Overview and new directions about light (anti)nuclei measurements with ALICE

Marika Rasà¹

On behalf of the ALICE Collaboration

1. University and INFN of Catania

HADROON 2023

Why studying light (anti)nuclei?

- Light (anti)nuclei are produced in high-energy hadronic collisions at the LHC
- Their production mechanism is still not understood
- Two phenomenological models: Statistical Hadronization Model (SHM) and coalescence

Why studying light (anti)nuclei?

Nature Phys. 19 (2023) 1, 61-71

- Light (anti)nuclei are produced in high-energy hadronic collisions at the LHC
- Their production mechanism is still not understood
- Two phenomenological models: Statistical Hadronization Model (SHM) and coalescence

Don't miss Giovanni's talk! 07/06, 17:50

• Astrophysical aspects: indirect detection of dark matter in space

Statistical Hadronization Model

- Hadrons emitted from a system in statistical and chemical equilibrium
 - T_{chem} is the key parameter
- dN/dy ∝ exp(-m/T_{chem}) → nuclei are sensitive to T_{chem} due their large mass
- Particle yield well described with a common T_{chem} of ~ 156 MeV

Statistical Hadronization Model

ALI-PREL-332406

THERMUS 4: Comput.Phys.Commun. 180 (2009) 84-106 GSI-Heidelberg: Phys.Lett. B 673 (2009) 142 SHARE 3: Comput.Phys.Commun. 167 (2005) 229-251

- Hadrons emitted from a system in statistical and chemical equilibrium
- T_{chem} is the key parameter
- dN/dy ∝ exp(-m/T_{chem}) → nuclei are sensitive to T_{chem} due their large mass
- Particle yield well described with a common T_{chem} of ~ 156 MeV
- Comparison between measured and expected yield, evaluated with different SHM implementations
- Nuclei binding energy ~ few MeV → how can they survive?

S. T. Butler et al., Phys. Rev. 129 (1963) 836

- If (anti)nucleons are close in phase space and match the spin state, they can form an (anti)nucleus
- Coalescence parameter B_A is the key observable:

 $p_{\rm p} = p_{\rm A}/{\rm A}$

Invariant yieldCoalescenceInvariant yieldof nucleusparameterof protons

Small source size \rightarrow Large B_A Large source size \rightarrow Small B_A pp ~ 1 fmPb-Pb ~ 3-6 fmp-Pb ~ 1.5 fm

Advanced coalescence model

- Coalescence parameter depends on both the source size and radial extension of the nucleus wave function
- Wigner function formalism

$$W_{A} = \underbrace{g_{a}}_{I} \cdot \int d^{3}x_{1} \dots d^{3}x_{A} \cdot d^{3}k_{1} \dots d^{3}k_{A} \cdot \underbrace{f_{1}(x_{1}, k_{1}) \dots f_{A}(x_{A}, k_{A})}_{I} \cdot \underbrace{W_{A}(x_{1}, \dots, x_{A}, k_{1}, \dots, k_{A})}_{I}$$

spin-isospin degeneracy factor

phase space distributions of nucleons \rightarrow dependence on the source size

M. Mahlein et al., arXiv:2302.12696

 The coalescence parameter is an observable sensitive to the wave function of the nucleus

- B_2 is in agreement with Argonne v_{18} wave function
- Both B₂ and B₃ are not in agreement with the Gaussian wave function (approx. in the calculus)

Wigner density of the bound state \rightarrow dependence on the wave function

	Collisions system	$\sqrt{s_{NN}}$ (TeV)
	рр	0.9, 2.76, 5.02, 7, 8, 13
	p–Pb	5.02, 8.16
	Xe–Xe	5.44
	Pb–Pb	2.76, 5.02
	 Most suited L study light (a Excellent PID 	-HC experiment to nti)nuclei production capabilities
	Int. J. Moc	JINST 3 (2008) S08002 1. Phys. A 29 (2014) 1430044

Light (anti)nuclei identification

LHC: an (anti)nuclei factory ALICE

- At the LHC energies the same quantity of matter and antimatter are produced at midrapidity \rightarrow baryochemical potential $\mu_{\rm B} \approx 0$
- Antimatter-to-matter ratio consistent with unity ۰

0-5%

³He/³He

marika.rasa@cern.ch

HADRON 2023 - 7 June 2023

ALICE Preliminary Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Light (anti)nuclei in pp collisions

- Nuclei production studied in different collisions systems and energies vs. multiplicity
- Identification of (anti)nuclei up to (anti)³He
- Spectra fitted with Lévy -Tsallis or $m_{\rm T}$ -exponential \rightarrow extrapolation at low and high $p_{\rm T}$
- Spectra hardening with multiplicity

Eur. Phys. J. C 82, 289 (2022)

Light (anti)nuclei in pp collisions – HM

- Spectra and coalescence parameter evaluated in high multiplicity data sample
- High multiplicity → most central collisions (0 – 0.1% multiplicity classes)
- Precise measurement of the emission source size using femtoscopy is available
- Crucial masurements to test the coalescence model (B₂ and wave function parametrization, see slide 5)

Light (anti)nuclei in p–Pb collisions

- Identification of (anti)nuclei up to (anti)³He
- Similar behaviour of pp system, such as hardening of spectra

HADRON 2023 - 7 June 2023

marika.rasa@cern.ch

³H/³He in low multipliticy systems

- In the coalescence model ³H/³He is expected to be larger than unity since the different source size
- The models predict the largest ³H and ³He yields difference at low multiplicity
- Both pp HM and p-Pb data shows ³H/³He greater than unity

HADRON 2023 - 7 June 2023

JHEP 01 (2022) 106

Light (anti)nuclei in Pb–Pb collisions

Comparison with models – ratio to protons

- d/p and He/p ratio evolves smoothly as a function of multiplicity \rightarrow dependence on the system size
- Observed saturation at multiplicity that corresponds to Pb–Pb collisions
- Ratio compared to predictions from Thermal-FIST CSM and coalescence model
- SHM and coalescence give similar prediction for d, while they diverge for ³He \rightarrow need new observables!

HADRON 2023 - 7 June 2023

Comparison with models – coalescence

- Coalescence parameter evolves smoothly with multiplicity and decreases with source size
- Different parametrization of source size as a function of dN_{ch}/dη available
- The parametrizations diverge at high multiplicity $\rightarrow B_A$ is a good observable!

In-jet and underlying event

- The study of the nuclear production in small collisions systems, such as pp and p-Pb, can be explored using the underlying event (UE)
- Test of the coalescence model: the nucleons in small systems are closer in phase space wrt Pb–Pb
- Leading particle (highest p_T and $p_T > 5$ GeV/c) used as a proxy for the jet axis
- CDF technique used to find the three azimuthal regions
 - Toward ($|\Delta \varphi| < 60^\circ$) : contains JET and UE
 - Transverse (60° < $|\Delta \varphi|$ < 120°) : dominated by the Underlying Event (UE)
 - Away ($|\Delta \varphi| > 120^{\circ}$): contains RECOIL JET and UE
- Jet: Toward Transverse

arXiv:2211.15204v1

Deuteron production in events with $p_T^{\text{lead}} > 5 \text{ GeV}/c$

The results are consistent with those obtained using the two-particle correlation method

• What do we need for the coalescence parameter?

• First ingredient: (anti)deuteron spectra

(Anti)Deuteron production in events with $p_T^{\text{lead}} > 5 \text{ GeV}/c$

Jet = Toward - Transverse

• What do we need for the coalescence parameter?

• Second ingredient: (anti)proton spectra

Antiproton production in events with $p_T^{\text{lead}} > 5 \text{ GeV}/c$

Jet = Toward - Transverse

p-Pb@ 5.02 TeV

$$B_2 = \frac{\frac{1}{(2\pi/3)p_{\rm T}^{\rm d}} \left(\frac{{\rm d}^2 N}{{\rm d}y {\rm d}p_{\rm T}}\right)_{\rm d}}{\left(\frac{1}{(2\pi/3)p_{\rm T}^{\rm p}} \left(\frac{{\rm d}^2 N}{{\rm d}y {\rm d}p_{\rm T}}\right)_{\rm p}\right)^2}$$

- Enhancement of B_2^{jet} wrt B_2^{UE} in pp collisions
- In p–Pb collision the enhancement factor is larger wrt pp collisions

d/p in jet and UE ALICE

- d/p^{jet} is higher than d/p^{UE}
- Higher d/p ^{jet} in p-Pb collisions wrt pp collisions
- Different particle composition \rightarrow could affect the coalescence probability

HADRON 2023 - 7 June 2023

B_2 in jet and UE – model comparison ALICE

PYTHIA 8 Monash 13

+ simple coalescence

marika.rasa@cern.ch

B_2 in jet and UE – model comparison

marika.rasa@cern.ch

HADRON 2023 - 7 June 2023

$\bigotimes_{\text{RLICE}} B_2$ in jet and UE – model comparison

Light (anti)nuclei in jets: what's next?

- Run3 data taking is ongoing! How can we improve our measurements?
- Reconstruction of jets with jet finder algorithms
- Multi-differential measurements of light (anti)nuclei production (jet radii, p_{T, lead}, etc ...)

- Light (anti)nuclei production have been studied in depth by the ALICE experiment, obtaining results in different collision systems and energies
- Two main physical motivation: hadronization and dark matter searches
- The data have been compared to the hadronization theoretical models: SHM and coalescence
- In both cases, the models qualitatevely reproduce the data but there is not a definitive answer → need for new observables!
- Coalescence in jet: enhancement of B_2^{jet} wrt B_2^{UE} of a factor 15 (24) in pp (p–Pb) collisions
- New studies currently ongoing with Run3 data: **stay tuned for new results!**

Thank you for your attention!

LHC: an (anti)nuclei factory

- At the LHC energies (almost) the same quantity of matter and antimatter are produced at midrapidity \rightarrow baryochemical potential $\mu_B \approx 0$
- Antimatter-to-matter ratio consistent with unity

HADRON 2023 - 7 June 2023

• B_A is rather flat in all multiplicity classes, but increase at high p_T/A in the MB class

- PYTHIA 8.3:
 - d production via ordinary reactions
 - Energy dependent cross sections parametrized based on data
 - Reactions:

$p + n \rightarrow \gamma + d$	$p + p \rightarrow \pi^+ + d$
$p + n \rightarrow \pi^0 + d$	$p + p \rightarrow \pi^+ + \pi^0 + d$
$p + n \rightarrow \pi^0 + \pi^0 + d$	$n + n \rightarrow \pi^{-} + d$
$p + n \rightarrow \pi^+ + \pi^- + d$	$n + n \rightarrow \pi^{-} + \pi^{0} + d$

- PYTHIA 8 Monash:
 - Simple coalescence
 - d is formed if $\Delta p < p_0$, with $p_0 = 285$ MeV/c

