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Chiral symmetry restoration in nuclear medium 
observed in pionic atoms 

• Dominant symmetry of the vacuum in low-energy QCD. 
• Spontaneous breakdown due to the non-perturbative  

nature of the strong interaction. 
• Non-trivial structure of the QCD vacuum.
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Lattice QCD calculated T dependence of chiral condensate 
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χ-symmetry
restored

χ-symmetry
broken

Remark: sign problem makes it difficult
for lattice to approach non-zero ρ region

Jon-Ivar Skullerud  
PRD105(2022)034504
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χ-symmetry
restored

χ-symmetry
broken

ρ dependence of chiral condensate
Chiral effective theories predict  

reduction by 50-70% at ρs 

and 76-82% at ρe
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Pionic atoms
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Ericson-Ericson potential

Us(r)= b0 ρ + b1 (ρn − ρp) + B0 ρ2

pionic Sn
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pionic Sn
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Pion-nucleus interaction
Overlap between  

pion w.f. and nucleus 
→ π works as a probe 

 at ρe~0.58ρs

Ericson-Ericson potential

Us(r)= b0 ρ + b1 (ρn − ρp) + B0 ρ2

π-nucleus interaction is changed 
for wavefunction renormalization 

of medium effect

Ikeno et al., PTP126 (2011) 483

Nuclear ρ

Overlap

ρs
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Ericson-Ericson potential

Us(r)= b0 ρ + b1 (ρn − ρp) + B0 ρ2

Jido, Hatsuda, Kunihiro, PLB670, 109 (2008)

γ=0.184±0.003

In-medium Glashow-Weinberg relation

Pion-nucleus interaction and chiral condensate

π-nucleus interaction is changed 
for wavefunction renormalization 

of medium effect

Overlap between  
pion w.f. and nucleus 
→ π works as a probe 

 at ρe~0.58ρs
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Jido, Hatsuda, Kunihiro, PLB670, 109 (2008)

γ=0.184±0.003

In-medium Glashow-Weinberg relation

Pion-nucleus interaction and chiral condensate

v

b1 = 0.0866±0.0010
Hirtl et al., EPJA57, 70 (2021)

Pionic hydrogen and deuterium

Isovector
interaction

<qq>e/<qq>0
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π-nucleus interaction is changed 
for wavefunction renormalization 

of medium effect

Overlap between  
pion w.f. and nucleus 
→ π works as a probe 

 at ρe~0.58ρs
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Pion bound state 
(coupled with n hole)

Excitation energy

threshold

quasi-f
ree

Momentum transfer

Magic momentum

Missing mass spectroscopy to measure excitation spectrum of pionic atoms

Spectroscopy of pionic atoms in (d,3He) reactions

Direct production of 
pionic atoms
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F5

F7

Target

SRC

Scintillator

MWDC x 2
Scintillator

TOF measurement ΔE measurement

d beam >1012 /s,  500 MeV

p 105 /s

3He 102 /s

3He Tracking

BigRIPS

Dispersive focal plane

(d,3He) Reaction Spectroscopy in RIBF
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Pionic 121Sn atom 122Sn(d,3He) 1sπ 2pπ
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Pilot run 
15 hours DAQ in 2010

First simultaneous 1s and 2p  
observation

Decomposition of pionic levels

Decomposition of  
nuclear excitations

T. Nishi KI et al.,  PRL120, 152505 (2018)
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Pionic 121Sn atom 122Sn(d,3He) 1sπ 2pπ
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Pilot run 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First simultaneous 1s and 2p  
observation

However, precision was not enough…

Decomposition of pionic levels

Decomposition of  
nuclear excitations

2p observed as a peak with 
high stat. significance 

↓ 
Smaller systematic errors  

for differences 
σB1s > σ(B1s−B2p )

T. Nishi KI et al.,  PRL120, 152505 (2018)



High Precision Spectrum of 122Sn(d,3He) in 2014 run

2p observed as a peak with 
high stat. significance 

↓ 
Smaller systematic errors  

for differences 
σB1s > σ(B1s−B2p )

14 Nishi, KI et al., Nat. Phys. (2023)



2p observed as a peak with 
high stat. significance 

↓ 
Smaller systematic errors  

for differences 
σB1s > σ(B1s−B2p )

High Precision Spectrum of 122Sn(d,3He) in 2014 run

Best resolution 287 keV (FWHM) 15 Nishi, KI et al., Nat. Phys. (2023)
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Isovector
interaction

χ-condensate
<qq>e/<qq>0
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theories

b1 = -0.1005 is deduced

Nishi, KI et al., Nat. Phys. (2023)

Pionic 121Sn

Deduced b1 from pionic Sn spectrum
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LLE

Sn ρn(r)

Absorption term 

Green

Residual interaction

LLE：short-range correction 
Sn ρ：neutron density distribution 

Abs.：representation of absorption term 
Green：cross section calculation method 

Res. : Residual interaction 
Spec. : neutron spectroscopic factors

Neutron spec. factors
Nishi, KI et al., Nat. Phys. (2023)
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Terashima et al., PHYSICAL REVIEW C 77, 024317 (2008)  
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Szwec et al., PRC104,054308

Deduced b1 with corrections
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Pionic 121Sn
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Deduced b1 with corrections

LLE：short-range correction 
Sn ρ：neutron density distribution 

Abs.：representation of absorption term 
Green：cross section calculation method 

Res. : Residual interaction 
Spec. : neutron spectroscopic factors

N. Ikeno et al., PTEP 2015, 033D01 (2015) 
Terashima et al., PHYSICAL REVIEW C 77, 024317 (2008)  
Nose-Togawa et al., PRC71, 061601(R) (2005) 
Szwec et al., PRC104,054308

LLE

Sn ρn(r)

Absorption term 

Green

Residual interaction

Neutron spec. factors

b1 = −0.1163 ± 0.0056 

18



19

χ-symmetry
restored

χ-symmetry
broken

Result: deduced chiral condensate

ρe
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Result: deduced chiral condensate

Updated values 
after review process 
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Summary
• Chiral condensate at ρe is evaluated to be reduced by 77±2%, which is linearly  

extrapolated to 60±3% at the nuclear saturation density. 

• The binding energies and widths of the pionic 1s and 2p states in Sn121 were determined 
with very high precision. Difference between the 1s and 2p values drastically reduces the 
systematic errors. 

• Recent theoretical progress was adopted to the <qbar q> deduction, which directly relates 
the chiral condensate and the pion-nucleus interaction. 

• We calculated various corrections for the first time and applied them. The corrections 
made substantial effects. After the corrections, the chiral condensate ratio was deduced 
with much higher reliability. 

• For future, we are analyzing data of systematic study of pionic Sn isotopes to deduce ρ 
dependence of chiral condensate. We also plan measurement with “inverse kinematics” 
reactions for pionic xenon, which leads to future experiments for pionic unstable nuclei.


