HADRON2023 Light flavour resonance production with

HADR(

2023

the ALICE at the LHC

Neelima Agrawal, on behalf of the ALICE collaboration University & INFN Bologna, Italy

20th International Conference on Hadron Spectroscopy and structure, Hadron 2023 Genova, Italy, 5-9 June, 2023

INFN

Light-Flavour Hadronic Resonances in ALICE

Resonance	ρ(770)	$K(892)^{\pm}$	K(892) ⁰	$f_{0}(980)^{0}$	$\Sigma(1385)^{\pm}$	$\Xi(1820)^{\pm}$	Λ(1520)	E(1530) ⁰	Φ(1020) ⁰
Decay	ππ	$K_s^0 \pi$	Κπ	ππ	Λπ	ΛK	рК	Ξπ	KK
B.R. (%)	100	33.3	66.6	46	87	unknown	22.5	66.7	48.9
Quark constituents	$\frac{u\bar{u}+d\bar{d}}{\sqrt{2}}$	us, ūs	ds, đs	unknown	uus, dds	uss	uds	uss	ss
$\tau(fm/c)$	1.3	3.6	4.2	large unc.	5 - 5.5	8.1	12.6	21.7	46.4

Table: Resonances studied in ALICE in Run1 and Run2

- Short lifetimes, comparable to the one of the hadronic gas phase ($\tau \sim \text{few fm}/c$) \rightarrow suitable probe to study the properties of the hadronic phase in heavy-ion collisions.
- **ALICE** is the perfect detector to study these resonance
 - \rightarrow A rich set of data collected in pp, p-Pb, Xe-Xe and Pb-Pb collisions at high energy ($\sqrt{s_{_{NN}}}$ TeV) over the years
 - → Extensive PID capabilities from low momentum region (~ 150 MeV) to high momentum region

Heavy-ion Physics

Study QCD matter under extreme conditions \rightarrow high temperature and energy density

HotQCD Coll. Phys.Lett.B 795 (2019) 15,

PHYSICAL REVIEW D 90, 094503 (2014) Predi

Prediction of phase transition from Lattice QCD

Calculations of ϵ/T^4 vs temperature $\rightarrow \epsilon/T^4 \sim \#$ degrees of freedom

For T~ 150 MeV, sharp increase in ϵ/T^4 (degrees of freedom) hadrons \rightarrow guarks and gluons

Lattice QCD indicate phase transition of ordinary nuclear matter to QGP at a critical temperature (T_c) of \rightarrow T_c = 155 - 158 MeV

Borsaniy et al. PRL 125 (2020) 5, 052001 3

Heavy-ion Physics

Study QCD matter under extreme conditions \rightarrow high temperature and energy density

These conditions can be achieved by colliding heavy ions at high energy (at LHC, Pb-Pb at 2.76 and 5.02 TeV)

At very high energy density (> 1 GeV/fm³)

Nuclear matter expected to undergo a **phase-transition** from hadronic matter to deconfined state of quarks and gluons, known as **quark-gluon plasma (QGP)**

High energy collision and Evolution

Schematic diagram of the space time evolution of a heavy-ion collision in case of with QGP

- At the LHC, **quark–gluon plasma** (QGP) state is created in high energy heavy-ion collisions. As the system expands, it cools down and transitions back to hadronic matter.
- After hadronization, the system reaches a stage at which all inelastic collisions stops and chemical composition of the system is fixed (chemical freeze-out; at T_{ch}).
- The hadron gas continues to expand until all interactions cease (kinetic freeze-out; at T_{fo}) and particle momentum distributions get fixed
- The duration of the hadron-gas phase between chemical freeze-out and kinetic freeze-out is of the same order of magnitude as of the resonance lifetimes (*t* ~ few fm/*c*)
- Afterwards, particles fly towards detectors as free hadrons and can be measured.

•

Temperature at chemical freeze-out

A. Andronic et al., Phys.Lett.B 797 (2019) 134836

- At the hadronization stage, the system is close to thermal equilibrium
- A rapid hadrochemical freeze-out takes place at the phase boundary (at *T_{ch}*)
- The relative abundances of stable particles are successfully described by statistical hadronisation models (SHMs) over 9 orders of magnitude!
- Resonances are expected to be produced with abundances consistent with the chemical equilibrium parameters (T_{ch} , μ_{B}).
- Note that also loosely bound objects (light nuclei and hyper nuclei) and heavy-flavour hadron (J/ψ) are described by the SHMs
- Total yield include contributions from resonance decays

Hadrochemistry

- Smooth evolution of particle production from small to large systems vs charged-particle multiplicity
- Strangeness production increases with multiplicity until saturation (grand-canonical plateau) is reached
- Steeper increase for particle with more strangeness content
- High-multiplicity pp shows same hadrochemistry as p-Pb and peripheral Pb-Pb system at similar multiplicity
- Common particle production mechanism for all systems?

Temperature at kinetic freeze-out

ALICE, Eur. Phys. J. C 80 (2020) 693 ALICE: Phys. Rev. C 101, 044907 (2020)

- Boltzmann-Gibbs Blast-Wave fits are used to characterise the kinetic freeze-out stage by
- T_{kin} kinetic freeze-out temperature
 →decreases with increasing collision centrality/multiplicity
- <β_T> transverse flow velocity
 → increases with increasing collision centrality /multiplicity
- Fit parameters are extracted from simultaneous fits to π, K, p spectra

Resonance as probe of the hadronic phase

Hadronic phase (~10 fm/*c*) can be **probed with hadronic resonances** (T ~ few fm/*c*)

- Due to their short lifetimes (*r* ~ few fm/*c*), resonances can decay within the hadronic medium. In turn, this can alter their final measured yields.
- Reconstructible yield affected by following two hadronic processes

Regeneration: Pseudo-elastic scattering of decay daughters, gain resonance (e.g. $Kp \rightarrow \Lambda(1520) - Kp$) Rescattering: elastic or pseudo-elastic scattering smears out mass peak, looses resonance Neelima Agraval for the ALICE collaboration

Resonance as probe of the hadronic phase

Hadronic phase (~10 fm/*c*) can be **probed with hadronic resonances** (T ~ few fm/*c*)

- Final yield at kinetic freeze-out depends on the chemical freeze-out temperature (T_{ch}), duration of hadronic phase, lifetime of resonance and scattering cross section of decay products
- Resonance yield to stable particle with similar quark content encodes the effects of such interaction in the extended hadronic phase created in heavy-ion collisions

A Large Ion Collider Experiment: schematic overview

ALICE detector: collection of rich datasets

Collision system	$\sqrt{s_{_{NN}}}(TeV)$	Year(s)		
Pb-Pb	2.76, 5.02	2010-2011, 2015, 2018		
Xe-Xe	5.44	2017		
p-Pb	5.02, 8.16	2013, 2016		
рр	0.9, 2.76, 8,8, 5.02, 13, 13.6	2009-2013, 2015-2018, 2021, 2022		

Upgraded detectors to collect Data from Run3

 \rightarrow already collected **pp@13.6 TeV** data in 2022

 \rightarrow collected pilot beam data, pp@900

GeV in 2021 and 2022

 \rightarrow also collected pilot beam data for Pb-Pb@5.36 in 2022

.......

ALICE detector: excellent PID at low- p_{T}

K*(892) and $\phi(1020)$, p_{τ} -spectra in heavy-ion collisions

→ The $p_{\rm T}$ -spectra of K*(892) and ϕ (1020) measured in Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

 \rightarrow measurements in fine centrality intervals, ranging from 0-10% to 70-80%

\rightarrow observed hardening of the

p_T-spectrum going from peripheral to central collisions for both particles

ALICE, Phys. Rev. C 106 (2022) 034907

K^* and ϕ , energy dependence in heavy-ion collisions

→ comparison of the p_{T} -spectra of K*(892) and ϕ (1020) in Pb–Pb collisions at \sqrt{s}_{NN} = 5.02 TeV to 2.76 TeV

→ ratio of $p_{\rm T}$ -spectra from two energy increases with $p_{\rm T}$ and tend to saturate at high $p_{\rm T}$ for both mesons

ALICE, Phys. Rev. C 106 (2022) 034907

K^{*} and ϕ , p_{τ} -integrated yields (d*N*/dy)

K* and ϕ , data to model comparison

ALICE, Phys. Rev. C 106 (2022) 034907

ALICE, arXiv:2211.04384

 \rightarrow The low- p_{T} spectrum part of K*(892) is observed to be lower than Blast-Wave model prediction as compared to high- p_{T} in central collisions (0-10%), suppressed as expected from the rescattering

- \rightarrow better matching in the peripheral collisions
- $\rightarrow \phi$ meason is consistent in both the central and and peripheral collisions, as expected no scattering

$\Lambda(1520)$, p_{τ} -spectra in heavy-ion collisions

- The spectral shapes shows good agreement with Blast-Wave (parameters obtained from π/K/p fits)
- The spectral shapes are close to MUSIC hydrodynamic models [2] with SMASH afterburner (used for model hadronic rescattering in the hadronic phase) from Pb-Pb@5.02 TeV predictions at low $p_{\rm T}$ while diverge at high $p_{\rm T}$.
- MUSIC slightly underestimates the data with possible explanation that this model underestimates overall strangeness production at midrapidity.

[1]ALICE: Phys. Rev. C 101, 044907 (2020) [2]MUSIC:arXiv:2105.07539

K* and φ, mean transverse momentum, $< p_{T} >$

energy dependence between RHIC and LHC energies

ALICE, Phys. Rev. C 106 (2022) 034907

Violated in peripheral collisions (φ > p)₁₉

$\Lambda(1520), < p_T > and comparison to the models$

- increases from peripheral to central collisions (~47% higher in 0-10% than 70-90% class)
- The <p_T> values are higher than Pb-Pb 2.76
 TeV values and Blast-wave model (π/K/p) [2]
- MUSIC and EPOS3 [3] models gives better predictions with hadronic phase modelling (SMASH [4] and UrQMD) in general to reproduce the <p_> values
- When SMASH is turned off, the > is underestimated.

[1] ALICE, Phys. Rev. C 99, 024905 (2019) [2] ALICE: Phys. Rev. C 101, 044907 (2020) [3] EPOS3:10.1103/PhysRevC.93.014911 [4] MUSIC:arXiv:2105.07539

K*/K and φ/K ratio; multiple collision systems & energies

• Ratio of p_{T} integrated yield

• K*/K shows clear suppression

→going from pp, p-Pb and peripheral Pb-Pb collisions to central Pb-Pb → Pb-Pb at 5 TeV results confirmed the trend observed in Pb-Pb at 2.76 TeV → EPOS3 with UrQMD overestimated the data but reproduces the suppression trend

φ/K shows no suppression

 \rightarrow almost constant behaviour \rightarrow EPOS3 reproduces the data

- most favoured explanation of K* suppression is dominance of rescattering over regeneration
- re-scattering is not significant for φ → τ(φ) >> τ(K*)

ALICE, Phys. Rev. C 106 (2022) 034907

K*[±]/K ratio; multiple collision systems & energies

Consistent with previous K* results

• K*[±]/K shows clear suppression

→going from pp, p-Pb and peripheral Pb-Pb collisions to central Pb-Pb → EPOS-LHC without UrQMD reproduces qualitatively the data for pp collisions → HRG-PCE reproduces the suppression trend for heavy-ion data

- most favoured explanation of K*[±] suppression is also dominance of rescattering over regeneration
- K*±/K also shows suppression trend in high multiplicity pp collisions

$\Lambda(1520)/\Lambda$ ratio; multiple collision systems & energies

The p_T -integrated $\Lambda(1520)/\Lambda$ yield ratio is shown \rightarrow the ratio is suppressed in central collisions (0-10%) compared to the peripheral collisions, p–Pb, pp collisions and predictions from statistical hadronization models

 \rightarrow 62.55% lower than 70-90% peripheral Pb–Pb at 7.1 σ level.

- \rightarrow 60% lower than thermal model predictions .
- \rightarrow follows published Pb–Pb@2.76 TeV suppression trend.
- \rightarrow Higher precision and wider multiplicity coverage.

MUSIC with SMASH afterburner

 \rightarrow reproduce the multiplicity suppression trend, better agreement.

MUSIC without SMASH

- \rightarrow first ever prediction without an afterburner, gives a flat curve
- \rightarrow matching to peripheral 70-90% Pb-Pb collisions & near to pp values.

PCE: Phys.Rev.C 102 (2020) 2, 024909 CSM: Phys.Rev.C 100 (2019) 5, 054906 EPOS3: 10.1103/PhysRevC.93.014911 MUSIC: arXiv:2105.07539

Neelima Agrawal for the ALICE collaboration

$\Sigma^{*\pm}/\pi^{\pm}$ ratio; multiple collision systems & energies

- Yield Σ(1385)[±] is measured in three centrality (0-10%, 30-50%, 50-80%) in Pb-Pb collisions at 5.02 TeV
 - The p_{T} -integrated $\Sigma^{*\pm}/\pi^{\pm}$ yield ratio is shown \rightarrow the ratio is suppressed in central collisions (0-10%) if compared to the values observed in peripheral collisions, p-Pb, pp collisions and predictions from statistical hadronisation models
- EPOS3 with UrQMD afterburner overestimate the data
- Suppression at a level of 3.6σ in central Pb-Pb collisions (0-10%) with respect to thermal model calculation

ALICE, Eur. Phys. J. C 83 (2023) 351

Particle ratios in a nutshell measured by ALICE

These measurements with highest multiplicity and improved accuracy further confirm the existence of a hadronic phase lasting enough to cause a significant reduction of the reconstructible yield of short-lived resonances

Findings on hadronic phase lifetime

Lower limit of the timespan between chemical and kinetic freeze-out is estimated by the exponential law:

 $r_{\rm kin} = r_{\rm chem} \ge \exp(-(\tau_{\rm kin} - \tau_{\rm chem}) / \tau_{\rm res})$

 \rightarrow **r**_{kin} = measured yield ratios in heavy-ion (Pb-Pb) collisions

 \rightarrow **r**_{chem} = measured yield ratios in pp collisions

 $\rightarrow T_{res}$ = lifetime of the resonance particle

- Assumptions
 →simultaneous freeze-ot of all the particles
 →Negligible regeneration of resonances
- Lifetime of the hadronic phase smoothly increases with the centrality/multiplicity

Selected new pp results

Measurement of ϕ meson pair

- Study of double-φ production in pp collisions at √s = 7 TeV
 → strangeness enhancement in small system
- Φ meson pair production, $\langle Y_{\phi\phi} \rangle$

$$\circ ~~ \sigma_{\phi}^{~2} = 2 \langle \mathsf{Y}_{\phi\phi} \rangle + \langle \mathsf{Y}_{\phi} \rangle - \langle \mathsf{Y}_{\phi} \rangle^{2}$$

$$\circ \qquad \mathbf{Y}_{\phi} = \mathbf{\sigma}_{\phi}^{2} / \langle \mathbf{Y}_{\phi} \rangle - \mathbf{1} = \langle \mathbf{Y}_{\phi\phi} \rangle / \langle \mathbf{Y}_{\phi} \rangle - \langle \mathbf{Y}_{\phi} \rangle$$

- for $\Upsilon_{\phi} = 0$, the double- ϕ production is purely statistical following a poissonian distribution
- For $\Upsilon_{\phi} \neq 0$, the double- Φ production the production either enhanced or suppressed
- Analysis result:
 - $\Upsilon_{h} > 0 \rightarrow$ not purely statistical but enhanced
- None of the Pythia models can describe the measurement for $\langle Y_{\phi\phi} \rangle$, $\langle Y_{\phi} \rangle$ and Y_{ϕ} at once

f₀(980) resonance measurement in pp collisions

- The $p_{\rm T}$ -spectra of f₀(980) is measured in wide momentum range upto 16 GeV/*c*
- Comparison with a coalescence calculation that uses the AMPT model coupled with a coalescence afterburner with Gaussian wigner function in three configurations

 as a ss meson (differ by a factor of 3)
 as a uuss meson (differ by a factor of ~ 10³)
 as a K⁺K⁻ molecule (differ by a factor of ~ 10²)
- The shape of p_{T} -spectra from case 1) to 2) configuration is significantly steeper than the data
- Ratio of K⁺K⁻ molecule configuration to data show a milder p_T dependence
- Herwig underpredicts the data by a factor of 2 but reproduces the spectral shape in the $1 < p_T < 5$ GeV/c

29

ALICE, ArXiv:2206.06216 [nucl-ex], accepted by PLB

*In order to compare the new measurement of the $p_{\rm T}$ -integrated $f_0(980)$ to pion ratio with low energy data, the low energy points were updated with the latest branching ratio

- Particle ratio value from the fixed-target NA27 experiment at the CERN SPS*, measured in pp collisions at 27.5 GeV[1] is lower by 44.5%
- Particle ratios from e⁺ e⁻ collisions* at 29[2] and 91[3] GeV are lower by 61% and higher by a factor of two, respectively
- The statistical hadronization models [4-6] and HERWIG predictions underestimate the measurement in pp collisions by about a factor two
 - 1. M. Aguilar-Benitez et. al., Z. Phys. C50 (1991) 405.
 - 2. W. Hofmann, Ann. Rev. Nucl. Part. Sci. 38 (1988) 279.
 - 3. P. V. Chliapnikov, Phys. Lett. B462 (1999) 341.
 - 4. F. Becattini et. al., Eur. Phys. J. C 56 (2008) 493.
 - 5. F. Becattini et. al., Z. Phys. C 76 (1997) 269.
 - 6. A. Andronic et. al., Nature 561 no. 7723, (2018) 321.

Search for higher mass resonance in ALICE

- First attempt for the signal extraction of higher mass resonance such as E(1820) in its AK decay daughter channel
- The invariant mass distribution of KK pair shows the prominent signal peak for f₂(1525)

Thank you for your time :-)