

In-Medium Properties of Light Mesons in Magnetized Matter - Effects of (Inverse) Magnetic Catalysis

Pallabi Parui

Department of Physics, Indian Institute of Technology Delhi (IITD), New Delhi

June 9, 2023

20th International Conference on Hadron Spectroscopy and Structure Genoa, Italy

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

June 9, 2023

- Motivation & Relevance
- Introduction to the Mesons
- QCD Sum Rule Approach
- Ohiral Effective Model
- Results on Light Vector Mesons
- **6** Results on Light Axial-Vector Mesons

Onclusion

In the high energy heavy-ion collision experiments

- Matter at high density, temperature, or, magnetic field can be produced.
- Study of in-medium spectral properties (mass, decay widths) of hadrons
- In peripheral heavy-ion collision experiments,
 - \Rightarrow Strong magnetic fields have been estimated of the order of

 \Rightarrow $|eB| \sim 10^{18}$ Gauss $\approx m_{\pi}^2$ at RHIC, $|eB| \sim 10^{19}$ Gauss $\approx 15m_{\pi}^2$ at LHC *

- Emerging phenomena from the magnetized QCD vacuum
- Effects on the strong interacting physics \rightarrow Hadron physics

^{*}V Skokov, A. Y. Illarionov and V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009); D. Kharzeev, L. McLerran and H. Warringa, Nucl. Phys. A 803, 227 (2008); K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013).

Introduction to the Mesons

Light vector and axial-vector mesons with constituent u, d quark flavors

• Vector meson with
$$J^{PC} = 1^{--}$$

$$\Rightarrow \rho : J^{\rho}_{\mu} = \frac{1}{2} (\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d) \qquad [m_{vacuum} = 770 \text{ MeV}]$$

$$\Rightarrow \omega : J^{\omega}_{\mu} = \frac{1}{2} (\bar{u}\gamma_{\mu}u + \bar{d}\gamma_{\mu}d) \qquad [m_{vacuum} = 783 \text{ MeV}]$$

Axial-vector meson with $J^{PC} = 1^{++}$ $\Rightarrow A_1: J^{A_1}_{\mu} = \frac{1}{2}(\bar{u}\gamma_{\mu}\gamma_5 u - \bar{d}\gamma_{\mu}\gamma_5 d) \qquad [m_{vacuum} = 1230 \text{ MeV}]$

Hadron decay width: $A_1 \rightarrow \rho \pi$

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

Current-current correlator:-

$$\Pi_{\mu\nu}(q) = i \int d^4x \, e^{iqx} \left\langle T J_{\mu}(x) J_{\nu}(0) \right\rangle \tag{1}$$

 $\ \, \checkmark \ \, \Pi_{\mu\nu}(q) = q_{\mu}q_{\nu}R(q^2) - g_{\mu\nu}K(q^2) \quad \ \, \checkmark \ \, q_{\mu}\Pi^{\mu\nu} = 0 \rightarrow K(q^2) = q^2R(q^2) \ \, | \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) = q^2R(q^2) \ \, | \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) = q^2R(q^2) \ \, | \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) = q^2R(q^2) \ \, | \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) = q^2R(q^2) \ \, | \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) = q^2R(q^2) \ \, | \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) = q^2R(q^2) \ \, | \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) = q^2R(q^2) \ \, | \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) = q^2R(q^2) \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) = q^2R(q^2) \ \, {\rm for} \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q^2) \ \, J^{PC} = 1^{--p_{\mu\nu}}K(q$

Dispersion relation for $R(q^2) \rightarrow$

$$R_{phen.}(q^2) = \frac{1}{\pi} \int_0^\infty ds \; \frac{ImR^{phen.}(s)}{(s-q^2)} \tag{2}$$

Wilson's operator product expansion (OPE) for $(Q^2 = -q^2) >> 1 \ GeV^2 \rightarrow$

$$R_{OPE}(q^2 = -Q^2) = \left(-c_0 \ln\left(\frac{Q^2}{\mu^2}\right) + \frac{c_1}{Q^2} + \frac{c_2}{Q^4} + \frac{c_3}{Q^6} + \dots\right)$$
(3)

 \rightarrow at a scale $\mu^2 = 1 \; GeV^2$

 $\rightarrow c_i$'s contain the contribution of QCD condensates and parameters

E Klingl, N. Kaiser, W. Weise, Nuclear Physics A **624** 527 (1997); L Govaerts, L. J. Reinders, F. De Viron and J. Weyers, Nucl. Phys. B **283** (1987) 706-722; T. Hatsuda, Y. Koike and S. H. Lee, Nuclear Physics B **394** 221 (1993); T. Hatsuda, S. H. Lee, and H. Shiomi, Phys. Rev. C **52**, 3364 (1995); S. Leupold, Phys. Rev. C **64**, 015202 (2001).

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

June 9, 2023

Borel Transform

•
$$\left[\alpha_{s}(\mu^{2}) = 4\pi/(b \ln(\mu^{2}/\Lambda_{QCD}^{2})) \right], \quad \Lambda_{QCD} = 140 \text{MeV} \quad b = 11 - (2/3)N_{f} = 9$$

• $c_{0} = \frac{1}{8\pi^{2}} \left(1 + \frac{\alpha_{s}}{\pi} \right), c_{1} = -\frac{3}{8\pi^{2}} (m_{u}^{2} + m_{d}^{2})$
• $c_{2}^{A_{1},\rho} = \frac{1}{24} \langle \frac{\alpha_{s}}{\pi} G^{\mu\nu} G_{\mu\nu} \rangle \mp \frac{1}{2} (m_{u} \langle \bar{u}u \rangle + m_{d} \langle \bar{d}d \rangle)$
• $c_{3} = -\frac{\pi\alpha_{s}}{81} x_{j} \kappa \left(\langle \bar{u}u \rangle^{2} + \langle \bar{d}d \rangle^{2} \right); \quad x_{j=A_{1}^{0}(\rho^{0})} = -88(56);$

$$R_{phen.}(q^2) = R_{OPE}(q^2 = -Q^2)$$

Applying Borel transform (\hat{B} :) on eqs.(2) and (3) -

$$\frac{1}{\pi} \int_{0}^{\infty} ds \ e^{-s/M^{2}} \ ImR^{phen.}(s) = \left[c_{0}M^{2} + c_{1} + \frac{c_{2}}{M^{2}} + \frac{c_{3}}{2M^{4}}\right]$$
(4)
$$g \ (Q^{2}) \xrightarrow{\hat{B}} \tilde{g} \ (M^{2})$$
$$\hat{B} := \lim_{Q^{2} \to \infty, \ n \to \infty} \frac{1}{\Gamma(n)} (-Q^{2})^{n} \left(\frac{d}{dQ^{2}}\right)^{n}$$

 $Q^2/n = M^2$ =fixed, *M* is the Borel mass.

M.A. Shifman et. al., Nuclear Physics B 147 448 (1979); T. Hatsuda, Y. Koike and S. H. Lee, Nuclear Physics B-394 221 (1993) - 🔊 🧠

In-Medium Properties of Light Mesons

Borel Transform

Some relations applied on eqs.(2)-(3)

- **1** $\hat{B}[(Q^2)^{-p}] = \frac{1}{(p-1)!} \frac{1}{(M^2)^p}$
- 2 $\hat{B}[(Q^2)^p ln(Q^2)] = -p!(-M^2)^p$
- 3 $\hat{B}[(Q^2 + A)^{-p}] = \frac{1}{(p-1)!} \frac{1}{(M^2)^p} e^{-A/M^2}$

Usefulness of Borel transform

From eq.(4)

- The exponential function on the l.h.s enhances the contribution of the lowest lying resonance by suppressing the continuum part at large *s*.
- In the r.h.s, the higher dimensional operators of the R_{OPE} are suppressed by an additional factor of 1/(n-1)!, which leads to the better convergence of the operator product expansion.

T. Song, T. Hatsuda and S. H. Lee, Phys. Lett. B 792 160 (2012).

Finite Energy Sum Rules

$$\underbrace{ImR^{phen.}(s)/\pi}_{R^{spec.}(s)} = \underbrace{R_{res}(s)\Theta(s_0-s)}_{s\le s_0} + \underbrace{c_0\Theta(s-s_0)}_{s>s_0}$$
(5)

Spectral parametrization:

$$R_{A}^{spec.}(s) = F_{A}\delta(s - m_{A}^{2}) + f_{\pi}^{2}\delta(s - m_{\pi}^{2}) + c_{0}\Theta(s - s_{0}^{A})$$
(6)

$$R_{V}^{spec.}(s) = F_{V}\delta(s - m_{V}^{2}) + c_{0}\Theta(s - s_{0}^{V})$$
(7)

Eq.(5) \rightarrow eq.(4) and \Rightarrow comparing powers of $\frac{1}{M^2}$ on l.h.s & r.h.s

$$\int_{0}^{s_{0}} ds R_{res}(s) = (c_{0}s_{0} + c_{1})$$

$$\int_{0}^{s_{0}} ds sR_{res}(s) = \left(\frac{c_{0}s_{0}^{2}}{2} - c_{2}\right)$$

$$\int_{0}^{s_{0}} ds s^{2}R_{res}(s) = \left(\frac{c_{0}s_{0}^{3}}{3} + c_{3}\right)$$

A. Mishra, Phys. Rev. C 91, 035201 (2015); A. Mishra, A. Kumar, P. Parui, S. De, Phys. Rev. C 100, 015207 (2019); P. Parui, A. Mishra, arXiv: 2209.02455 [hep-ph] (2022).

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

June 9, 2023

Effect of meson-nucleon scattering:-

$$\int_{0}^{\infty} ds \ e^{-s/M^2} \ \frac{ImR^{had.}(s)}{\pi} + \underbrace{\rho_{sc}}_{\text{damping term}} = \left[c_0 M^2 + c_1 + \frac{c_2'}{M^2} + \frac{c_3'}{2M^4} \right]$$
(8)

• **FESRs for** A_1 **meson:**-

•
$$F_A = (c_0 s_0^A + c_1 - f_\pi^2) \qquad \longleftarrow \frac{\rho_B}{4M_N} \longrightarrow$$

- $F_A m_A^2 = \left(\frac{c_0(s_0^A)^2}{2} c_2 f_\pi^2 m_\pi^2\right)$
- $F_A m_A^4 = \left(\frac{c_0(s_0^A)^3}{3} + c_3^A f_\pi^2 m_\pi^4\right)$

• FESRs for ρ and ω mesons:-

•
$$F_V = \left(c_0 s_0^V + c_1\right)$$

•
$$F_V m_V^2 = \left(\frac{c_0(s_0^V)^2}{2} - c_2\right)$$

• $F_V m_V^4 = \left(\frac{c_0(s_0^V)^3}{3} + c_3^V\right)$

 $\checkmark m_u \langle \bar{u}u \rangle = \frac{1}{2} m_\pi^2 f_\pi(\sigma + \delta); \ m_d \langle \bar{d}d \rangle = \frac{1}{2} m_\pi^2 f_\pi(\sigma - \delta) \rightarrow \text{explicit chiral symmetry}$ breaking

$$\sqrt{\left\langle \frac{\alpha_s}{\pi} G^a_{\mu\nu} G^{a\mu\nu} \right\rangle} = \frac{8}{9} \left[(1-d)\chi^4 + \left(m_\pi^2 f_\pi \sigma + \left(\sqrt{2} m_k^2 f_k - \frac{1}{\sqrt{2}} m_\pi^2 f_\pi \right) \zeta \right) \right] \rightarrow$$

comparing the trace of the energy momentum tensor in the QCD and in chiral model Lagrangian

Effective Chiral SU(3) Model

- $G \equiv SU(3)_L \times SU(3)_R$ symmetry
- $g = exp[i\sum_{a=1}^{8} \theta_L^a \frac{\lambda^a}{2}] \times exp[i\sum_{a=1}^{8} \theta_R^a \frac{\lambda^a}{2}] \equiv g_L \times g_R; g \in G$
- $SU(3)_L \times SU(3)_R \rightarrow$ Spontaneously broken down to $SU(3)_V \equiv H$
- A non-linear realization of *G* is defined on the elements $u(\phi')$ of *G*/*H* as $\longrightarrow u(\phi') \xrightarrow{G} g_L u(\phi') h(\phi')^{\dagger} = h(\phi') u(\phi') g_R^{\dagger}; h(\phi') \in SU(3)_V$
- ϕ' are the Goldstone boson fields and $\phi = \frac{1}{\sqrt{2}} \sum_{i=1}^{8} \lambda_i \phi'_i$.
- The elements of the coset space are defined as, $u(\phi') = exp(-\frac{i}{\sqrt{2}}\frac{\phi}{f})$.
- Quarks in this representation transform with the vectorial subgroup $SU(3)_V$
- The *SU*(3) multiplets of baryons and mesons transform according to, $S \xrightarrow{G} h(\phi')Sh(\phi')^{\dagger}$, $S = B, X, V_{\mu}, A_{\mu}$

$$\mathscr{L} = \mathscr{L}_{kin} + \sum_{W = X, V, A, u} \underbrace{\mathscr{L}_{BW}}_{\downarrow} + \mathscr{L}_{vec} + \mathscr{L}_{0} + \underbrace{\mathscr{L}_{scale-break}}_{\downarrow} + \underbrace{\mathscr{L}_{SB}}_{\downarrow} + \underbrace{\mathscr{L}_{mag}}_{\downarrow}$$

Terms in the Lagrangian

* Baryon-scalar meson interaction:-

 $\mathcal{L}_{BX} = -\sum_{i=p,n} \bar{\psi}_i m_i^* \psi_i \qquad \rightarrow m_i^* = -(g_{\sigma i}\sigma + g_{\zeta i}\zeta + g_{\delta i}\delta)$

* Explicit chiral symmetry breaking term, \mathcal{L}_{SB}

In chiral model: $Tr\left[diag\left(-m_{\pi}^{2}f_{\pi}(\sigma+\delta)/2, -m_{\pi}^{2}f_{\pi}(\sigma-\delta)/2, (\sqrt{2}m_{k}^{2}f_{k}-\frac{1}{\sqrt{2}}m_{\pi}^{2}f_{\pi})\zeta\right)\right]$ In QCD: $-Tr\left[diag(m_{u}\langle\bar{u}u\rangle, m_{d}\langle\bar{d}d\rangle, m_{s}\langle\bar{s}s\rangle)\right]$ $\Rightarrow \sigma \sim (\langle\bar{u}u\rangle + \langle\bar{d}d\rangle), \quad \zeta \sim \langle\bar{s}s\rangle, \quad \delta \sim (\langle\bar{u}u\rangle - \langle\bar{d}d\rangle)$

 \ast Scale-invariance breaking effect \rightarrow trace anomaly

• In QCD,
$$\theta^{\mu}_{\mu} = \frac{\beta_{QCD}}{2g} G^a_{\mu\nu} G^{\mu\nu,a} + \sum_i m_i \bar{q}_i q_i$$

• Simulated in the effective Lagrangian (at tree level) by

$$\mathscr{L}_{scale-break} = -\frac{1}{4}\chi^4 ln\left(\frac{\chi^4}{\chi_0^4}\right) + \frac{d}{3}\chi^4 ln\left(\frac{(\sigma^2 - \delta^2)\zeta}{\sigma_0^2\zeta_0}\frac{\chi^3}{\chi_0^3}\right)$$

 ${}^{*}\mathscr{L}_{mag} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - e_{i}\bar{\psi}_{i}\gamma_{\mu}A^{\mu}\psi_{i} - \frac{1}{4}\kappa_{i}\mu_{N}\bar{\psi}_{i}\sigma^{\mu\nu}F_{\mu\nu}\psi_{i}; \quad \kappa_{p(n)} = 3.5856 \ (-3.8263)$

P Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, and W. Greiner, Phys. Rev. C 59, 411 (1999); A. Mishra, K. Balazs, D. Zschiesche, S. Schramm, H. Stöcker, and W. Greiner, Phys. Rev. C 69, 024903 (2004).

Inputs from the chiral effective model

● Classical fields approximation →

$$\begin{split} \phi(x) &\to \langle \phi \rangle; \quad V^{\mu}(x) \to \delta^{\mu 0} \langle V^{\mu} \rangle \\ \bar{\psi}_{i} \gamma^{\mu} \psi_{j} &\to \delta_{ij} \delta^{0}_{\mu} \langle \bar{\psi}_{i} \gamma^{\mu} \psi_{j} \rangle \equiv \delta_{ij} \rho_{i} = \int_{0}^{k_{f,i}} \frac{2d^{3}k}{(2\pi)^{3}} \\ \bar{\psi}_{i} \psi_{j} &\to \delta_{ij} \langle \bar{\psi}_{i} \psi_{j} \rangle \equiv \delta_{ij} \rho_{i}^{s} = \frac{2}{(2\pi)^{3}} \int_{0}^{k_{f,i}} d^{3}k \frac{m_{i}^{*}}{E_{i}^{*}(k)} \\ E_{i}^{*}(\vec{k}) &= \sqrt{\vec{k}^{2} + m_{i}^{*2}} \end{split}$$

- Solutions of the scalar fields σ , ζ , δ and χ from their equations of motion
- Effects of magnetized matter through ρ_{p,n} and ρ^s_{p,n}
- Solved for given values of
 - (i) Baryon density, $\rho_B = \rho_p + \rho_n$
 - (ii) Isospin asymmetry parameter, $\eta = \frac{\rho_n \rho_p}{2\rho_R}$

(iii) Magnetic field strength, |eB| (in units of m_{π}^2)

A. Jahan C.S., A. Mishra, Int.J.Mod.Phys.E **31** 2250083 (2022); A. Mishra, K. Balazs, D. Zschiesche, S. Schramm, H. Stöcker, and W. Greiner, Phys. Rev. C **69**, 024903 (2004).

In-Medium Properties of Light Mesons

Variation of $\langle \bar{q}q \rangle$ with magnetic field

Figure 1: The light quark condensates $(-\langle \bar{q}q \rangle)^{1/3}$ in units of MeV for (a) q = u and (b) q = d, are shown as functions of magnetic field |eB| in units of m_{π}^2 , at $\rho_B = 0$, and ρ_0 for $\eta = 0$ (symmetric) and 0.5 (asymmetric) nuclear matter.

Show the phenomena of Magnetic catalysis and Inverse Catalysis

P. Parui, S. De, A. Kumar, and A. Mishra, Phys. Rev. D 106 114033 (2022).

pallabi	parui123@	gmail.con
---------	-----------	-----------

In-Medium Properties of Light Mesons

Figure 2: In-medium masses of the light vector ρ^0 and axial-vector $A_1^{(0)}$ mesons states as a function of the magnetic field |eB| (in units of m_{π}^2), accounting for the magnetized Dirac sea (DS) effects at zero baryon density $\rho_B = 0$.

Pallabi Parui, Amruta Mishra, arXiv:2209.02455 [hep-ph] (2022).

In-Medium Properties of Light Mesons

HADR(2023

Figure 3: In-medium mass of the light vector ρ mesons as a function of the magnetic field |eB| (in units of m_{π}^2), accounting for the magnetized DS effects at the nuclear matter saturation density, $\rho_B = \rho_0$. The isospin asymmetry $\eta = 0$ and 0.5 (asymmetric).

Pallabi Parui, Amruta Mishra, arXiv:2209.02455 [hep-ph] (2022).

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

Mass variation of ω meson with |eB|

Figure 4: In-medium mass of the light vector ω mesons as a function of the magnetic field |eB| (in units of m_{π}^2), accounting for the magnetized DS effects at $\rho_B = 0$, ρ_0 for $\eta = 0$, 0.5.

Pallabi Parui, Amruta Mishra, arXiv:2209.02455 [hep-ph] (2022).

In-Medium Properties of Light Mesons

Mass variation of A_1 meson with |eB|

Figure 5: In-medium mass of the light axial-vector A_1 meson as a function of the magnetic field |eB| (in units of m_{π}^2), accounting for the magnetized DS effects at $\rho_B = \rho_0$ for $\eta = 0, 0.5$

Pallabi Parui, Amruta Mishra, arXiv:2209.02455 [hep-ph] (2022).

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

June 9, 2023

In-medium decay widths of $A_1 \rightarrow \rho \pi$

$$\Gamma_{A_1 \to \rho \pi} = \frac{|\lambda_{av\phi}|^2}{2\pi m_{A_1}^2} q \left(1 + \frac{2q^2}{3m_{\rho}^2} \right); \quad q = \frac{1}{2m_A} \left([m_A^2 - (m_V + m_{\pi})^2] \times [m_A^2 - (m_V - m_{\pi})^2] \right)^{1/2}$$

Figure 6: In-medium decay widths of $A_1^0 \rightarrow \rho^{\pm} \pi^{\mp}$ channels, as functions of the magnetic field $|eB|/m_{\pi}^2$, accounting for the magnetized DS effects at $\rho_B = \rho_0$ for $\eta = 0$, 0.5.

Breit-Wigner Spectral function of A₁ meson

Figure 7: Spectral function of A_1^0 meson at $\rho_B = \rho_0$, $\eta = 0$, accounting for the magnetized Dirac sea contribution on l.h.s plot. It is compared to the case on r.h.s where the DS effect is not incorporated. The vacuum case is shown by dot-dashed line.

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

< □ ▷ < □ ▷ < □ ▷ < □ ▷
 June 9, 2023

$$\sigma(M) = \frac{6\pi^2 \Gamma_A A(M)}{q(m_A, m_V, m_\pi)^2} \text{ with } q = \frac{1}{2M} \left([m_A^2 - (m_V + m_\pi)^2] \times [m_A^2 - (m_V - m_\pi)^2] \right)^{1/2}$$

Figure 8: Production cross-section for A_1^0 meson at $\rho_B = \rho_0$ and $\eta = 0$. The vacuum case is shown by dot-dashed line.

・ロト ・ 伊ト ・ ヨト ・ ヨト

- The effects of magnetic field on the in-medium masses are observed to be appreciable through the Dirac sea contribution as compared to the case when this effect is not considered.
- The effects of anomalous magnetic moments of the nucleons are seen to be important through the magnetized vacuum contribution, due to the Dirac sea effects.
- The mass modifications of the light vector and axial-vector mesons, may lead to the change in the yields of these mesons due to the modified in-medium partial decay width of light axial meson (*A*₁) going to a vector (*ρ*) and pseudoscalar meson (*π*).

THANK YOU!

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

June 9, 2023

BACKUP SLIDES

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Number and Scalar Densities of Nucleons

$$\begin{split} \bullet & \rho_{p} = \frac{|eB|}{2\pi^{2}} \bigg[\sum_{\nu=0}^{\nu_{max}} k_{f,\nu,s=1}^{p} + \sum_{\nu=1}^{\nu_{max}} k_{f,\nu,s=-1}^{p} \bigg] \\ \bullet & \rho_{p}^{s} = \frac{|eB|m_{p}^{*}}{2\pi^{2}} \bigg[\sum_{\nu=0,s=1}^{\nu_{max}} \frac{\sqrt{m_{p}^{*2} + 2eB\nu + \Delta_{p}}}{\sqrt{m_{p}^{*2} + 2eB\nu + \Delta_{p}}} \times \ln \bigg| \frac{k_{f,\nu,1}^{p} + E_{f}^{p}}{\sqrt{m_{p}^{*2} + 2eB\nu + \Delta_{p}}} \bigg| + \sum_{\nu=1,s=-1}^{\nu_{max}} \frac{\sqrt{m_{p}^{*2} + 2eB\nu - \Delta_{p}}}{\sqrt{m_{p}^{*2} + 2eB\nu - \Delta_{p}}} \times \ln \bigg| \frac{k_{f,\nu,1}^{p} + E_{f}^{p}}{\sqrt{m_{p}^{*2} + 2eB\nu - \Delta_{p}}} \bigg| \bigg]; \quad \nu^{max} = \bigg[\frac{(E_{f} - s\Delta_{p})^{2} - m_{p}^{*2}}{2eB} \bigg] \\ \bullet & \rho_{n} = \frac{1}{4\pi^{2}} \sum_{s=\pm 1} \bigg[\frac{2}{3} k_{f,s}^{(n)3} + s\Delta_{n} \bigg[(m_{n}^{*} + s\Delta_{n}) k_{f,s}^{n} + E_{f}^{(n)2} (sin^{-1} (\frac{m_{n}^{*} + s\Delta_{n}}{E_{f}^{(n)}}) - \frac{\pi}{2}) \bigg] \bigg] \\ \bullet & \rho_{n}^{s} = \frac{m_{n}^{*}}{4\pi^{2}} \sum_{s=\pm 1} \bigg[\frac{k_{f,s}}{k_{f,s}} E_{f}^{n} - (m_{n}^{*} + s\Delta_{n})^{2} \ln \bigg| \frac{k_{f,s} + E_{f}^{n}}{m_{n}^{*} + s\Delta_{n}} \bigg| \bigg] \\ \bullet & \rho_{n}^{s} = \frac{m_{n}^{*}}{4\pi^{2}} \sum_{s=\pm 1} \bigg[k_{f,s}^{(n)} E_{f}^{n} - (m_{n}^{*} + s\Delta_{n})^{2} \ln \bigg| \frac{k_{f,s} + E_{f}^{n}}{m_{n}^{*} + s\Delta_{n}} \bigg| \bigg] \\ \bullet & k_{f,\nu,s}^{p} = \sqrt{E_{f}^{(p)^{2}} - (\sqrt{m_{p}^{*2} + 2eB\nu} + s\Delta_{p})^{2}}; \quad k_{f,s}^{n} = \sqrt{E_{f}^{(n)^{2}} - (m_{n}^{*} + s\Delta_{n})^{2}} \\ \bullet & \Delta \rho_{i}^{s} \sim \bigg[\frac{(qB)^{2}}{3m_{i}^{*}} + ((-\Delta_{p})^{2}m_{i}^{*} + (-\Delta_{n})^{2}m_{i}^{*} - qB \times \Delta_{p}) \bigg(\frac{1}{2} + 2ln \bigg(\frac{m_{i}^{*}}{m_{i}} \bigg) \bigg) \bigg] \\ \text{for protons, } q \to |e|, \Delta_{p} = -1.79 \frac{|e|B}{2m_{N}}; \quad \text{for neutrons } q \to 0, \Delta_{n} = 1.91 \frac{|e|B}{2m_{N}} \end{split}$$

A. Mukherjee, S. Ghosh, M. Mandal, S. Sarkar, and P. Roy, Phys. Rev. D 98, 056024 (2018); A.E. Broderick, M. Prakash and J. M. Lattimer, Phys. Lett. B 531, 167 (2002); M. Strickland, V. Dexheimer, and D. P. Menezes, Phys. Rev. D 86, 125032 (2012); Sushruth Reddy P. Amal Jahan CS, Nikhil Dhale, Amruta Mishra, J. Schaffner-Bielich, Phys. Rev. C 97, 065208 (2018).

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

June 9, 2023

24 / 35

HADR

2023

ρ_{s}^{p} & ρ_{s}^{n} in magnetized matter

Figure 9: The scalar density of nucleons as functions of magnetic field in units of $|eB|/m_{\pi}^2$, at ρ_0 ($\eta = 0$), are plotted for (a) protons and (b) neutrons. The contributions of both spin projections of protons and neutrons $s = \pm 1$ are taken in the magnetized Fermi sea. The effects of the magnetized Dirac sea are shown as dash-dot lines.

June 9, 2023

• The energy momentum tensor of QCD,

$$T_{\mu\nu} = -\frac{\pi}{\alpha_s} \underbrace{\left(u_{\mu} u_{\nu} - \frac{g_{\mu\nu}}{4} \right) G_2}_{G^a_{\mu\sigma} G^{a\sigma}_{\nu}} + \frac{g_{\mu\nu}}{4} \left(\sum_i m_i \bar{q}_i q_i + \frac{\beta_{QCD}}{2g} G^a_{\sigma k} G^{a\sigma k} \right)$$
(9)

• In chiral effective model, $\mathscr{L}_{\chi} = \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - k_{4} \chi^{4} - \frac{\chi^{4}}{4} \ln\left(\frac{\chi^{4}}{\chi_{0}^{4}}\right) + \frac{d}{3} \chi^{4} \ln\left(\left(\frac{(\sigma^{2} - \delta^{2})\zeta}{\sigma_{0}^{2}\zeta_{0}}\right) \left(\frac{\chi}{\chi_{0}}\right)^{3}\right)$

$$T_{\mu\nu} = \left(\partial_{\mu}\chi\right) \left(\frac{\partial \mathscr{L}_{\chi}}{\partial (\partial^{\nu}\chi)}\right) - g_{\mu\nu}\mathscr{L}_{\chi}$$
(10)

• Comparing trace of energy momentum tensor in QCD and in model \rightarrow

$$\left\langle \frac{\alpha_s}{\pi} G^a_{\mu\nu} G^{a\mu\nu} \right\rangle = \frac{8}{9} \left[(1-d)\chi^4 + \left(\frac{\chi}{\chi_0}\right)^2 \left(m_\pi^2 f_\pi \sigma + \left(\sqrt{2}m_k^2 f_k - \frac{1}{\sqrt{2}}m_\pi^2 f_\pi \right) \zeta \right) \right]$$

 χ_0 : vacuum expectation value of χ

Arvind Kumar and Amruta Mishra, Phys. Rev. C 82, 045207 (2010);

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

June 9, 2023

Dirac sea contribution in the weak field limit

$$\begin{aligned} Re\Sigma_{S} &= -\Big(\frac{g_{\sigma NN}^{2}}{m_{\sigma}^{2}}\Big)Rei\int\frac{d^{4}p}{(2\pi)^{4}}Tr[\hat{F}^{(p)}(p,m_{N}^{*},m_{1}) + \hat{F}^{(n)}(n,m_{N}^{*},m_{1})]\Delta_{F}(p,m_{1})\\ \Sigma_{S}^{(vac)} &= \frac{g_{\sigma NN}^{2}}{m_{\sigma}^{2}} Rei\int\frac{d^{4}p}{(2\pi)^{d}}\hat{T}(p,m_{N}^{*},m_{1})\frac{1}{p^{2} - m_{1}^{2} + i\epsilon} \end{aligned}$$

Using

$$\int \frac{d^d p}{(2\pi)^d} \Big(\frac{1}{p^2 - m_1^2}\Big) = \frac{-i}{(4\pi)^{d/2}} \Gamma\Big(1 - \frac{d}{2}\Big) \Big(\frac{1}{m_1^2}\Big)^{1 - d/2}$$
$$\int \frac{d^d p}{(2\pi)^d} \Big(\frac{p^2}{p^2 - m_1^2}\Big) = \frac{i}{(4\pi)^{d/2}} \Big(\frac{d}{2}\Big) \Gamma\Big(-\frac{d}{2}\Big) \Big(\frac{1}{m_1^2}\Big)^{-d/2} \quad etc.$$

$$\begin{split} \hat{T}(p, m_N^*, m_1) &= Tr[\hat{F}^{(p)}(p, m_N^*, m_1) + \hat{F}^{(n)}(n, m_N^*, m_1)] \\ &= 8m_N^* - 8m_N^*(eB)^2 p_\perp^2 \hat{A}_3 + 4m_N^* \{(\kappa_p B)^2 + (\kappa_n B)^2\} \{(m_N^*)^2 + p^2 - 2p_\perp^2 + 2p_\parallel^2\} \hat{A}_2 \\ &+ 4(|eB|)(\kappa_p B) \{(m_N^*)^2 - p^2 + 4p_\parallel^2\} \hat{A}_2 \end{split}$$

$$\Delta_F(p,m) = \left(\frac{-1}{p^2 - m^2 + i\epsilon}\right), \quad \hat{A}_n = \frac{(-1)^n}{n!} \frac{\partial^n}{\partial (m_1^2)^n}, \quad n = 2, 3$$

A. Mukherjee, S. Ghosh, M. Mandal, S. Sarkar, and P. Roy, Phys. Rev. D 98, 056024 (2018). 🗆 🕨 🖉 👘 🖌 🚍

HADR M

Continued

$$\Sigma_{s}^{(vac)} = Re\Sigma_{s}^{(pure \ vac)} + \Sigma_{s}^{(divergent)} + \Sigma_{s}^{(regular)}$$

 $Re\Sigma_s^{(pure vac)}$ is ultraviolet divergent, neglected using MFT

$$\Sigma_{s}^{(divergent)} = -\left(\frac{g_{\sigma NN}^{2}}{4\pi^{2}m_{\sigma}^{2}}\right) \left[\{(\kappa_{p}B)^{2}m_{N}^{*} + (\kappa_{n}B)^{2}m_{N}^{*} + (|eB|\kappa_{p}B)\}\right] \Gamma\left(2 - \frac{d}{2}\right) \left(\frac{1}{m_{N}^{*2}}\right)$$

$$\Sigma_{s}^{(regular)} = \left(\frac{g_{\sigma NN}^{2}}{4\pi^{2}m_{\sigma}^{2}}\right) \left[\frac{(eB)^{2}}{3m_{N}^{*}} + \frac{1}{2}\left\{(\kappa_{p}B)^{2}m_{N}^{*} + (\kappa_{n}B)^{2}m_{N}^{*} + (|eB|\kappa_{p}B)\right\}\right]$$

Using the \overline{MS} scheme,

$$\Sigma_s^{(divergent)} = \left(\frac{g_{\sigma NN}^2}{4\pi^2 m_\sigma^2}\right) \{(\kappa_p B)^2 m_N^* + (\kappa_n B)^2 m_N^* + (|eB|\kappa_p B)\} \ln \frac{m_N^{*2}}{\Lambda}$$

 $\Lambda \text{ is of the scale of } GeV^2, \ \Sigma_s^{(divergent)}(m_N^*=m_N)=0 \to \Lambda=m_N^2.$

$$\Sigma_{s}^{(Vac)} = \left(\frac{g_{\sigma NN}^{2}}{4\pi^{2}m_{\sigma}^{2}}\right) \left[\frac{(eB)^{2}}{3m_{N}^{*}} + \{(\kappa_{p}B)^{2}m_{N}^{*} + (\kappa_{n}B)^{2}m_{N}^{*} + (|eB|\kappa_{p}B)\}\left\{\frac{1}{2} + 2\ln\frac{m_{N}^{*}}{m_{N}}\right\}\right]$$

4 日 ト 4 得 ト 4 ヨ ト 4 ヨ ト -

$$c_{3}^{\rho^{0},\omega} = -\frac{\pi}{2} \alpha_{s} \bigg[\left\langle \left(\bar{u}\gamma_{\mu}\gamma_{5}\lambda^{a}u \mp \bar{d}\gamma_{\mu}\gamma_{5}\lambda^{a}d \right)^{2} \right\rangle + \frac{2}{9} \left\langle \left(\bar{u}\gamma_{\mu}\lambda^{a}u + \bar{d}\gamma_{\mu}\lambda^{a}d \right) \times \left(\sum_{q=u,d,s} \bar{q}\gamma^{\mu}\lambda^{a}q \right) \right\rangle \bigg] = -\pi \alpha_{s} \times \frac{56}{81} \kappa_{1} \left(\langle \bar{u}u \rangle^{2} + \langle \bar{d}d \rangle^{2} \right)$$
(11)

$$c_{3}^{A_{1}^{0}} = -\frac{\pi}{2}\alpha_{s} \left[\left\langle \left(\bar{u}\gamma_{\mu}\lambda^{a}u - \bar{d}\gamma_{\mu}\lambda^{a}d \right)^{2} \right\rangle + \frac{2}{9} \left\langle \left(\bar{u}\gamma_{\mu}\lambda^{a}u + \bar{d}\gamma_{\mu}\lambda^{a}d \right) \times \left(\sum_{q=u,d,s} \bar{q}\gamma^{\mu}\lambda^{a}q \right) \right\rangle \right] = \pi\alpha_{s} \times \frac{88}{81} \kappa_{1} \left(\langle \bar{u}u \rangle^{2} + \langle \bar{d}d \rangle^{2} \right) \quad (12)$$

To simplify the expression for the scalar four-quark condensates, factorization method is used

$$\langle (\bar{q}_i \gamma_\mu \lambda^a q_j)^2 \rangle = -\langle (\bar{q}_i \gamma_\mu \gamma_5 \lambda^a q_j)^2 \rangle = -\delta_{ij} \frac{16}{9} \kappa \langle \bar{q}_i q_j \rangle^2 \tag{13}$$

$$c_{3}^{A_{1}^{\pm}} = -\frac{\pi}{2} \alpha_{s} \bigg[2 \left\langle \left(\bar{u} \gamma_{\mu} \lambda^{a} d \right) \left(\bar{d} \gamma_{\mu} \lambda^{a} u \right) \right\rangle + \frac{2}{9} \left\langle \left(\bar{u} \gamma_{\mu} \lambda^{a} u + \bar{d} \gamma_{\mu} \lambda^{a} d \right) \times \bigg(\sum_{q=u,d,s} \bar{q} \gamma^{\mu} \lambda^{a} q \bigg) \right\rangle \bigg] = \pi \alpha_{s} \times \kappa_{2} \bigg[\frac{16}{81} \left(\left\langle \bar{u} u \right\rangle^{2} + \left\langle \bar{d} d \right\rangle^{2} \right) + \frac{16}{9} \left\langle \bar{u} u \right\rangle \left\langle \bar{d} d \right\rangle \bigg]$$
(14)

$$c_{3}^{\rho^{\pm}} = -\frac{\pi}{2} \alpha_{s} \bigg[2 \left\langle \left(\bar{u} \gamma_{\mu} \gamma^{5} \lambda^{a} d \right) \left(\bar{d} \gamma_{\mu} \gamma^{5} \lambda^{a} u \right) \right\rangle + \frac{2}{9} \left\langle \left(\bar{u} \gamma_{\mu} \lambda^{a} u + \bar{d} \gamma_{\mu} \lambda^{a} d \right) \times \bigg(\sum_{q=u,d,s} \bar{q} \gamma^{\mu} \lambda^{a} q \bigg) \right\rangle \bigg] = \pi \alpha_{s} \times \kappa_{3} \bigg[\frac{16}{81} \left(\langle \bar{u} u \rangle^{2} + \langle \bar{d} d \rangle^{2} \right) - \frac{16}{9} \langle \bar{u} u \rangle \langle \bar{d} d \rangle \bigg]$$
(15)

pallabiparui123@gmail.com

June 9, 2023

(日)

æ

Effects of magnetic field on the Dirac sea

 \Rightarrow *Dirac sea effects are taken into account through summation over the nucleonic tadpole diagrams -

$$\begin{aligned} \mathscr{L}_{BV} + \mathscr{L}_{BX} &= -\bar{\psi}_i (g_{i\omega} \gamma_\mu \omega^\mu + g_{i\rho} \gamma_\mu \tau_3 \rho^\mu + m_i^*) \psi_i \\ m_i^* &= -(g_{\sigma i} \sigma + g_{\zeta i} \zeta + g_{\delta i} \delta), E_i^*(k) = \sqrt{k^2 + m_i^{*2}}; i = p, n \\ \left(D_i^H(p)\right)^{-1} &= \gamma.\bar{p} - m_i^*; \bar{p} = p + \Sigma_i^V, m_i^* = m_i + \Sigma_i^S \\ \Sigma_i^S &= -\underbrace{(g_{\sigma i} \tilde{\sigma} + g_{\zeta i} \tilde{\zeta} + g_{\delta i} \tilde{\delta})}_{\tilde{x} = x - x_0; \ x = \sigma, \zeta, \delta} = i \left(\sum_x \frac{g_{xi}^2}{m_x^2}\right) \int \frac{d^4 p}{(2\pi)^4} Tr[D_i^F(p) + D_i^D(p)] e^{ip^0 \eta} \equiv \underbrace{(\Sigma_i^S)^F}_{\text{E part}} + \underbrace{(\Sigma_i^S)^D}_{\text{Density part}} \end{aligned}$$

• *
$$(\Sigma_i^S)^D = -\left(\sum_x \frac{g_{xi}^2}{m_x^2}\right)\rho_i^s$$

• *
$$\rho_i^s = \gamma_i \int \frac{d^3k}{(2\pi)^3} \frac{m_i}{E_i^s} \Theta(\mu - E); \mu$$
: Fermi energy

• * $(\Sigma_i^S)^F = -(\sum_x \frac{g_{xi}^2}{m_x^2})Rei \int \frac{d^4p}{(2\pi)^4}Tr[\hat{S}_i]\hat{S}_i$: the magnetic field expansion of the fermion propagator up to quadratic in **B**, incorporating the AMMs of nucleons.

F. part: Feynman part

A. Mukherjee, S. Ghosh, M. Mandal, S. Sarkar, and P. Roy, Phys. Rev. D **98**, 056024 (2018); A. Mishra, K. Balazs, D. Zschiesche, S. Schramm, H. Stöcker, and W. Greiner, Phys. Rev. C **69**, 024903 (2004).

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

June 9, 2023

Effects of magnetic field on the Fermi sea

$$\mathscr{L}_{mag} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - q_i\bar{\psi}_i\gamma_{\mu}A^{\mu}\psi_i - \frac{1}{4}\kappa_i\mu_N\bar{\psi}_i\sigma^{\mu\nu}F_{\mu\nu}\psi_i; \ i = p, n, \ \kappa_{p,n} = 3.5856(-3.8263)$$

Effects from Landau energy levels of protons and anomalous magnetic moments (AMMs) of neutrons and protons \mathbf{as}

• For the charged particles with electric charge q and $\vec{B} = B\hat{z}$

⇒ transverse momenta, $k_{\perp}^2 = 2\nu |q|B$ ($\nu \ge 0$), and $\int_k \rightarrow \frac{|q|B}{(2\pi)^2} \sum_n \int_{-\infty}^{\infty} dk_z$; $k_{\perp}^2 = k_x^2 + k_y^2$, n: orbital angular momentum of the particle.

⇒ For spin- $\frac{1}{2}$ protons, $\nu = n + \frac{1}{2} - \frac{s}{2} \frac{q}{|q|}$; $s = \pm 1$, spin-projection along \vec{B} .

$$\Rightarrow \text{Energy } E = \sqrt{k_z^2 + (\sqrt{m^2 + 2\nu|q|B} + s\Delta_p)^2}$$

• For uncharged particles,

$$\Rightarrow \int_k \rightarrow \int \frac{d^3k}{(2\pi)^3}; \text{ and } E = \sqrt{k_z^2 + (\sqrt{m^2 + k_\perp^2} + s\Delta_n)^2}$$

terms corresponding to AMMs of protons, $\Delta_p = -1.79 \frac{eB}{2m_p}$; neutrons $\Delta_n = 1.91 \frac{eB}{2m_n}$

A.E. Broderick, M. Prakash and J. M. Lattimer, Phys. Lett. B 531, 167 (2002); M. Strickland, V. Dexheimer, and D. P. Menezes, Phys. Rev. D 86, 125032 (2012); Sushruth Reddy P. Amal Jahan CS, Nikhil Dhale, Amruta Mishra, J. Schaffner-Bjelich, Phys. Rev. C 97, 065208, C

Nature of mass variation with density

Figure 10: Variation of mass (in MeV) of the light vector and axial-vector mesons $(\rho, \omega \text{ and } A_1)$ as a function of nuclear matter density, in units of ρ_0 , at $\eta = 0$ and 0.5 for zero magnetic field |eB| = 0

June 9, 2023

Hadronic Lagrangian for $AV\phi$ interaction

$$\mathscr{L}_{a\nu\phi} = i\tilde{f} \langle a_{\mu\nu} [\nu^{\mu\nu}, \phi] \rangle.$$

For tree level calculations, $(\partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu})$ instead of $X_{\mu\nu}$ for $X = a, \nu$. Normalization of these fields:

$$\langle 0|X_{\mu\nu}|X;p,\epsilon\rangle = \frac{i}{m_{\chi}} [p_{\mu}\epsilon_{\nu}(X) - p_{\nu}\epsilon_{\mu}(X)].$$

$$\Gamma_{A_{1}\to\rho\pi} = \frac{q}{8\pi m_{A_{1}}^{2}} \overline{|\mathcal{M}|^{2}}$$

$$\mathcal{M} = \frac{-2\lambda_{a\nu\phi}}{m_{A_{1}}m_{\rho}} \left(p'.p \quad \epsilon'.\epsilon - \epsilon'.p \quad \epsilon.p'\right)$$

$$\lambda_{a\nu\phi} = \sqrt{2}i\tilde{f}; p^{2} = m_{\rho}^{2}, p'^{2} = m_{A_{1}}^{2} \text{ and } 2p.p' = (m_{A_{1}}^{2} + m_{\rho}^{2} - m_{\pi}^{2})$$

$$\Gamma_{A_{1}\to\rho\pi} = \frac{|\lambda_{a\nu\phi}|^{2}}{2\pi m_{A_{1}}^{2}}q\left(1 + \frac{2q^{2}}{3m_{\rho}^{2}}\right)$$

$$(16)$$

L. Roca, J. E. Palomar, and E. Oset, Phys. Rev. D 70, 094006 (2004); G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B **321**, 311 (1989).

pallabiparui123@gmail.com

In-Medium Properties of Light Mesons

June 9, 2023

In-medium scalar gluon condensates

Figure 11: The scalar gluon condensate $\langle (\alpha_s/\pi)G^a_{\mu\nu}G^{a\mu\nu}\rangle^{1/4}$ in MeV at (a) $\rho_B = 0$ and (b) $\rho_B = \rho_0$ (for $\eta = 0, 0.5$), are shown as functions of |eB| (in units of m_{π}^2). The condensates are calculated in terms of the in-medium scalar fields, accounting for the Dirac sea (DS) effects.

pallabiparui123@gmail.com	In-Medium Properties of Light Mesons	June 9, 2023	35 / 35
P. Parui, S. De, A. Kumar, and A. Mishra, Phy	rs. Rev. D 106 114033 (2022)		≣ • ગ < ભ