Pb: ALICE Coll. EPJC 83 (2023)
[2] M. Mai EPJ.ST 230 (2021), 6, 1593-1607

g-0.2

15

Moving to ΛK⁻ correlations...

Correlations in Pb-Pb

1 - 1.2

- \rightarrow First measured scattering parameters available!
- \rightarrow Only evidence of Ω in most central events

How does the correlation look like in pp collisions?

Presence of $\Xi(1620)$?

The ΛK^{-} correlation in pp collisions

17

- Invariant mass from same and mixed event distributions
 used to build the correlation
 - Ξ (1620) just above the threshold
 - \rightarrow First experimental evidence of decay into ΛK^-

The ΛK⁻ correlation in pp collisions

Sill distribution Talk by F. Giacosa Today 16:55

• \equiv (1620) properties and scattering parameters \rightarrow Mass in agreement with Belle^[3]

 $M_{\Xi(1620)} = 1618.49^{\pm 0.28(stat)}_{\pm 0.21(syst)}$

→ Indication of a large coupling of $\Xi(1620)$ to ΛK^- → Non-resonant scattering parameters in agreement with ALICE Pb-Pb results^[4]

- High-precision data to constrain effective chiral theories and to understand the $\Xi(1620)$ nature^{[5,6]}

R. Lednicky, V. Lyuboshits SJNP 35 (1982)
 F. Giacosa et al. EPJA 57 (2021), 12, 336
 Belle coll. PRL 122 (2019), 7, 07250
 [4]ALICE coll. PRC 103 (2021)), 5, 055201
 [5] A. Ramos et al. PRL 89 (2002), 252001
 [6] A. Feijoo et al. PLB 841 (2023), 137927

19

Accessing the strong interaction with charm hadrons

С_{pD}(k*) ALICE pp $\sqrt{s} = 13$ TeV High-mult. (0-0.17% INEL > 0) pD⁻ ⊕ pD⁺ Coulomb C. Fontoura et al. $f_0(I = 1)$ $f_0(I = 0)$ n_{σ} (1.1 - 1.5)(0.8 - 1.3)(1.3 - 1.6)(0.6 - 1.1)(1.1 - 1.5)

First measurement of the genuine correlation between ٠ protons and D⁻ mesons

 \rightarrow Important input in studies and searches for charm nuclear states^[1]

Comparison with available models ٠

Model

- \rightarrow Indication of an attractive interaction
- \rightarrow Compatible also with the formation of bound state

TABLE I. Scattering parameters of the different theoretical models for the ND interaction [22–25] and degree of consistency with the experimental data computed in the range $k^* < 200 \text{ MeV}/c$.

0.04
-0.26
-0.07
-0.25
_

- Preliminary results on $D\pi$ and DK correlations ٠ measured by ALICE
 - \rightarrow Structure of D^{*}₀(2300) and signatures in D π correlations^[2]

[1] A. Hosaka et al. Prog. Part. Nucl. Phys. 96 (2017), 6, 062C01 [2] M. Albaladejo et al. arXiv:2304.03107

ALICE coll. PRD 106 (2022), 5, 052010

Correlations and exotic states for a charming future

• Exotic charm states as T_{cc}^+ observed at LHCb

 Investigate its nature with ALICE 3 in Run 5 and Run 6 via DD* correlations
 → Complementarity between spectroscopy and femtoscopy

LHCb, Nature Physics 18 (2022) LHCb, Nature Comm. 13 (2022)

• Interplay between source size and scattering length \rightarrow Size-dependent modification on the C(k*) and insights into the nature of T_{cc}^+

Conclusions and outlooks

- Femtoscopy technique as a complementary tool to provide high-precision data on hadron-hadron interactions
- Access to strong interaction involving **strange** and **charm** hadrons
 - most precise data at low momenta available
 - input for low-energy effective lagrangians and test of lattice potentials
- Many more correlations to come with ongoing Run 3 and future LHC runs

Femtoscopy menu of the week

- Femtoscopy in small systems at LHC
 D. Mihaylov, Mo. 5 17:40
- ******
- Femtoscopy with kaons and deuterons W. Rzesa, Wed. 7 14:24
- Three-particle interactions with femtoscopy L. Serksnyte, Wed. 7 15:12
- YN interaction for EoS with femtoscopy M. Lesch, Thur. 8 15:12
- K⁻p femtoscopy and coupled-channels
 R. Lea, Thur. 8 15:42

Additional slides

Source to rule them all

Anisotropic + Radial pressure gradients

Different effect on different masses

$$C(\mathbf{k}^*) = \int S(\mathbf{r}) \left| \psi(\vec{\mathbf{k}}^*, \vec{\mathbf{r}}) \right|^2 d^3\mathbf{r}$$
$$S(\mathbf{r}) = G(\mathbf{r}, \mathbf{r_{core}}(m_T)) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \otimes \frac{1}{s} \exp(-\frac{r}{s})$$

|S|=2: $\Lambda\Lambda$ interaction and the H-dibaryon

ORIGINS Excellence Cluster

- H-dibaryon: hypothetical bound state of *uuddss*
 - No final experimental evidences so far
 - Recent lattice QCD calculations at physical point with $\Lambda\Lambda$ -NE coupled-channel(*) \rightarrow no bound state around $\Lambda\Lambda$ or NE threshold (**)

- Double-A hypernuclei measurements
 - weak attractive interaction
 - H-dibaryon binding energy $B_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$

Can we improve the knowledge on the $\Lambda\Lambda$ interaction and the fate of the H dibaryon?

 ${}^{6}_{\Lambda\Lambda}$ He -> ${}^{5}_{\Lambda}$ He + p + π - $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17$ MeV

H. Takahashi et al., PRL 87 (2001) 212502

(*) HAL QCD Coll. Nucl.Phys.A 998 (2020) 121737 A. Ohnishi et al., Few Body Syst. 62 (2021) 3, 42 Y. Kamiya et al., PRC 105 (2022)

(**) ALICE Coll. Phys. Rev. Lett 123, (2019) 112002 ALICE Coll. Nature 588, 232–238 (2020)

|S|=2: $\Lambda\Lambda$ interaction models

- AA correlation measured in pp MB 13 TeV and p-Pb 5.02 TeV
- Comparison with available theoretical models
 - large attraction and very weakly bound state discarded
 - data compatible with a bound state (ND46) or shallow attraction (ESC08)
- Scan in scattering parameter space and express agreement data/model in number of σ deviations

Λ - Λ correlations

Phys.Lett.B 805 (2020) 135419

ΛΞ correlation in pp HM 13 TeV

potential	cut-off (MeV) / version	singlet		triplet		
		\int_{0}^{0}	d_0^0	f_0^1	d_0^1	n _σ
χEFT LO [11]	550	33.5	1.00	-0.33	-0.36	3.06 - 5.12
	700	-9.07	0.87	-0.31	-0.27	0.78 - 1.60
χEFT NLO16 [14]	500	0.99	5.77	-0.026	142.9	0.56 - 0.93
	650	0.91	4.63	0.12	32.02	0.91 - 1.61
χEFT NLO19 [15]	500	0.99	5.77	1.66	1.49	5.47 - 7.26
	650	0.91	4.63	0.42	6.33	1.30 - 2.10
NSC97a [12]		0.80	4.71	-0.54	-0.47	0.68 - 1.04
HAL QCD [2]	$\Lambda \Xi - \Sigma \Xi$ eff.	0.60	6.01	0.50	5.36	1.43 - 2.34
	$\Lambda \Xi - \Lambda \Xi$ only	_	_	-	_	0.64 - 1.04
Baseline		_	_	_	_	0.78

ALI-PREL-516888

$|S| = 3: \Lambda - \Xi^-$ interaction – with femtoscopy

- Unknown contribution from coupled channels
 in Lattice QCD calculations
 → Coupling ΛΞ-ΣΞ sizable in HAL QCD
 calculation
 - \rightarrow No sensitivity yet ("No coupling" 0.64 n σ
 - vs. "Coupling" 1.43 no)
- No N Ω cusp visible
 - \rightarrow Hint to negligible NQ-AE coupling

29

 $r_{G} = 5 \text{ fm}$

Overview on S=-2 meson-baryon sector

- Poorly constrained experimentally \rightarrow Effective lagrangians anchored to S=-1 sector^[1]
- Ξ(1620) and Ξ(1690)^[2] dynamically generated states within coupled-channel models

 → Ξ(1620) observed by Belle in πΞ decay but currently only 1 star in PDG
- Recent development of chiral calculations at NLO^[3]

Need for high-precision data to constrain model's parameters

[1] A. Ramos er al. PRL 89 (2002)
 [2] LHCb coll. Sci.Bull. 66 (2021)
 [3] A. Feijoo et al. PLB 841 (2023)

LO _XPT calculations: C. Garcia-Recio et al. PLB 582 (2004) D. Gamermann et al. PRD 84 (2011) T. Sekihara PTEP 2015 (9) (2015) T. Nishibuchi and T. Hyodo, EPJ Web Conf 271 (2022)

Belle Coll. PRL 122 (2019)

Scattering parameters for AK⁻

 $\Im f_0$ (fm)

• Indication of an attractive non-resonant interaction

 \rightarrow In agreement with ALICE Pb-Pb results^[1]

• Available models far from converging on similar results

 \rightarrow Parameters fixed based on SU(3) flavour symmetry, isospin symmetry

- \rightarrow Mainly anchored to πN or $\overline{K}N$ data
- \rightarrow Ξ (1620) typically lying below threshold
- High-precision data to constrain effective chiral theories and to understand the E(1620) nature

UxPT at LO: Ramos et al. PRL 89 (2002), Nishibuchi et al. EPJ Web Conf 271 (2022) xPT at NLO: Liu et al. PRD 75 (2007), Mai et al. PRD 80 (2009)

ALICE Coll. arXiv: 2305.19093

 $\Re f_0$ (fm)

Small vs large colliding systems

- By changing the colliding system we can probe distances ranging from 1 fm up to 10 fm
- Accessing the strong interaction \rightarrow relative distances of ~1 fm \rightarrow pp
- Small interparticle distance \rightarrow doorway to studying large densities

Modeling of the correlation function

- Lednicky-Lyuboshits analytical formula
 - assuming a gaussian source
 - relies on the asymptotic behaviour of wf \rightarrow scattering parameters as inputs, eff.

- <u>CATS framework</u>
 - local potentials, wavefunctions, gaussian and beyond sources
 - relies on the exact wavefunction
 → behaviour at short-distances

 $\Psi_k(\vec{r}) = R_k(r) Y(\theta),$

$$C_{\rm LL}(k^*) = 1 + \frac{1}{2} \left| \frac{f}{r_0} \right|^2 \left[1 - \frac{d_0}{2\sqrt{\pi}r_0} \right] + \frac{2\mathcal{R}[f]F_1(2k^*r_0)}{\sqrt{\pi}r_0} - \frac{\mathcal{I}[f]F_2(2k^*r_0)}{r_0} \right]$$
$$f(k^*) \approx \left(f_0^{-1} + \frac{1}{2}d_0k^{*2} - ik^* \right)^{-1}$$

 might break down for small sources widely used in large colliding systems

$$C_{\rm th}(k^*) = \int S(\vec{k}^*, \vec{r}^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 r^*.$$

works for small and large sources

TIT K⁻p femtoscopy: constraining the inelastic dynamics

- Measurement in pp collisions
 - \rightarrow First experimental evidence of the opening of \overline{K}^0 n channel (k^{*}~ 60 MeV/c)
- Extending the measurements to p-Pb and Pb-Pb colliding system

 → Interplay source size and coupled-channel dynamics in the correlation
 → Constraints for coupling to K
 ⁰n and Σπ
- Three- particle ppK^{\pm} correlations and $K_{s}^{0}p$ data available soon!

XEFT Kyoto model: Ikeda et al. NPA 881 (2012), PLB706 (2011) Kamiya et al. PRL 124 (2020) Mihayara et al. PRC95 (2017)

Study the strong interaction: bound states and correlations

Scattering parameters for ΛK and $\Lambda \overline{K}$

Π D π correlations in pp collisions

Available predictions from LQCD calculations constraining mostly I=3/2 (X.-Y. Guo et al. PRD 98 (2018))
 → |a₀| ~0.1-0.5 fm, much smaller wrt to light-light and light-strange hadronic

interactions

- Extraction of scattering lengths for both isospin channels
 - \rightarrow I=3/2 in agreement with models \rightarrow I=1/2 significantly smaller than models
- Rather shallow interaction between D and π !
- Ongoing DK analyses show compatibility with Coulomb only!

 \rightarrow work in progress for D*K and D* π

Π $\Omega\Omega$ correlation with future LHC runs

 Most strange dibaryon predicted by lattice potentials[1]
 → B. E ~1.6 MeV

Thanks to enhanced statistics of Run 3

 → similar precision to the current p-Ω Run 2
 (30% at k* = 50 MeV/c)

CERN-LHCC-2020-018 ; LHCC-G-179 Future high-energy pp programme with ALICE

ALICE 3 detector

Expected performance for the measurement of DD* correlations

- D^{*+} meson: reconstructed in $D^{*+} \rightarrow D^0 \pi^+$ channel
- D^0 meson: reconstructed in $D^0 \rightarrow K^-\pi^+$ channel

²⁾ Challenge: significant contribution from decays of resonances

- 1. BR(D*+ $\rightarrow D^0\pi^+$)=(66.7±0.5)%
- 2. BR(D*0 \rightarrow D⁰ π^0)=(64.7±0.9)%
- 3. BR(D*0 \rightarrow D⁰ γ)=(35.3±0.9)%

PDG, Prog. Theor. Exp. Phys. 2020 083C01

- Fast simulation strategy
 - Simulate PYTHIA8 events and select events with D^{*+} and D⁰ meson pairs
 - Combine pairs of D^{*+} and D⁰ mesons from same events and mixed events, weighting according to their efficiency
 - D^0 from D^{*+} decays are excluded (assuming that experimentally we can set an invariant-mass veto on $D^0\pi$ pairs)
 - Scale same event and mixed event distributions according to expected number of events
 - Scale same event distribution according to theoretical predictions
 - Compute expected statistical uncertainty according to expected signal and background yields

DD^{*} correlations

Inversion of the correlation function not observed for D^-D^{*+} because the X(3872) is 'far' (148 MeV) from the mass threshold with respect to $\overline{D}{}^0D^{*0}$ (~200 KeV).

Correlations function can confirm a molecular state scenario.

