

Chiral symmetry restoration in nuclear medium observed in pionic atoms

RIKEN Nishina Center Kenta Itahashi for piAF collaboration

published 2023/3/23

nature physics

T. Nishi, K.I. et al., Nat. Phys. (2023)

Article

https://doi.org/10.1038/s41567-023-02001-x

Chiral symmetry restoration at high matter density observed in pionic atoms

- Nature Physics (2023/3/23)
 Article DOI: 10.1038/s41567-023-02001-x
- Nature Physics (2023/3/23)
 News and Views "Modified in Medium"

<u>Chiral symmetry</u> restoration in nuclear medium observed in pionic atoms

- Dominant symmetry of the vacuum in low-energy QCD.
- Spontaneous breakdown due to the non-perturbative nature of the strong interaction.
- Non-trivial structure of the QCD vacuum.

published 2023/3/23

nature physics	T. Nishi, K.I. et al., Nat. Phys. (2023		
Article	https://doi.org/10.1038/s41567-023-02001-x		
Chiral symme	etry restoration at high matter		
density obser	ved in pionic atoms		

- Nature Physics (2023/3/23)
 Article DOI: 10.1038/s41567-023-02001-x
- Nature Physics (2023/3/23)
 News and Views "Modified in Medium"

Chiral condensate, order parameter of chiral symmetry

Lattice QCD calculated T dependence of chiral condensate

Ikeno et al., PTP126 (2011) 483 6

Pion-nucleus interaction

Overlap between pion w.f. and nucleus → π works as a probe at ρ_e~0.58ρ_s

π-nucleus interaction is changed for wavefunction renormalization of medium effect

Ericson-Ericson potential $U_{opt}(r) = U_{s}(r) + U_{p}(r),$ $U_{s}(r) = b_{0} \rho + b_{1} (\rho_{n} - \rho_{p}) + B_{0} \rho^{2}$ $U_{p}(r) = \frac{2\pi}{\mu} \vec{\nabla} \cdot [c(r) + \varepsilon_{2}^{-1} C_{0} \rho^{2}(r)] L(r) \vec{\nabla}$

Pion-nucleus interaction and chiral condensate

Overlap between pion w.f. and nucleus → π works as a probe at ρ_e~0.58ρ_s

π-nucleus interaction is changed for wavefunction renormalization of medium effect

Ericson-Ericson potential

 $U_{\text{opt}}(r) = U_s(r) + U_p(r),$ $U_s(r) = b_0 \rho + b_1 (\rho_n - \rho_p) + B_0 \rho^2$ $U_p(r) = \frac{2\pi}{\mu} \vec{\nabla} \cdot [c(r) + \varepsilon_2^{-1} C_0 \rho^2(r)] L(r) \vec{\nabla}$

In-medium Glashow-Weinberg relation

γ=0.184±0.003

Jido, Hatsuda, Kunihiro, PLB670, 109 (2008)

Pion-nucleus interaction and chiral condensate

Spectroscopy of pionic atoms in (*d*,³He) reactions

Missing mass spectroscopy to measure excitation spectrum of pionic atoms

(d,³He) Reaction Spectroscopy in RIBF

Kenta Itahashi, RIKEN

High Precision Spectrum of ¹²²Sn(*d*,³He) in 2014 run

Pionic atom unveils hidden structure of QCD vacuum

Takahiro Nishi¹, Kenta Itahashi¹,* DeukSoon Ahn^{1,2}, Georg P.A. Berg³, Masanori Dozono¹,
Daijiro Etoh⁴, Hiroyuki Fujioka⁵, Naoki Fukuda¹, Nobuhisa Fukunishi¹, Hans Geissel⁶, Emma Haettner⁶,
Tadashi Hashimoto¹, Ryugo S. Hayano⁷, Satoru Hirenzaki⁸, Hiroshi Horii⁷, Natsumi Ikeno⁹, Naoto Inabe¹,
Masahiko Iwasaki¹, Daisuke Kameda¹, Keichi Kisamori¹⁰, Yu Kiyokawa¹⁰, Toshiyuki Kubo¹,
Kensuke Kusaka¹, Masafumi Matsushita¹⁰, Shin'ichiro Michimasa¹⁰, Go Mishima⁷, Hiroyuki Miya¹,
Daichi Murai¹, Hideko Nagahiro⁸, Megumi Niikura⁷, Naoko Nose-Togawa¹¹, Shinsuke Ota¹⁰,
Naruhiko Sakamoto¹, Kimiko Sekiguchi⁴, Yuta Shiokawa⁴, Hiroshi Suzuki¹, Ken Suzuki¹², Motonobu Takaki¹⁰,
Hiroyuki Takeda¹, Yoshiki K. Tanaka¹, Tomohiro Uesaka¹, Yasumori Wada⁴, Atomu Watanabe⁴,
Yuni N. Watanabe⁷, Helmut Weick⁶, Hiroki Yamakami⁵, Yoshiyuki Yanagisawa¹, and Koichi Yoshida¹

Nishi, KI et al., Nat. Phys. (2023)

High Precision Spectrum of ¹²²Sn(*d*,³He) in 2014 run

Best resolution 287 keV (FWHM) 15

Nishi, KI et al., Nat. Phys. (2023)

$\textbf{Deduced } \textbf{b}_1 \textbf{ from pionic Sn spectrum}$

b₁ = -0.1005 is deduced

	[keV]	Statistical	Systematic
$B_{\pi}(1s)$	3831	± 3	+78 - 76
$B_{\pi}(2p)$	2276	± 3	+84 - 83
$B_{\pi}(1s) - B_{\pi}(2p)$	1555	± 4	± 12
$\Gamma_{\pi}(1s)$	316	± 12	+36 - 39
$\Gamma_{\pi}(2p)$	164	± 17	+41 - 32
$\Gamma_{\pi}(1s) - \Gamma_{\pi}(2p)$	152	± 20	+28 - 36

Nishi, KI et al., Nat. Phys. (2023)

Deduced b₁ with corrections

Deduced b₁ with corrections

Result: deduced chiral condensate

Result: deduced chiral condensate

Summary

- Chiral condensate at ρ_e is evaluated to be reduced by 77±2%, which is linearly extrapolated to 60±3% at the nuclear saturation density.
- The binding energies and widths of the pionic 1s and 2p states in Sn121 were determined with very high precision. Difference between the 1s and 2p values drastically reduces the systematic errors.
- Recent theoretical progress was adopted to the <qbar q> deduction, which directly relates the chiral condensate and the pion-nucleus interaction.
- We calculated various corrections for the first time and applied them. The corrections made substantial effects. After the corrections, the chiral condensate ratio was deduced with much higher reliability.
- For future, we are analyzing data of systematic study of pionic Sn isotopes to deduce ρ dependence of chiral condensate. We also plan measurement with "inverse kinematics" reactions for pionic xenon, which leads to future experiments for pionic unstable nuclei.