


marika.rasa@cern.ch HADRON 2023 - 7 June 2023 2

Why studying light (anti)nuclei?
• Light (anti)nuclei are produced in high-energy hadronic collisions 

at the LHC

• Their production mechanism is still not understood

• Two phenomenological models: Statistical 
Hadronization Model (SHM) and coalescence
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• Light (anti)nuclei are produced in high-energy hadronic collisions 
at the LHC

• Their production mechanism is still not understood

• Two phenomenological models: Statistical 
Hadronization Model (SHM) and coalescence

• Astrophysical aspects: indirect detection of dark matter in space

Nature Phys. 19 (2023) 1, 61-71

Why studying light (anti)nuclei?

Don’t miss 
Giovanni’s talk!

07/06, 17:50 
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• Hadrons emitted from a system in 
statistical and chemical equilibrium

• Tchem is the key parameter

• dN/dy ∝ exp(-m/Tchem)  nuclei are 
sensitive to Tchem due their large mass

• Particle yield well described with a 
common Tchem of ∼ 156 MeV

Statistical Hadronization Model 
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THERMUS 4: Comput.Phys.Commun. 180 (2009) 84-106
GSI-Heidelberg: Phys.Lett. B 673 (2009) 142
SHARE 3: Comput.Phys.Commun. 167 (2005) 229-251

• Hadrons emitted from a system in 
statistical and chemical equilibrium

• Tchem is the key parameter

• dN/dy ∝ exp(-m/Tchem)  nuclei are 
sensitive to Tchem due their large mass

• Particle yield well described with a 
common Tchem of ∼ 156 MeV

• Comparison between measured and 
expected yield, evaluated with different
SHM implementations

• Nuclei binding energy ~ few MeV → how 
can they survive?

Statistical Hadronization Model 
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• If (anti)nucleons are close in phase space and match 
the spin state, they can form an (anti)nucleus

• Coalescence parameter BA is the key observable:

𝐸𝐸A
d3𝑁𝑁A
d𝑝𝑝A3

= 𝐵𝐵A � 𝐸𝐸p
d3𝑁𝑁p
d𝑝𝑝p3

A

𝑝𝑝p = 𝑝𝑝A/A

S. T. Butler et al., Phys. Rev. 129 (1963) 836

Small source size  Large BA
pp ∼ 1 fm

p‒Pb ∼ 1.5 fm

Large source size  Small BA
Pb‒Pb ∼ 3-6 fm

p

n

d

p pn

n
Invariant yield 
of nucleus

Invariant yield 
of protons

Coalescence 
parameter

Simple coalescence model
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• Coalescence parameter depends on both the source size and radial extension of the nucleus wave function
• Wigner function formalism 

𝑁𝑁𝐴𝐴 = 𝑔𝑔𝑎𝑎 � �𝑑𝑑3𝑥𝑥1 …𝑑𝑑3𝑥𝑥𝐴𝐴 � 𝑑𝑑3𝑘𝑘1 …𝑑𝑑3𝑘𝑘𝐴𝐴 � 𝑓𝑓1 𝑥𝑥1, 𝑘𝑘1 …𝑓𝑓𝐴𝐴 𝑥𝑥𝐴𝐴, 𝑘𝑘𝐴𝐴 � 𝑊𝑊𝐴𝐴 𝑥𝑥1, … , 𝑥𝑥𝐴𝐴,𝑘𝑘1, … , 𝑘𝑘𝐴𝐴

spin-isospin degeneracy factor phase space distributions of nucleons 
dependence on the source size

Wigner density of the bound state 
dependence on the wave function

• The coalescence parameter is an 
observable sensitive to the wave 
function of the nucleus

• B2 is in agreement with Argonne v18
wave function

• Both B2 and B3 are not in agreement 
with the Gaussian wave function 
(approx. in the calculus)  

d
3He

JHEP 01 (2022) 106

Advanced coalescence model

M. Mahlein et al., arXiv:2302.12696
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JINST 3 (2008) S08002
Int. J. Mod. Phys. A 29 (2014) 1430044

• Most suited LHC experiment to 
study light (anti)nuclei production

• Excellent PID capabilities

Collisions system 𝒔𝒔𝑵𝑵𝑵𝑵 (TeV)
pp 0.9, 2.76, 5.02, 7, 8, 13
p‒Pb 5.02, 8.16
Xe‒Xe 5.44
Pb‒Pb 2.76, 5.02

The ALICE detector in Run 1&2
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JINST 3 (2008) S08002
Int. J. Mod. Phys. A 29 (2014) 1430044

Inner Tracking System (ITS)
Tracking, vertex, PID

V0
Trigger, multiplicity 

Time Of Flight (TOF)
PID via 
time-of-flight

Time Projection Chamber (TPC)
Tracking, PID via dE/dx

• Most suited LHC experiment to 
study light (anti)nuclei production

• Excellent PID capabilities

Collisions system 𝒔𝒔𝑵𝑵𝑵𝑵 (TeV)
pp 0.9, 2.76, 5.02, 7, 8, 13
p‒Pb 5.02, 8.16
Xe‒Xe 5.44
Pb‒Pb 2.76, 5.02

The ALICE detector in Run 1&2
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High pT region (over 1 GeV/c): PID via time-of-
flight σPID ∼ 70 ps for pp, ∼ 60 ps for Pb‒Pb

Low pT region (below 1 GeV/c): PID via dE/dx
σdE/dx ∼ 5.5% in pp, ∼ 7% in Pb‒Pb

Phys.Lett. B800 (2020) 135043

Light (anti)nuclei identification
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• At the LHC energies the same quantity of matter and antimatter are 
produced at midrapidity baryochemical potential μB ≈ 0

• Antimatter-to-matter ratio consistent with unity

LHC: an (anti)nuclei factory
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Eur. Phys. J. C 82, 289 (2022)

• Nuclei production studied
in different collisions
systems and energies vs.  
multiplicity

• Identification of 
(anti)nuclei up to (anti)3He

• Spectra fitted with Lévy -
Tsallis or mT-exponential
 extrapolation at low 
and high pT

• Spectra hardening with 
multiplicity

p d 3He

Light (anti)nuclei in pp collisions
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p

d

3He

3H

• Spectra and coalescence parameter
evaluated in high multiplicity data sample

• High multiplicitymost central collisions
(0 – 0.1% multiplicity classes)

• Precise measurement of the emission
source size using femtoscopy is available

• Crucial masurements to test the 
coalescence model (B2 and wave function
parametrization, see slide 5)

JHEP 01 (2022) 106

Light (anti)nuclei in pp collisions – HM 
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arXiv:2212.04777

d
3He t

• Identification of (anti)nuclei up to (anti)3He

• Similar behaviour of pp system, such as hardening of spectra

Phys. Rev. C 101 (2020) 044906

Light (anti)nuclei in p–Pb  collisions
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• In the coalescence model 3H/3He is expected to be larger than unity since the different source size

• The models predict the largest 3H and 3He yields difference at low multiplicity 

• Both pp HM and p-Pb data shows 3H/3He greater than unity

Phys. Rev. C 101 (2020) 044906

JHEP 01 (2022) 106

3H/3He in low multipliticy systems
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• With the higher statistics, observed light (anti)nuclei at higher
values of pT wrt small collision systems

• Crucial measurements for the comparison with the SHM

• Only in Pb‒Pb collisions (anti)4He is
observed and studied preliminary
results for the pT  spectra

• 2σ deviation in 4 GeV/c < pT < 5 GeV/c

arXiv:2211.14015

Light (anti)nuclei in Pb–Pb collisions
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• d/p and He/p ratio evolves smoothly as a function of multiplicity dependence on the system size
• Observed saturation at multiplicity that corresponds to Pb‒Pb collisions
• Ratio compared to predictions from Thermal-FIST CSM and coalescence model
• SHM and coalescence give similar prediction for d, while they diverge for 3He  need new observables!

arXiv:2212.04777d 3He

Comparison with models – ratio to protons
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• Coalescence parameter evolves smoothly with multiplicity and decreases with source size
• Different parametrization of source size as a function of dNch/dη available
• The parametrizations diverge at high multiplicity BA is a good observable! 

arXiv:2212.04777
d

3He
JHEP 01 (2022) 106d 3He

Comparison with models – coalescence
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• The study of the nuclear production in small collisions systems, such as 
pp and p‒Pb, can be explored using the underlying event (UE) 

• Test of the coalescence model: the nucleons in small systems are closer 
in phase space wrt Pb‒Pb

• Leading particle (highest pT and pT > 5 GeV/c ) used as a 
proxy for the jet axis

• CDF technique used to find the three azimuthal regions

• Toward (|Δϕ| < 60°) : contains JET and UE
• Transverse (60° < |Δϕ| < 120°) : dominated by the 

Underlying Event (UE) 
• Away (|Δϕ| > 120°): contains RECOIL JET and UE

• Jet: Toward – Transverse
Martin, T., Skands, P. & Farrington, S. Eur. Phys. J. C 76, 299 (2016)

leading track ϕ = 0

In-jet and underlying event
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Deuteron production in events with pT
lead > 5 GeV/c 

Jet = Toward – Transverse

The results are consistent with those obtained using 
the two-particle correlation method

arXiv:2211.15204v1

In-jet and UE spectra
pp @ 13 TeV
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(Anti)Deuteron production in events with pT
lead > 5 GeV/c Jet = Toward - Transverse

p-Pb@ 5.02 TeV
• What do we need for the coalescence parameter?

• First ingredient: (anti)deuteron spectra

In-jet and UE spectra
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Antiproton production in events with pT
lead > 5 GeV/c Jet = Toward - Transverse

• What do we need for the coalescence parameter?

• Second ingredient: (anti)proton spectra
p-Pb@ 5.02 TeV

In-jet and UE spectra
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𝐵𝐵2 =

1
⁄2π 3 𝑝𝑝Td

d2𝑁𝑁
d𝑦𝑦d𝑝𝑝T d

1
⁄2π 3 𝑝𝑝T

p
d2𝑁𝑁

d𝑦𝑦d𝑝𝑝T p

2

• Enhancement of B2 
jet wrt B2

UE in pp 
collisions

• In p‒Pb collision the enhancement factor is 
larger wrt pp collisions

∼ 24∼ 15

B2 in jet and UE
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𝐵𝐵2 =

1
⁄2π 3 𝑝𝑝Td

d2𝑁𝑁
d𝑦𝑦d𝑝𝑝T d

1
⁄2π 3 𝑝𝑝T

p
d2𝑁𝑁

d𝑦𝑦d𝑝𝑝T p

2

B2
UE (p‒Pb) < B2

UE(pp) since p‒Pb source 
size is larger than pp source size

• Enhancement of B2 
jet wrt B2

UE in pp 
collisions

• In p‒Pb collision the enhancement factor is 
larger wrt pp collisions

∼ 24∼ 15

B2 in jet and UE
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𝐵𝐵2 =

1
⁄2π 3 𝑝𝑝Td

d2𝑁𝑁
d𝑦𝑦d𝑝𝑝T d

1
⁄2π 3 𝑝𝑝T

p
d2𝑁𝑁

d𝑦𝑦d𝑝𝑝T p

2

Assuming  the same source size for 
nucleons in jet, nucleons are probably 

closer in momentum space in p‒Pb wrt pp

B2 
jet (p‒Pb) > B2

jet (pp) 

B2
UE (p‒Pb) < B2

UE(pp) since p‒Pb source 
size is larger than pp source size

• Enhancement of B2 
jet wrt B2

UE in pp 
collisions

• In p‒Pb collision the enhancement factor is 
larger wrt pp collisions

∼ 24∼ 15

B2 in jet and UE
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𝐵𝐵2 =

1
⁄2π 3 𝑝𝑝Td

d2𝑁𝑁
d𝑦𝑦d𝑝𝑝T d

1
⁄2π 3 𝑝𝑝T

p
d2𝑁𝑁

d𝑦𝑦d𝑝𝑝T p

2

We see some differences between jets in pp 
and p‒Pb collisions. Could be related to 

particle composition?

B2 
jet (p‒Pb) > B2

jet (pp) 

B2
UE (p‒Pb) < B2

UE(pp) since p‒Pb source 
size is larger than pp source size

• Enhancement of B2 
jet wrt B2

UE in pp 
collisions

• In p‒Pb collision the enhancement factor is 
larger wrt pp collisions

∼ 24∼ 15

B2 in jet and UE
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• d/p jet is higher than d/p UE

• Higher d/p jet in p‒Pb collisions wrt pp collisions
• Different particle composition  could affect the coalescence probability

arXiv:2211.15204v1 arXiv:2301.10120

d/p in jet and UE
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• Two different models:
• PYTHIA 8 Monash 13 

+ simple coalescence

arXiv:2211.15204v1

B2 in jet and UE – model comparison
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• Two different models:
• PYTHIA 8 Monash 13 

+ simple coalescence
• PYTHIA 8.3 with 

reaction-based 
deuteron production 
(Bierlich et al., 
arXiv:2203.11601)

arXiv:2211.15204v1

B2 in jet and UE – model comparison
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• Two different models:
• PYTHIA 8 Monash 13 

+ simple coalescence
• PYTHIA 8.3 with 

reaction-based 
deuteron production 
(Bierlich et al., 
arXiv:2203.11601)

• Both models qualitatively 
reproduce the data and 
the large difference 
between 
B2 

jet and B2
UE

• Further comparison with 
modelsarXiv:2211.15204v1

B2 in jet and UE – model comparison



marika.rasa@cern.ch HADRON 2023 - 7 June 2023 23

• Run3 data taking is ongoing! How can we improve
our measurements?

• Reconstruction of jets with jet finder algorithms

• Multi-differential measurements of light 
(anti)nuclei production (jet radii, pT, lead  ,etc … )

Light (anti)nuclei in jets: what’s next?
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• Light (anti)nuclei production have been studied in depth by the ALICE experiment, obtaining results in 
different collision systems and energies

• Two main physical motivation: hadronization and dark matter searches

• The data have been compared to the hadronization theoretical models: SHM and coalescence

• In both cases, the models qualitatevely reproduce the data but there is not a definitive answer need for 
new observables!

• Coalescence in jet: enhancement of B2 
jet wrt B2 

UE of a factor 15 (24) in pp (p‒Pb) collisions

• New studies currently ongoing with Run3 data: stay tuned for new results! 

Thank you for your attention!

Conclusions
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Backup
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Inner Tracking System (ITS)

Six concentrical layer of silicon sensors: 

• 2 layers of Silicon Pixel Detectors (SPD);
• 2 layers of Silicon Drift Detectors (SDD);
• 2 layers of Silicon micro-Strip Detectors 

(SSD).

JINST 3 (2008) S08002
Int. J. Mod. Phys. A 29 (2014) 1430044

The ALICE detector in Run 1&2
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JINST 3 (2008) S08002
Int. J. Mod. Phys. A 29 (2014) 1430044

Time Projection Chamber (TPC)

Cylindrical gas detector, made by a field cage filled 
with Ne/CO2/N2 (90/10/5). The cage is closed with 
two endcaps made of Multi-Wire Proportional 
Chambers (MWPC).

The ALICE detector in Run 1&2
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JINST 3 (2008) S08002
Int. J. Mod. Phys. A 29 (2014) 1430044

Time Of Flight (TOF)

90 modules formed by a system of 10 gaps double 
stack Multigap Resistive Plate Chambers (MRPC). 
The resistive plates are made with commercially 
available soda-lime glass sheets with a gap of 250 
μm. 

The ALICE detector in Run 1&2
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JINST 3 (2008) S08002
Int. J. Mod. Phys. A 29 (2014) 1430044

V0

Formed by two different modules, V0A and 
V0C, consisting of two arrays of scintillator 
counters and Wave-Length Shifting (WLS) 
fibres installed on either sides of the 
interaction point.

V0A V0C

The ALICE detector in Run 1&2
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• At the LHC energies (almost) the same quantity of matter and antimatter
are produced at midrapidity baryochemical potential μB ≈ 0

• Antimatter-to-matter ratio consistent with unity

Eur. Phys. J. C 80 (2020) 889

LHC: an (anti)nuclei factory
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• BA is rather flat in all multiplicity classes, but increase at high pT/A in the MB class

Eur. Phys. J. C 80 (2020) 889 Phys. Rev. C 101 (2020) 044906

Coalescence parameter
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• PYTHIA 8.3:
 d production via ordinary reactions

 Energy dependent cross sections parametrized based on data

 Reactions: 
p + n → γ + d p + p → π+ + d 
p + n → π0 + d p + p → π+ + π0 + d 
p + n → π0 + π0 + d n + n → π- + d 
p + n → π+ + π- + d n + n → π- + π0 + d 

• PYTHIA 8 Monash:

 Simple coalescence

 d is formed if Δp < p0, with p0 = 285 MeV/c

PYTHIA simulation details



marika.rasa@cern.ch HADRON 2023 - 7 June 2023 33

• Measurement of σinel(
3He) and σinel(�d) using the detector as a passive absorber

• Obtained value used as input for dark matter or cosmic ray interaction modelling

Nature Phys. 19 (2023) 1, 61-71 Phys. Rev. Lett. 125 (2020) 162001

Light (anti)nuclei for DM detection
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