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• Meson-Nucleus bound system: 
Mesonic atoms and Mesonic Nuclei

• Hadron physics: Exotic Hadron 

• Pion production in the heavy-ion collision 
with the transport model (AMD+JAM)

- Related to the symmetry energy (EOS)

I would like to understand the various properties of the strong interaction, hadron, 
and in-medium meson by comparing the experimental data and theory.

N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, PRC93 (2016) 044612; 
PRC97(2018) 069902(E); PRC101 (2020) 03407
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Meson bound states: Interest and Motivation

2

1. Exotic Many Body Physics: 
Interaction, Structure, Formation

Extension of the research area of nuclear physics

2. Meson properties at finite density:
Aspect of QCD symmetries

Density r

Heavy Ion Collision @RHIC, LHC ...

complementary information

Meson –Nucleus Systemr0

Chiral symmetry

Spontaneous, Explicit  
breaking@Vacuum

Partial restoration
@Nuclear density
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How do the hadron properties change 
in the nucleus from the vacuum?
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Structure of the pionic atoms
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 Klein-Gordon equation:

s-wave term p-wave term

Pion-Nucleus Optical Potential ︓

M. Ericson, T. E. O Ericson, Ann. Phys.36(66)496
R. Seki, K. Masutani, PRC27(83)2799

 Strong interaction s-wave terms are repulsive
 Pocket structure near the nuclear surface

Radius of 121Sn



Optical pot. by Dyson eq. 
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Pion–nucleus interaction

In this section, it is explained briefly how to take into account the medium effects to
the p meson based on the pN interaction and to obtain the pion–nucleus interaction
called the optical potential. For the detail explanation for the formulation of the
pion-nucleus optical potential, please see the references (Ericson and Weise 1988;
Oset et al 1982 [49, 50]).

Let us start with the free pion propagator D0(qµ) in vacuum written as,

iD0(qµ) =
i

q2 �m2
p + ie

, (4)

where qµ is the 4-momentum carried by pion and mp is the pion mass. The Dyson
equation is considered to include the effects of the pN interaction in the nuclear
matter and to obtain the pion propagator D(qµ) at finite nuclear density. The Dyson
equation can be written as,

iD(qµ) = iD0 + iD0(�iP)iD0 + iD0(�iP)iD0(�iP)iD0 + ...

= i(D0 +D0PD0 +D0PD0PD0 + ...)

= iD0(qµ)+ iD0(qµ)P(qµ)D(qµ), (5)

where P indicates the pion self-energy which describes the effects of the pion-
nucleon interaction. The Dyson equation Eq. (5) can be expressed diagrammatically
as Fig. 4. The full pion self-energy P is defined as the complete sum of all contribu-
tions of the 1-particle irreducible diagrams of the pN interaction, which is defined
as the diagrams that can not be divided into two connected diagrams by cutting one
internal line of the pion propagator.

P(qµ) = S P irreducible. (6)

In Fig. 5 the simple example of the irreducible diagrams are shown for the pN inter-
action expressed by the 3-point pNN vertex. For other types of the pN interaction
such as those expressed by the ppNN 4-point vertex, one has other series of the
irreducible diagrams. Some examples of the actual functional form of the simple
self-energies can be found in Ref. (Ericson and Weise 1988 [49]). And an introduc-
tory guide for the practical calculations can also be found in Ref. (Oset 1982 [51]).

The Dyson equation Eq. (5) can be rewritten as,

iD(qµ) =
iD0(qµ)

1� D0(qµ)P(qµ)
=

i
(D0(qµ))�1 �P(qµ)

=
i

q2 �m2
p �P(qµ)

. (7)

Thus, the expression of the in-medium pion propagator D(qµ) can be obtained by
implementing the pion self-energy P in the denominator as in Eq. (7). It should be
noticed that the infinite iteration of the self-energy P is taken into account in the
propagator D(qµ).
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Fig. 4 The diagrammatical expression of the Dyson equation for the in-medium pion propagator
D(qµ ) shown as the thick solid line, where qµ is the 4 momentum carried by pion. The pion free
propagator is shown as the short-dashed line and the pion self-energy as the solid circle.
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Fig. 5 The diagrammatical expression of the pion self-energy P for the pN interaction expressed
by the 3-point pNN-vertex. The short-dashed lines indicate the pion free propagator, and the solid
lines indicate the in-medium nucleon particle and hole propagators. The small solid circle indicates
the points where the external pion propagator lines are supposed to be connected.

The pion Hamiltonian H for the equation of motion is written as the inverse
operator of the propagator as,

H = D�1 = q2 �m2
p �P(qµ), (8)

and the Klein-Gordon (KG) equation with the medium effects P in the coordinate
space is written as,

⇥
�—2 +µ2 +P(Ep ,�i—,r(r))

⇤
f(r) = [Ep �Vem(r)]2 f(r), (9)

where µ is the pion-nucleus reduced mass, Ep is the complex eigen energy of the

bound state which can be expressed as Ep = µ �B� i
2

G with the binding energy
B and the width G of the bound state. The KG equation is solved to investigate the
structure of the pionic atoms. The local density approximation is used to obtain the
self-energy in the coordinate space. Vem(r) indicates the electromagnetic interaction
between p� and the nucleus, which will be explained later, and implemented into
the equation of motion as the time component of the photon vector potential.

The strong interaction between pion and the nucleus are described by the pion
self-energy P in the coordinate space which is related to the pion-nucleus optical
potential Vopt. The energy dependence of P is usually neglected in the study of the
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leading order in the density !, in accordance with the
corresponding in-medium change of the chiral quark
condensate h !qqqi.

To the extent that U represents part of the (energy
independent) s-wave optical potential commonly used
in the phenomenological analysis of pionic atoms, at least
part of the missing repulsion is thus given a physical
interpretation in terms of the reduced in-medium f!" in
the denominator of (3). Of course, rather than construct-
ing the potential U and following the steps leading to (2)
and (3), one can directly solve the Klein-Gordon (KG)
equation with the full energy dependence of the polar-
ization operator ""!#. This is the procedure systemati-
cally applied in this paper, with proper recognition of
gauge invariance in the presence of the electromagnetic
field.

The KG equation with Coulomb potential Vc"~rr#< 0
and total pion self-energy, "tot"!; ~rr# reads

$"!% Vc#2 &r2 %m2
" %"tot"!% Vc; ~rr#'#"~rr# ( 0:

(4)

The total polarization operator expressed in terms
of local proton and neutron densities, "tot"!; ~rr # (
"tot$!;!p"~rr#;!n"~rr#', can be split into its s-wave and
p-wave parts:

"tot"!;!p;!n# ( ""!# & $"S"!;!p;!n#
&"P"!;!p;!n#;

where we separate explicitly the phenomenological
s-wave absorption term quadratic in densities,

$"S"!;!p;!n# ( %8"
!

1& m"

2M

"

B0!p"!n & !p#; (5)

parametrized as in Ref. [6]. Here M stands for the nucleon
mass. We use ImB0 ( 0:063m%4

" from Ref. [4] and
ReB0 ( 0 as our standard set and discuss variations of
ReB0 and ImB0 later. For the p-wave part "P"!;!p;!n#,
we use the traditional Kisslinger form with inclusion of
short-range correlations and parameters as specified in
Ref. [4] (set A). The regular s-wave part, ""!#, will be in
the center of our consideration below.

Given the smallness of the isospin-even "N scattering
amplitude T&"!#, double-scattering (Pauli-blocking)
corrections in ""!# are well known to be important
[2]. When those are included, the ‘‘phenomenological’’
s-wave pion polarization operator becomes [7]

"phen"!;!p;!n# ( %T%"!##!% T&
eff"!;!#!; (6)

with

T&
eff"!;!# ( T&"!# % 3kF

8"2 "$T&"!#'2 & 2$T%"!#'2#:
(7)

The local Fermi momentum kF"r# ( $3"2!"r#=2'1=3 is
rewritten in terms of the local density !"r#. Taking

the polarization operator (6) at the on-shell pion energy
! ( m",

""!# ( "phen"! ( m";!p;!n#; (8)

together with the absorption part, we recover the tradi-
tional form of the (energy independent) s-wave optical
potential [4,8]. The proton and neutron density distribu-
tions !p"r# and !n"r# are given as two-parameter Fermi
functions !j"r# ( !0;jf1& exp$"r% Rj#=aj'g%1. The cen-
tral density !0;j is normalized to the total number of
protons and neutrons in the nucleus. The proton radii,
Rp, are extracted from the nuclear charge radii following
from the analyses of muonic atoms [20], taking into
account the finite proton size hr2pi ( 0:73 fm2:
Rp$205Pb' ( 6:66 fm and Rp$207Pb' ( 6:67 fm. Since
the charge radii have not been measured for the complete
chain of Pb isotopes, we have interpolated linearly be-
tween two neighboring measured isotopes. The diffuse-
ness coefficient is taken the same for 205;207Pb,
ap ( 0:48 fm. For the neutron radii, we use values from
the proton-neutron rms-radius difference as obtained in
the Brueckner-Hartree-Fock calculations of Ref. [21]:
Rn$205Pb' ( 6:94 fm and Rn$207Pb' ( 6:97 fm. We as-
sume an ( ap. The numerical input is close to that in
Refs. [3,7].

Solutions of the wave equation (4) for Pb isotopes with
the energy independent (threshold) input (8) for the pion-
nuclear optical potential are shown in Fig. 1 by open
circles. The filled circles in Fig. 1 are the results obtained
with the polarization operator,

""!# ( "phen$!;!p"r#;!n"r#'; (9)

in which we keep the explicit energy dependence as given
by the driving terms (1). The energy dependence effects
are evidently important, moving the calculated results
closer to the data. Indeed, with the gauge invariant in-
troduction of the electromagnetic interaction in the pion

FIG. 1. Binding energies and widths of deeply bound pionic
states in the isotopes 207Pb (left figure) and 205Pb (right figure).
Diamonds show the experimental data from [1]. Uncertainties
in the extraction of the 1s level for 207Pb are indicated by
different choices of a control parameter R as specified in [1].
The results for the polarization operator (8) and (9) are de-
picted by open and filled circles, respectively. Triangles show
the results obtained with the chiral polarization operator (10).
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polarization operator [via the replacement ! !
!! Vc"r#], the off-shell pion-nucleon scattering ampli-
tudes are probed at energies !! Vc"r# > m!. This in-
creases the repulsion in T!"!# and disbalances the
cancellation between the sigma term "N and the range
term !#!2 in T$"!#, giving T$%!! Vc"r#&< 0.
Omitting the replacement ! ! !! Vc"r# in !"!#, we
would have !<m!, and this would reduce the repulsion
in T!"!# and turn on attraction in T$"!#, thus leading in
the wrong direction. Taking both the energy dependence
and the proper gauge invariant substitution via !!!!
Vc"r#" is therefore an essential ingredient.

After these qualitative considerations, we proceed now
to the systematic calculation of the pion polarization
operator using in-medium chiral perturbation theory.
Here we extend the results of Ref. [16] at the two-loop
level by taking into account the explicit (off-shell) energy
dependence. The polarization operator has the form

!"!# ' !0"!# $!ds"!# $!rel"!# $!cor"!#: (10)

The first term corresponds to the linear density approxi-
mation:

The isospin-even off-shell !N-scattering amplitude at
zero pion momentum can be written in the following
form (for ! > m!):

T$"!# ' "N ! #!2

f2!
$ 3g2Am

3
!

16!f4!
$ 3g2AQ

2m!$
64!f4!

$ iTim;

where # ' g2A=4M! 2c2 ! 2c3, "N ' !4c1m2
! !

9g2Am
3
!=64!f2!, and Tim ' !2Q="8!f4!#. The nucleon

axial-vector coupling constant has the value gA ' 1:27.
We introduce the abbreviation Q '

!!!!!!!!!!!!!!!!!!!!

!2 !m2
!

p

. The sec-
ond-order low-energy constants c1;2;3 (for notations, see
Ref. [22]) are tuned to the empirical values of the sigma

term [18], "N ' 45 MeV, and the !N scattering length,
T$"m!# ' 0.

The parameter $ reflects freedom in the choice of the
interpolating pion field in the effective chiral Lagrangian
[13,23]. It enters all interaction vertices with three and
more pions. The one-loop correction to the (off-shell)
pion self-energy in vacuum depends also on this parame-
ter $ . By requiring that the residue at the pion pole
remains equal to one [24] as it is implicit in the form of
the KG equation (4), one gets the constraint $ ' 0.

The isospin-odd off-shell !N amplitude at zero-
momentum reads

T!"!# ' !
2f2!

"

1$ %!2

"2!f!#2
#

! !2Q
8!2f4!

ln
!$Q
m!

$ i
2
Tim;

(12)

with % ' "gA!f!=M#2 $ ln"2"=m!#. The cutoff scale
" ' 737 MeV ’ 8f! is chosen to reproduce the central
empirical value of the on-shell scattering amplitude at
threshold T!"m!# ' 1:85( 0:09 fm [19]. We neglect
here small additional counterterm contributions propor-
tional to the third order low-energy constants #ddj of
Ref. [25].

The next term in (10) corresponds to the important
Ericson-Ericson double-scattering correction [2] general-
ized to isospin asymmetric nuclear matter and off-shell
pions:

where kp;n ' "3!2&p;n#1=3 refer to the proton and neutron
Fermi momenta and

L"kp; kn;Q# ' 4kpkn"Q2 $ 3k2p $ 3k2n# $ 8Q"k3n ! k3p# ln
Q$ kn ! kp
Q! kn $ kp

! 8Q"k3p $ k3n# ln
Q$ kp $ kn
Q! kp ! kn

$ %3"k2p ! k2n#2 $ 6Q2"k2p $ k2n# !Q4& ln"kn ! kp#2 !Q2

"kp $ kn#2 !Q2 : (14)

The third term in (10) is a small relativistic correction
from the particle-hole (Born) diagram evaluated at zero
pion momentum:

The last term in (11) represents the effect induced by !!
interactions with two virtual pions being absorbed on the
nucleons in the Fermi sea, and by an additional two-loop

correction [16,23]:

The function H"kp; kn# consists of the last four terms
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(ChPT up to NNLO) + (Pheno. 2-body abs. )
+(Pheno. Pwave)

Ex.) Kolomeitsev, Kaiser, & W. Weise, Phys.Rev.Lett. 90 (’03)

 Optical Potential 



6

 p-121Sn system

1s

2s 2p

Deeply bound pionic states 1s, 2s, 2p :
Strong interaction effects are large

Structure of the pionic atoms
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K. Suzuki et al., PRL92 (04) 072302:
Missing mass spectroscopy by (d,3He) reaction

Exp@GSI

 b1 determination, Comparison with value in vacuum
 Relation between b1 ⇔ fp ⇔ <qq> 

• Gell-Mann－Oakes－Renner (GOR) relation

• Tomozawa－Weinberg (TW) relation

 Pion-Nucleus optical potential

In-medium property of pion

@

• Data corresponds to info. 
at Effective Density 
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The spectroscopy of pionic atoms has contributed to
the fundamental knowledge of the nontrivial structure of
the vacuum in terms of chiral symmetry and quantum
chromodynamics (QCD) in the low energy region [1]. The
spatial overlaps between the pionic orbitals and the core
nuclei peak near the half-density radii of the nuclei. The
pions are excellent probes for the study of medium effects
in the nuclear matter. An order parameter of the chiral
symmetry [2–4], a quark condensate expectation value
hq̄qi, was deduced at the nuclear density in investigations
on in-medium modification of an isovector π-nucleon
strong interaction through the wave function renormali-
zation [5–11].
The low energy pion-nucleus interaction is described by

a phenomenological optical potential. Parameter sets of the
potential were obtained by fitting many known pionic-atom

and pion-nucleus-scattering data including isotope shifts
of pionic atoms with different neutron numbers [9–13].
Among these parameters is an s-wave isovector parameter
b1, which is closely related to the order parameter of the
chiral symmetry breaking in the nuclear medium hq̄qiρ [5].
Low-lying pionic orbitals are located in a close vicinity of
the core nuclei for Z ≳ 50 [14]. This localized distribution
is due to integration of the attractive Coulomb potential and
the repulsive and absorptive strong interaction potential.
Determining the levels and widths of the bound states
provides quantum-mechanical information that leads to
constraints on the strong interaction. Previous experiments
discovered methods of directly populating the low-lying
orbitals, analyzed them spectroscopically [15–17], and
measured pionic states in Pb and Sn nuclei. The ratio of
hq̄qiρ to the in-vacuum value hq̄qi0 was evaluated to be
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The pðd; 3HeÞπ0 reaction has also been used to calibrate
the effective beam intensity on the target. The reaction cross
section has been estimated to be 7.6 μb=sr in the θ range of
0°–0.5° based on an extrapolation of the data at a slightly
higher energy to ours [25]. For this we have used the
measured beam energy dependence in Ref. [26]. After
applying an acceptance correction of the spectrometer
evaluated by a Monte Carlo simulation, we have estimated
a systematic error for the absolute cross section scale of 30%.
The experimental resolution has been estimated by the

quadratic sum of contributions from the incident beam
emittance and intrinsic momentum spread, the target thick-
ness, and the optical aberrations of the spectrometer. We
have found a quadratic dependence of the resolution on Eex
due to combined effects of multiple scattering at a vacuum
window at F5 and higher-order optical aberrations.
This dependence has been estimated to be RðEexÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
min þ ½0.122 × ðEex − 139.799 MeVÞ&2

p
ðFWHMÞ with

the resolution minimum Rmin ¼ 0.42 MeV, which agrees
with the measured spectral responses in the calibration
reaction of pðd; 3HeÞπ0.
Figure 2 (top panel) displays the measured excitation

spectrum for nearly the full acceptance of the spectrometer.
The abscissa is the excitation energy and the ordinate is
the double differential cross section of the 122Snðd; 3HeÞ
reaction. The π− emission threshold is indicated by the
vertical solid line at 139.571 MeV. On the left side of the
spectrum in the range of Eex < 134 MeV, a linear back-
ground is observed for nuclear excitation without pion
production. Above the emission threshold a continuum is
observed due to quasifree pion production.
Three prominent peaks are observed below the pion

emission threshold in the region of 134 MeV≲ Eex≲
139 MeV. The leftmost peak is due to the formation of a
pionic 1s state mainly coupled with a neutron hole
state of ð3s1=2Þ−1n . The middle peak contains contributions
from the configurations ð1sÞπð2d5=2Þ−1n , ð2pÞπð3s1=2Þ−1n , and
ð2pÞπð2d3=2Þ−1n . The peak on the right side originates mainly
from the ð2sÞπð3s1=2Þ−1n and ð2pÞπð2d5=2Þ−1n configurations.
The spectrum has been fitted in an excitation energy

region [128.0,138.0] MeV with calculated spectra based
on theoretical pionic atom formation cross sections in
Ref. [27] folded by the experimental resolution expressed
by Gaussian functions. Pionic 1s, 2p, 2s, 3p, and 3s states
have been taken into considerations and other higher states
as well as the quasi-free contributions have been neglected.
In the fit 8 parameters have been used: the differential cross
sections (dσ=dΩ) of pionic ðnlÞ states I1s, I2p, the binding
energies B1s, B2p, the 1s width Γ1s, and a slope and an
offset for the linear background. The 2p width has been
fixed to a calculated value of 0.109 MeV [19,28] since it is
much smaller than the experimental resolution. Since
contributions from the other states 2s, 3p, and 3s are
small, their binding energies and widths have been fixed to
theoretical values and their relative cross section ratios
I2s=I1s, I3s=I1s, and I3p=I2p to theoretical ratios [19,28].

The resolution minimum Rmin has also been used as a
free parameter.
The fitted curve is presented with contributions from the

pionic 1s and 2p states. The overall fit has a χ2/n.d.f of
135.8=92. Figure 2 (bottompanel) shows the decomposition
of the 1s and 2p formation cross sections into different
neutron hole states of 121Sn as indicated. The peak on the left
is coupled with pionic 1s and the one on the right with 2p.
We have evaluated the systematic errors attributed to the

deduced binding energies and width resulting from (i) abso-
lute Eex scale error arising from the energy calibration, the
uncertainty of the primary beam energy, the uncertainty of
the target thickness and the ion-optical properties of the
spectrometer, (ii) the Eex dependence of the resolution
within evaluated errors, (iii) the fitting region, and (iv) 20%
errors in the spectroscopic factors of relevant neutron holes.
The systematic errors of the binding energies are mainly
arising from the energy calibration and the dispersion of the
spectrometer.
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FIG. 2. (Top panel) Measured excitation spectrum of the
122Snðd; 3HeÞ reaction at the angular range of 0 < θ < 2°. Three
distinct peaks are observed in the region Eex ¼ ½134; 139& MeV.
The left and middle peaks are mainly originating from formation
of pionic 1s and 2p states, respectively. The right peak is partly
contributed from the other pionic states (2s, 3p, and 3s). The
spectrum is fitted in the region indicated. The fitting curve and
contributions from the 1s and the 2p states are presented by solid,
dashed, and dotted lines, respectively. (Bottom panel) Decom-
position of the pionic 1s and 2p strengths into contributions from
each neutron hole state of 121Sn as indicated. Note that fragmen-
tation is taken into consideration for ð2d5=2Þ−1n .
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Note that the entire data were accumulated within 15 h,
which is showing the potential of the facility RIBF for
spectroscopy experiments. Continuous development is in
progress aiming at a better spectral resolution of
≤ 150 keV. The major accomplishments in the present
experiment will be succeeded by experiments with
improved resolution, statistics, and systematics errors to
deduce π-nucleus isovector scattering length b1 with better
accuracy [31]. A new series of experiments to study pionic
atoms over a wide range of nuclei is in preparation and will
lead to a better understanding of the fundamental structure
of the QCD vacuum based on measurements.
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We present an analysis of the pion–nucleon �-term, �⇡N , using six ensembles with 2+1+1-flavor
highly improved staggered quark action generated by the MILC collaboration. The most serious
systematic e↵ect in lattice calculations of nucleon correlation functions is the contribution of excited
states. We estimate these using chiral perturbation theory (�PT), and show that the leading
contribution to the isoscalar scalar charge comes from N⇡ and N⇡⇡ states. Therefore, we carry
out two analyses of lattice data to remove excited-state contamination, the standard one and a new
one including N⇡ and N⇡⇡ states. We find that the standard analysis gives �⇡N = 40.4(4.7) MeV,
consistent with previous lattice calculations, while the �PT-motivated analysis gives �⇡N = 61.6(6.4)
MeV, which is consistent with phenomenological values obtained using ⇡N scattering data. Our data
on one physical pion mass ensemble was crucial for exposing this di↵erence, therefore, calculations
on additional physical mass ensembles are needed to confirm our result and resolve the tension
between lattice QCD and phenomenology.

I. INTRODUCTION

This paper presents results for the pion–nucleon �-
term, �⇡N ⌘ mud g

u+d
S ⌘ mud hN(k, s)|ūu + d̄d|N(k, s)i

calculated in the isospin symmetric limit with mud =
(mu + md)/2 the average of the light quark masses. It
is a fundamental parameter of QCD that quantifies the
amount of the nucleon mass generated by the u- and d-
quarks. It is determined on the lattice from the forward
matrix element of the scalar density q̄q between the nu-
cleon state, i.e., the scalar charge gqS defined by

gqS = hN(k = 0, s)|ZS q̄q|N(k = 0, s)i, (1)

where ZS is the renormalization constant and the nucleon
spinor has unit normalization. The connection between
gqS and the rate of variation of the nucleon mass, MN ,
with the quark mass is given by the Feynman–Hellmann
(FH) relation [1–3]

@MN

@mq
= hN(k, s)|q̄q|N(k, s)i = gqS/ZS . (2)

The charge, gqS , determines the coupling of the nucleon
to the scalar quark current with flavor q—an impor-
tant input quantity in the search for physics beyond
the Standard Model (SM), including in direct-detection
searches for dark matter [4–8], lepton flavor violation in
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µ ! e conversion in nuclei [9, 10], and electric dipole
moments [11–14]. In particular, �⇡N is a rare example of
a matrix element that, despite the lack of scalar probes
in the SM, can still be extracted from phenomenology—
via the Cheng–Dashen low-energy theorem [15, 16]—and
thus defines an important benchmark quantity for lattice
QCD.

The low-energy theorem establishes a connection be-
tween �⇡N and a pion–nucleon (⇡N) scattering ampli-
tude, albeit evaluated at unphysical kinematics. With
one-loop corrections free of chiral logarithms [17, 18], the
remaining corrections to the low-energy theorem scale
as �⇡NM2

⇡/M
2

N ⇡ 1MeV, leaving the challenge of con-
trolling the analytic continuation of the ⇡N amplitude.
Stabilizing this extrapolation by means of dispersion re-
lations, Refs. [19–21] found �⇡N ⇡ 45MeV based on the
partial-wave analyses from Refs. [22, 23]. More recent
partial-wave analyses [24, 25] favor higher values, e.g.,
�⇡N = 64(8)MeV [26]. Similarly, �PT analyses depend
crucially on the ⇡N input, with �-term prediction vary-
ing accordingly [27, 28].

The analytic continuation can be further improved in
the framework of Roy–Steiner equations [29–37], whose
constraints on �⇡N become most powerful when com-
bined with pionic-atom data on threshold ⇡N scatter-
ing [38–42]. Slightly updating the result from Refs. [31,
33] to account for the latest data on the pionic hydrogen
width [40], one finds �⇡N = 59.0(3.5)MeV. In particu-
lar, this determination includes isospin-breaking correc-
tions [43–46] to ensure that �⇡N coincides with its defi-
nition in lattice QCD calculations [34]. The di↵erence
to Refs. [19–21] traces back to the scattering lengths
implied by Refs. [22, 23], which are incompatible with
the modern pionic-atom data. Independent constraints
from experiment are provided by low-energy ⇡N cross
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We calculate the scalar and tensor charges of the nucleon in 2þ 1-flavor lattice QCD, for which the
systematics of the renormalization of the disconnected diagram is well controlled. Numerical simulations
are performed at a single lattice spacing a ¼ 0.11 fm. We simulate four pion masses, which cover a range
ofmπ ∼ 290–540 MeV, and a single strange quark mass close to its physical value. The statistical accuracy
is improved by employing the so-called low-mode averaging technique and the truncated solver method.
We study up, down, and strange quark contributions to the nucleon charges by calculating disconnected
diagrams using the all-to-all quark propagator. Chiral symmetry is exactly preserved by using the overlap
quark action to avoid operator mixing among different flavors, which complicates the renormalization of
scalar and tensor matrix elements and leads to possibly large contamination to the small strange quark
contributions. We also study the nucleon axial charge with a contribution from the disconnected diagram.
Our results are in reasonable agreement with experiments and previous lattice studies.
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I. INTRODUCTION

The nucleon charges are very important input parameters
in the study of new physics beyond the standard model, and
accurate values are required in phenomenological analyses.
As a representative case, the nucleon scalar charge is
important in the direct search for dark matters [1–4].
The nucleon tensor charge relates the quark electric dipole
moment to that of the nucleon, which is an important
observable in the search for new sources of CP violation
[5,6]. The nucleon scalar and tensor charges are however
difficult to directly measure in experiments, and no accurate

experimental values are currently known. They are thus
important subjects to be studied in lattice QCD, since it is
the only known method to calculate hadronic quantities
with controlled uncertainties.
The nucleon charges have widely been studied in the

literature. The evaluation of the nucleon scalar charge in
lattice QCD first began in the context of the investigation of
the nucleon sigma term σπN ≡P

q¼u;d
mq

2mN
hNjq̄qjNi. It is

still a matter of debate due to the discrepancy between
results of recent lattice QCD calculations at the physical pion
mass, yielding values between 30 to 40 MeV [7–11], and
phenomenological ones, giving almost 60MeV [12–16]. The
nucleon scalar charge also contains the isovector one as well
as the strange content of the nucleon, which are now showing
importance in the analysis of new physics beyond stan-
dard model.
The nucleon tensor charge is the leading twist contri-

bution to the transversity distribution, one of the three
parton distribution functions of the polarized nucleon [17].
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Pion-nucleon sigma term spN ``distribution’’

The value of spN has not been determined accurately enough:

=> It seems to be very interesting to determine the spN value by the deeply bound 
pionic atoms.

spN= 25~60 MeV 

PRL127, 24 (2021)



spN term in the optical potential 
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FIG. 1: Density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. I will correct the figure. I need to put the y-axis
label.

C. the potential parameters b0 and b1 and the �⇡N term

The b1 parameter in the pion-nucleus potential corresponds to the in-medium value b1(⇢), and b1(⇢) is known to
be the connection of the �⇡N term as,

b1(⇢) = bfree1

✓
1� �⇡N

m2
⇡f

2
⇡

⇢

◆�1

, (12)

where bfree1 is the free-space ⇡N isovector parameter, and f⇡ is the free-space pion decay constant. With the intro-
duction of Eq. (12), we can see the e↵ect of the �⇡N term via b1 parameter in the pion-nucleus potential.

Furthermore, we consider the double-scattering contributions for the b0 parameter in the pion-nucleus potential
Vopt as

b0(⇢) = bfree0 � "1
3

2⇡
(bfree20 + 2b21(⇢))

✓
3⇡2

2
⇢

◆1/3

, (13)

where the local nuclear density is ⇢ = 2p3F /(3⇡
2) with the local Fermi momentum pF . In the r.h.s of Eq. (13), the b0

parameter is the free-space ⇡N isoscalar parameter, and the b1 parameter indicates the in-medium parameter b1(⇢)
of Eq. (12).

In Refs. [6, 7], they use these values of f⇡ = 92.2 MeV, bfree0 = 0.0076 m�1
⇡ , bfree1 = �0.0861 m�1

⇡ , �⇡N = 57±7 MeV.
We will change the value �⇡N from 30 25 MeV to 60 MeV, and then see the sensitivity for the cross section of the

deeply bound pionic atom.

III. RESULTS

In Fig. 1, we show the density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. The three values
�⇡N 25, 45, 60 MeV are considered. The parameters b0 and b1, especially b1, have the strong density dependence.
The larger �⇡N has stronger density dependence of the parameters, and thus the pion-nucleus optical potential has a
stronger repulsive e↵ect. By looking at the parameters b0 and b1 in Table I; Set (I) b0 = �0.0283m�1

⇡ , b1 = �0.12m�1
⇡ ,

and Set (II) b0 = �0.0226 m�1
⇡ , b1 = �0.1257 m�1

⇡ , these parameters are located between the �⇡N = 45 MeV and
the �⇡N = 60 MeV.

We calculate the structure of the pionic state in 123Sn with the parameters b0(⇢) and b1(⇢). In Fig. 2, we plot the
�⇡N dependence of the binding energies and widths in the pionic state of 123Sn. We can see that the binding energy
of 1s state has been strongly a↵ected by the �⇡N . The wave functions of the pionic 1s, 2p and 2s states in 123Sn for
the di↵erent �⇡N = 20, 45, 60 MeV are shown in Fig. 3.
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FIG. 1: Density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. I will correct the figure. I need to put the y-axis
label.
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We calculate the structure of the pionic state in 123Sn with the parameters b0(⇢) and b1(⇢). In Fig. 2, we plot the
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We discuss a recent extraction of the ⇡N � term �⇡N from a large-scale
fit of pionic-atom strong-interaction data across the periodic table. The
value thus derived, �FG

⇡N = 57± 7 MeV, is directly connected via the Gell-
Mann–Oakes–Renner expression to the medium-renormalized ⇡N isovector
scattering amplitude near threshold. It compares well with the value de-
rived recently by the Bern–Bonn–Jülich group, �RS

⇡N = 58 ± 5 MeV, using
the Roy–Steiner equations to control the extrapolation of the vanishingly
small near-threshold ⇡N isoscalar scattering amplitude to zero pion mass.

DOI:10.5506/APhysPolB.51.45

1. Introduction

The ⇡N � term

�⇡N =
m̄q

2mN

X

u,d

hN |q̄q|Ni , m̄q =
1

2
(mu +md) , (1)

sometimes called the nucleon � term �N , records the contribution of explicit
chiral symmetry breaking to the nucleon mass mN arising from the non-
zero value of the u and d quark masses in QCD. Early calculations yielded
a wide range of values, �⇡N ⇠ 20–80 MeV [1]. Recent calculations use two
distinct approaches: (i) pion–nucleon low-energy phenomenology guided by
chiral EFT, with or without solving Roy–Steiner equations, result in values
of �⇡N ⇠ 50–60 MeV [2–6], the most recent of which is 58± 5 MeV; and (ii)
lattice QCD (LQCD) calculations reach values of �⇡N ⇠ 30–50 MeV [7–13],
the most recent of which is 41.6±3.8 MeV. This dichotomy is demonstrated
in the left panel of Fig. 1. However, when augmented by chiral perturbation
expansions, LQCD calculations reach also values of ⇠ 50 MeV, see e.g.
Refs. [14–17]. Ambiguities in chiral extrapolations of LQCD calculations
to the physical pion mass are demonstrated in the right panel of Fig. 1.

⇤
Presented by A. Gal at the 3rd Jagiellonian Symposium on Fundamental and Applied

Subatomic Physics, Kraków, Poland, June 23–28, 2019.

(45)

 Pion-Nucleus optical potential

• The spN value determined by the existing pionic atom data was reported: 

We especially focus on the observables of the high-precision deeply bound 
pionic states
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FIG. 1: Density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term.

C. the potential parameters b0 and b1 and the �⇡N term

The b1 parameter in the pion-nucleus potential corresponds to the in-medium value b1(⇢), and b1(⇢) is known to
be the connection of the �⇡N term as,

b1(⇢) = bfree1

✓
1� �⇡N

m2
⇡f

2
⇡

⇢

◆�1

, (12)

where bfree1 is the free-space ⇡N isovector parameter, and f⇡ is the free-space pion decay constant. With the intro-
duction of Eq. (12), we can see the e↵ect of the �⇡N term via b1 parameter in the pion-nucleus potential.
Furthermore, we consider the double-scattering contributions for the b0 parameter in the pion-nucleus potential

Vopt as

b0(⇢) = bfree0 � "1
3

2⇡
(bfree20 + 2b21(⇢))

✓
3⇡2

2
⇢

◆1/3

, (13)

where the local nuclear density is ⇢ = 2p3F /(3⇡
2) with the local Fermi momentum pF . In the r.h.s of Eq. (13), the b0

parameter is the free-space ⇡N isoscalar parameter, and the b1 parameter indicates the in-medium parameter b1(⇢)
of Eq. (12).
In Refs. [6, 7], they use these values of f⇡ = 92.2 MeV, bfree0 = 0.0076 m�1

⇡ , bfree1 = �0.0861 m�1
⇡ , �⇡N = 57±7 MeV.

We will change the value �⇡N from 30 25 MeV to 60 MeV, and then see the sensitivity for the cross section of the
deeply bound pionic atom.

III. RESULTS

In Fig. 1, we show the density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. The three values
�⇡N 25, 45, 60 MeV are considered. The parameters b0 and b1, especially b1, have the strong density dependence.
The larger �⇡N has stronger density dependence of the parameters, and thus the pion-nucleus optical potential has a
stronger repulsive e↵ect. By looking at the parameters b0 and b1 in Table I; Set (I) b0 = �0.0283m�1

⇡ , b1 = �0.12m�1
⇡ ,

and Set (II) b0 = �0.0226 m�1
⇡ , b1 = �0.1257 m�1

⇡ , these parameters are located between the �⇡N = 45 MeV and
the �⇡N = 60 MeV.
We calculate the structure of the pionic state in 123Sn with the parameters b0(⇢) and b1(⇢). In Fig. 2, we plot the

�⇡N dependence of the binding energies and widths in the pionic state of 123Sn. We can see that the binding energy
of 1s state has been strongly a↵ected by the �⇡N . The wave functions of the pionic 1s, 2p and 2s states in 123Sn for
the di↵erent �⇡N = 20, 45, 60 MeV are shown in Fig. 3.

Sensitivity of the deeply bound pionic atom observables to
the pion-nucleon sigma term �⇡N
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We discuss the sensitivity of the observables of the deeply bound pionic atoms to the pion-nucleon
sigma term �⇡N to investigate the possibility of the precise determination of the value of �⇡N by the
accurate data of the deeply bound pionic atoms expected in the latest experiment at RIBF/RIKEN.
We find that the determination of the binding energy of the 1s pionic atoms with the accuracy of
± ⇤ ⇤ keV corresponds to the �⇡N value variation ± ⇤ ⇤ keV. To reduce the systematic error due to
the adopted theoretical model, we propose the simultaneous analyses of the observables of the Sn
isotopes.

PACS numbers:

I. INTRODUCTION

Meson-Nucleus systems are known to provide valuable information of the meson properties at finite density Refs. [9,
10]. Especially, we think spectroscopic study of the deeply bound pionic atoms are very useful to investigate the pion
properties in the nuclear medium [12] and the in-medium value of the chiral condensate were reported in Ref. [13]
by K. Suzuki et al., based on the theoretical supports [14], Recently, the experimental studies of the deeply bound
pionic atoms in Sn isotopes are performed at RIBF/RIKEN and the binding energies and widths of the pionic 1s
and 2p states have been measured very precisely [18]. In addition, the formation spectra of the (d,3He) reaction are
also measured precisely and succeeded to obtain the angular dependence of the formation cross section first time.
Further experiments have been planned to measure the deeply bound pionic atoms for the variety of nuclei such as
112,124Sn [19]. The theoretical studies of the pion properties and the aspects of the chiral symmetry at finite densities
are also developed and, for example, the model independent analysis [15] and the density dependence of the quark
condensate in isospin-asymmetric nuclear matter [8], which are interesting and important to proceed further the
studies of the partial restoration of the chiral symmetry in nucleus by the pionic atoms, are reported.

On the other hand, the value of the pion-nucleon sigma term �⇡N is controversial, recently. The discussion of the
obtained value �⇡N :

• Early stage: �⇡N ⇠ (20� 80) MeV

• Chiral e↵ective theory: �⇡N ⇠ (50� 60) MeV

• Lattice QCD calculations: �⇡N ⇠ (30� 50) MeV

• Friedman and Gal [6, 7]: �⇡N = 57± 7 MeV

Thus, in our study, we will consider the range 25 < �⇡N < 60 MeV.
�⇡N= 45 MeV by Ref. 18 of Jido-hatsuda-Kunihiro paper
* New paper of �⇡N in lattice QCD calculation [11]

There attempts to determine the �⇡N value from pionic atoms

• Recent theoretical analysis by Friedman Ref. [6]

• [Main story:] sigma term related to the lattice calculation. by Friedman-Gal [7]

⇤Electronic address: ikeno@tottori-u.ac.jp
†Electronic address: zaki@cc.nara-wu.ac.jp
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where bfree1 is the free-space ⇡N isovector parameter, and f⇡ is the free-space pion decay constant. With the intro-
duction of Eq. (12), we can see the e↵ect of the �⇡N term via b1 parameter in the pion-nucleus potential.
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where the local nuclear density is ⇢ = 2p3F /(3⇡
2) with the local Fermi momentum pF . In the r.h.s of Eq. (13), the b0

parameter is the free-space ⇡N isoscalar parameter, and the b1 parameter indicates the in-medium parameter b1(⇢)
of Eq. (12).

In Refs. [6, 7], they use these values of f⇡ = 92.2 MeV, bfree0 = 0.0076 m�1
⇡ , bfree1 = �0.0861 m�1

⇡ , �⇡N = 57±7 MeV.
We will change the value �⇡N from 30 25 MeV to 60 MeV, and then see the sensitivity for the cross section of the

deeply bound pionic atom.

III. RESULTS

In Fig. 1, we show the density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. The three values
�⇡N 25, 45, 60 MeV are considered. The parameters b0 and b1, especially b1, have the strong density dependence.
The larger �⇡N has stronger density dependence of the parameters, and thus the pion-nucleus optical potential has a
stronger repulsive e↵ect. By looking at the parameters b0 and b1 in Table I; Set (I) b0 = �0.0283m�1

⇡ , b1 = �0.12m�1
⇡ ,

and Set (II) b0 = �0.0226 m�1
⇡ , b1 = �0.1257 m�1

⇡ , these parameters are located between the �⇡N = 45 MeV and
the �⇡N = 60 MeV.

We calculate the structure of the pionic state in 123Sn with the parameters b0(⇢) and b1(⇢). In Fig. 2, we plot the
�⇡N dependence of the binding energies and widths in the pionic state of 123Sn. We can see that the binding energy
of 1s state has been strongly a↵ected by the �⇡N . The wave functions of the pionic 1s, 2p and 2s states in 123Sn for
the di↵erent �⇡N = 20, 45, 60 MeV are shown in Fig. 3.
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We discuss the sensitivity of the observables of the deeply bound pionic atoms to the pion-nucleon
sigma term �⇡N to investigate the possibility of the precise determination of the value of �⇡N by the
accurate data of the deeply bound pionic atoms expected in the latest experiment at RIBF/RIKEN.
We find that the determination of the binding energy of the 1s pionic atoms with the accuracy of
± ⇤ ⇤ keV corresponds to the �⇡N value variation ± ⇤ ⇤ keV. To reduce the systematic error due to
the adopted theoretical model, we propose the simultaneous analyses of the observables of the Sn
isotopes.
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10]. Especially, we think spectroscopic study of the deeply bound pionic atoms are very useful to investigate the pion
properties in the nuclear medium [12] and the in-medium value of the chiral condensate were reported in Ref. [13]
by K. Suzuki et al., based on the theoretical supports [14], Recently, the experimental studies of the deeply bound
pionic atoms in Sn isotopes are performed at RIBF/RIKEN and the binding energies and widths of the pionic 1s
and 2p states have been measured very precisely [18]. In addition, the formation spectra of the (d,3He) reaction are
also measured precisely and succeeded to obtain the angular dependence of the formation cross section first time.
Further experiments have been planned to measure the deeply bound pionic atoms for the variety of nuclei such as
112,124Sn [19]. The theoretical studies of the pion properties and the aspects of the chiral symmetry at finite densities
are also developed and, for example, the model independent analysis [15] and the density dependence of the quark
condensate in isospin-asymmetric nuclear matter [8], which are interesting and important to proceed further the
studies of the partial restoration of the chiral symmetry in nucleus by the pionic atoms, are reported.

On the other hand, the value of the pion-nucleon sigma term �⇡N is controversial, recently. The discussion of the
obtained value �⇡N :

• Early stage: �⇡N ⇠ (20� 80) MeV

• Chiral e↵ective theory: �⇡N ⇠ (50� 60) MeV

• Lattice QCD calculations: �⇡N ⇠ (30� 50) MeV

• Friedman and Gal [6, 7]: �⇡N = 57± 7 MeV

Thus, in our study, we will consider the range 25 < �⇡N < 60 MeV.
�⇡N= 45 MeV by Ref. 18 of Jido-hatsuda-Kunihiro paper
* New paper of �⇡N in lattice QCD calculation [11]

There attempts to determine the �⇡N value from pionic atoms

• Recent theoretical analysis by Friedman Ref. [6]

• [Main story:] sigma term related to the lattice calculation. by Friedman-Gal [7]
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FIG. 2: Binding energies (B.E.) and widths (�) of the pionic 1s and 2p states in 123Sn as a function of �⇡N . The results
correspond to the calculation with the parameter set (I).
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We also calculate the pionic formation spectra in the (d,3He) reaction with the e↵ective number approach [23]. In
Fig. 4, ....
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FIG. 1: Density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. I will correct the figure. I need to put the y-axis
label.

C. the potential parameters b0 and b1 and the �⇡N term

The b1 parameter in the pion-nucleus potential corresponds to the in-medium value b1(⇢), and b1(⇢) is known to
be the connection of the �⇡N term as,

b1(⇢) = bfree1
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where bfree1 is the free-space ⇡N isovector parameter, and f⇡ is the free-space pion decay constant. With the intro-
duction of Eq. (12), we can see the e↵ect of the �⇡N term via b1 parameter in the pion-nucleus potential.

Furthermore, we consider the double-scattering contributions for the b0 parameter in the pion-nucleus potential
Vopt as

b0(⇢) = bfree0 � "1
3

2⇡
(bfree20 + 2b21(⇢))
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where the local nuclear density is ⇢ = 2p3F /(3⇡
2) with the local Fermi momentum pF . In the r.h.s of Eq. (13), the b0

parameter is the free-space ⇡N isoscalar parameter, and the b1 parameter indicates the in-medium parameter b1(⇢)
of Eq. (12).

In Refs. [6, 7], they use these values of f⇡ = 92.2 MeV, bfree0 = 0.0076 m�1
⇡ , bfree1 = �0.0861 m�1

⇡ , �⇡N = 57±7 MeV.
We will change the value �⇡N from 30 25 MeV to 60 MeV, and then see the sensitivity for the cross section of the

deeply bound pionic atom.

III. RESULTS

In Fig. 1, we show the density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. The three values
�⇡N 25, 45, 60 MeV are considered. The parameters b0 and b1, especially b1, have the strong density dependence.
The larger �⇡N has stronger density dependence of the parameters, and thus the pion-nucleus optical potential has a
stronger repulsive e↵ect. By looking at the parameters b0 and b1 in Table I; Set (I) b0 = �0.0283m�1

⇡ , b1 = �0.12m�1
⇡ ,

and Set (II) b0 = �0.0226 m�1
⇡ , b1 = �0.1257 m�1

⇡ , these parameters are located between the �⇡N = 45 MeV and
the �⇡N = 60 MeV.

We calculate the structure of the pionic state in 123Sn with the parameters b0(⇢) and b1(⇢). In Fig. 2, we plot the
�⇡N dependence of the binding energies and widths in the pionic state of 123Sn. We can see that the binding energy
of 1s state has been strongly a↵ected by the �⇡N . The wave functions of the pionic 1s, 2p and 2s states in 123Sn for
the di↵erent �⇡N = 20, 45, 60 MeV are shown in Fig. 3.
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We calculate the structure of the pionic state in 123Sn with the parameters b0(⇢) and b1(⇢). In Fig. 2, we plot the
�⇡N dependence of the binding energies and widths in the pionic state of 123Sn. We can see that the binding energy
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Fig. 3. The binding energy (Bπ ) and the width ("π ) of the pionic 1s state in 111Sn are plotted as functions
of the σπN value. Bπ and "π are calculated with the density-dependent b0(ρ) and b1(ρ) parameters.

Table 3. The calculated average shifts of the observables of the deeply bound pionic states are shown
in keV for the 1 MeV change of the σπN value %σπN = 1 MeV. %(Bπ (1s) − Bπ (2p)) and %("π (1s) −
"π (2p)) indicate the average shifts of the differences of the binding energies and widths between the 1s
and 2p states for the σπN change %σπN = 1 MeV, respectively.

[keV] 123Sn 111Sn

|%Bπ (1s)| 6.2 7.5
|%"π (1s)| 5.9 12.9

|%Bπ (2p)| 1.7 1.7
|%"π (2p)| 2.5 3.6

|%(Bπ (1s) − Bπ (2p))| 4.5 5.8
|%("π (1s) − "π (2p))| 3.4 9.3

Fig. 4. The mass number dependence of the calculated shifts of the observables of the deeply bound
pionic states is shown for the 1 MeV change of the σπN value %σπN = 1 MeV in Sn isotopes.

binding energy %Bπ (1s) are |%Bπ (1s)| = 6.2 keV for 123Sn and 7.5 keV for 111Sn for the 1 MeV
variation of the σπN value %σπN = 1 MeV. We !nd larger sensitivities for the pionic states in
the lighter Sn isotope 111Sn to σπN because of the less repulsive optical potential due to the
smaller neutron numbers and the larger overlap of the pionic wave function with the nucleus.
The shift of the width of the 1s pionic states %"π (1s) in 111Sn is 12.9 keV for the %σπ = 1 MeV
variation, which is more than twice that of %"π (1s) in the 123Sn cases, as shown in Table 3. We
show the mass number dependence of the sensitivity of each observable in Fig. 4 and clearly
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We discuss the sensitivity of the observables of the deeply bound pionic atoms to the pion-nucleon
sigma term �⇡N to investigate the possibility of the precise determination of the value of �⇡N by the
accurate data of the deeply bound pionic atoms expected in the latest experiment at RIBF/RIKEN.
We find that the determination of the binding energy of the 1s pionic atoms with the accuracy of
± ⇤ ⇤ keV corresponds to the �⇡N value variation ± ⇤ ⇤ keV. To reduce the systematic error due to
the adopted theoretical model, we propose the simultaneous analyses of the observables of the Sn
isotopes.

PACS numbers:

I. INTRODUCTION

Meson-Nucleus systems are known to provide valuable information of the meson properties at finite density Refs. [9,
10]. Especially, we think spectroscopic study of the deeply bound pionic atoms are very useful to investigate the pion
properties in the nuclear medium [12] and the in-medium value of the chiral condensate were reported in Ref. [13]
by K. Suzuki et al., based on the theoretical supports [14], Recently, the experimental studies of the deeply bound
pionic atoms in Sn isotopes are performed at RIBF/RIKEN and the binding energies and widths of the pionic 1s
and 2p states have been measured very precisely [18]. In addition, the formation spectra of the (d,3He) reaction are
also measured precisely and succeeded to obtain the angular dependence of the formation cross section first time.
Further experiments have been planned to measure the deeply bound pionic atoms for the variety of nuclei such as
112,124Sn [19]. The theoretical studies of the pion properties and the aspects of the chiral symmetry at finite densities
are also developed and, for example, the model independent analysis [15] and the density dependence of the quark
condensate in isospin-asymmetric nuclear matter [8], which are interesting and important to proceed further the
studies of the partial restoration of the chiral symmetry in nucleus by the pionic atoms, are reported.

On the other hand, the value of the pion-nucleon sigma term �⇡N is controversial, recently. The discussion of the
obtained value �⇡N :

• Early stage: �⇡N ⇠ (20� 80) MeV

• Chiral e↵ective theory: �⇡N ⇠ (50� 60) MeV

• Lattice QCD calculations: �⇡N ⇠ (30� 50) MeV

• Friedman and Gal [6, 7]: �⇡N = 57± 7 MeV

Thus, in our study, we will consider the range 25 < �⇡N < 60 MeV.
�⇡N= 45 MeV by Ref. 18 of Jido-hatsuda-Kunihiro paper
* New paper of �⇡N in lattice QCD calculation [11]

There attempts to determine the �⇡N value from pionic atoms

• Recent theoretical analysis by Friedman Ref. [6]

• [Main story:] sigma term related to the lattice calculation. by Friedman-Gal [7]

⇤Electronic address: ikeno@tottori-u.ac.jp
†Electronic address: zaki@cc.nara-wu.ac.jp

Interesting Observables 

＊ B(1s)-B(2p)
＊ Width (1s)  



Sensitivities of Deeply Bound pionic atom observables
-- Calculated senseitivity vs. Experimental Errors --

＊Typical error of data

80 keV for  B(1S)

10-15keV BE(1s) – BE(2p)

40 keV for Width (1s) 
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Sensitivities of Deeply Bound pionic atom observables
-- Calculated senseitivity vs. Experimental Errors --

＊Typical error of data

80 keV for  B(1S)

10-15keV BE(1s) – BE(2p)

40 keV for Width (1s) 

＊Expected uncertainties for sigma term are 

B(1s) ~ 10 MeV 

B(1s) – B(2p) ~ 2.5 MeV

Width(1s) （111Sn ） ~ 3MeV
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Fig. 5. Formation cross sections of the deeply bound pionic atoms in 123Sn by the 124Sn(d, 3He) reactions
are shown at different scattering angles of the emitted 3He nucleus in the laboratory frame as θLab

dHe = 0◦,
1◦, 2◦, respectively. The results are obtained with the density-dependent b0(ρ) and b1(ρ) parameters with
three different σπN values as indicated in the !gure. The experimental energy resolution is assumed to be
%E = 150 keV. The contributions from the quasi-free pion production are not included in the theoretical
spectra.

dence of the formation cross section is quite stable to changes in the σπN value and has only
rather weak sensitivities to the σπN value.

Here, we discuss the expected dif!culties for the actual determination of the value of the
σπN term from the experimental data. First of all, it is well known that there exists a strong
correlation between the potential parameters b0 and ReB0 [35]. In the present form shown in
Eqs. (10) and (11), the parameters b0 and b1 are both connected to the σπN value. Thus, there
could be a strong correlation between σπN and ReB0, which implies that b0 and b1 are both
strongly correlated to ReB0.

We show in Fig. 8 contour plots of the observables of the deeply bound pionic atoms in the
plane of the sigma term σπN and the potential parameter ReB0. In Fig. 8 (upper), we show the
gap of the binding energies Bπ (1s) − Bπ (2p) and the width &π (1s) for 111Sn to see the corre-
lations of the parameters for those observables, and to study the possibilities of determining
the individual parameter by precise measurements of the binding energies and widths of the
speci!c nucleus. We !nd that the correlations of σπN and ReB0 for the two observables look
more similar in the ReB0 < 0 region and it would be dif!cult to determine each parameter only
by these observables. In the ReB0 > 0 region, we !nd that the correlations of these parame-
ters show different patterns for these observables and we expect to have greater possibilities to
determine the parameters.
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Fig. 8 The contour plots of the observables of the deeply bound pionic atoms in 111Sn

in the �⇡N � ReB0 plane. The numbers written in the contour plots are in the unit of keV.

(Upper) The solid and the dashed lines show the contour plots of the gap of the binding

energies of the 1s and 2p states B⇡(1s)�B⇡(2p) and the width of the 1s state �⇡(1s)

calculated with the same shape of the proton (⇢p) and the neutron (⇢n) distributions with

the appropriate normalization as described in the text. (Lower) The solid lines are the

same as those in the upper figure. The dashed lines show B⇡(1s)�B⇡(2p) for the nuclear

distributions with Rp = R and Rn = R+ 0.2 fm where Rp and Rn are the radius parameters

of ⇢p and ⇢n written in the Woods-Saxon form. The parameter R is same as in Eq. (9) in

the text. Between two dashed lines of 1700 keV in the positive ReB0 region, there exists the

shallow valley structure around 1675 keV.
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FIG. 1: Density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. I will correct the figure. I need to put the y-axis
label.

C. the potential parameters b0 and b1 and the �⇡N term

The b1 parameter in the pion-nucleus potential corresponds to the in-medium value b1(⇢), and b1(⇢) is known to
be the connection of the �⇡N term as,

b1(⇢) = bfree1
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where bfree1 is the free-space ⇡N isovector parameter, and f⇡ is the free-space pion decay constant. With the intro-
duction of Eq. (12), we can see the e↵ect of the �⇡N term via b1 parameter in the pion-nucleus potential.

Furthermore, we consider the double-scattering contributions for the b0 parameter in the pion-nucleus potential
Vopt as

b0(⇢) = bfree0 � "1
3

2⇡
(bfree20 + 2b21(⇢))
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where the local nuclear density is ⇢ = 2p3F /(3⇡
2) with the local Fermi momentum pF . In the r.h.s of Eq. (13), the b0

parameter is the free-space ⇡N isoscalar parameter, and the b1 parameter indicates the in-medium parameter b1(⇢)
of Eq. (12).

In Refs. [6, 7], they use these values of f⇡ = 92.2 MeV, bfree0 = 0.0076 m�1
⇡ , bfree1 = �0.0861 m�1

⇡ , �⇡N = 57±7 MeV.
We will change the value �⇡N from 30 25 MeV to 60 MeV, and then see the sensitivity for the cross section of the

deeply bound pionic atom.

III. RESULTS

In Fig. 1, we show the density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. The three values
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Fig. 8 The contour plots of the observables of the deeply bound pionic atoms in 111Sn

in the �⇡N � ReB0 plane. The numbers written in the contour plots are in the unit of keV.

(Upper) The solid and the dashed lines show the contour plots of the gap of the binding

energies of the 1s and 2p states B⇡(1s)�B⇡(2p) and the width of the 1s state �⇡(1s)

calculated with the same shape of the proton (⇢p) and the neutron (⇢n) distributions with

the appropriate normalization as described in the text. (Lower) The solid lines are the

same as those in the upper figure. The dashed lines show B⇡(1s)�B⇡(2p) for the nuclear

distributions with Rp = R and Rn = R+ 0.2 fm where Rp and Rn are the radius parameters

of ⇢p and ⇢n written in the Woods-Saxon form. The parameter R is same as in Eq. (9) in

the text. Between two dashed lines of 1700 keV in the positive ReB0 region, there exists the

shallow valley structure around 1675 keV.
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Summary
Deeply bound pionic atoms:
• Exotic many-body systems
• Useful system to study the pion properties in nuclei 

and partial restoration of chiral symmetry
• Precise information is expected for pion-nucleon 

sigma term

• Progress on the systematic and precise studies  
(e.g., Sn isotope target at RIKEN/RIBF)

• Theoretical calculations need to be improved for 
more precise discussions based on experimental data 
in future.

19



20



Some memos for pi atom 
Basic Story (Prediction, Observation, Feedback)
• Observe meson in nucleus ( B.E., Width, , , , )           
• Deduce in-medium meson properties ( b1, , , ) 
• Relate them to fundamental parameters 

( Condensate, , , )
Some points 
＊States with well-defined quantum numbers

（something like “selection rule” ）
＊Exclusive information ( s-wave isovector int., , ,  )
＊Reliable connection between Theoretical formula 

and  Exp. Result

＊Model independent theoretical treatment 
(… for feedback/fitting) 

In reality, we need some phenomenological pieces.
23





Model independent analysis (here low density expressions)  

 Adopt these theoretical relations at the effective density  41
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Fig. 1. Diagrams for the πN scattering amplitude induced by the external fields,
Aa

µ and φb
5 . The solid, dotted and wavy lines denote nucleon, pion and external

fields, respectively.

For Πab
5 (q) in Eq. (1), the first term in the right-hand side of

Eq. (15) is dominated by the massless pion in the chiral limit. The
second term corresponds to the forward scattering amplitude of
the external fields (Aa

µ and φb
5 ) with the nucleon multiplied by qµ .

As shown in Fig. 1, there are four different contributions to the
forward amplitude: (a) the term with double π pole where both
Aa

µ and φb
5 couple directly to the pion, (b), (c) the term with single

π pole where either Aa
µ or φb

5 couples directly to the pion, and (d)
the term without π pole where the external fields couple directly
to the nucleon.

It is easy to see that the p-wave coupling of the pion or the
external fields to the nucleon gives vanishing contribution to the
forward amplitude in (a)–(d). On the other hand, the s-wave cou-
pling in (a), (b), (c) can leave finite contributions even in the soft
limit due to the pion pole(s). In particular, particle–hole excitations
do not contribute to the sum rule in the linear-density approxima-
tion. This leads to the conclusion that only the pionic mode with
possible medium modification contributes to the sum rule in the
previous section at low density:

F t
π G∗1/2

π = −〈q̄q〉∗. (16)

Note that Eq. (16) is only valid if both sides are expanded up to
O (ρ).

Taking the ratio of Eq. (16) and its counterpart at zero density,
we find the scaling law:
(

F t
π

Fπ

)
Z∗1/2
π = 〈q̄q〉∗

〈q̄q〉 , (17)

with the in-medium wave function renormalization Z∗
π ≡ G∗

π /Gπ .
As will be shown in the next section, in-medium change of Z∗

π
from 1 can be evaluated from the isosinglet pion–nucleon scatter-
ing amplitude, while F t

π/Fπ is related to the pion–nucleus isovec-
tor scattering lengths through the in-medium TW relation. There-
fore, Eq. (17) gives a direct link between the in-medium modifica-
tion of the quark condensate and that of the pion decay constant.3

Alternative relation between 〈q̄q〉∗ and F t
π is obtained by tak-

ing the matrix element of the PCAC relation ∂ · Aa(x) = 2mqφ
a
5(x)

slightly away from the chiral limit. With the matrix elements
given in Eqs. (6) and (12) with α = π , we have (ε2 − v2

π k2)F t
π =

2mqG∗1/2
π , where F t

π and G∗
π are the values in the chiral and soft

limit. Since the in-medium pion mass is given by ε2 = m∗2
π +

v2
π k2 + O (&k4), we have m∗2

π F t
π = 2mqG∗1/2

π . Combining this with
Eq. (11), we obtain
(

F t
π

)2
m∗2

π = −2mq〈q̄q〉∗, (18)
(

F t
π

Fπ

)2(m∗
π

mπ

)2

= 〈q̄q〉∗
〈q̄q〉 . (19)

Eq. (18) is the in-medium generalization of the Gell-Mann–Oakes–
Renner relation [14] and was derived before in the Nambu–Jona-
Lasinio model [15] and in chiral perturbation theory [11,16]. The-
oretically, Eq. (17) is equivalent to Eq. (19). Experimentally, the

3 There is also a well-known low-energy theorem at low density which relates
the in-medium modification of the quark condensate to the pion–nucleon σ -term
[13]: 〈q̄q〉∗/〈q̄q〉 = 1 − σπ Nρ/(F 2

π m2
π ) with σπ N ' 45 MeV.

information on m∗
π is necessary to check the latter sum rule, which

is relatively difficult.

4. In-medium wave-function renormalization

Let us consider the relation between the pion wave function
renormalization constant Z∗

π and the isospin singlet pion–nucleon
scattering amplitude. For this purpose, we introduce the off-shell
πN amplitude near the pion pole through the operator φa

5(x), as is
done in [17],

T ab
π N(ν,νB ;mπ )

= δab T (+) + 1
2

[
τ a,τ b] T (−)

≡ i
Gπ

q2q′ 2
∫

d4x eiq·x〈N(P ′)
∣∣T

[
φa

5(x)φb
5(0)

]∣∣N(P )
〉

(20)

with the in-coming (out-going) pion momentum q (q′) and the
kinematical variables defined as ν ≡ P · (q + q′)/(2MN ) and νB ≡
−q · q′/(2MN ). In the forward limit q′ → q with &q = 0, the scatter-
ing amplitude is a function solely of ω. Thus, the isospin singlet
amplitude for small ω is written as

T (+)(ω;mπ ) ' α + βω2. (21)

Thanks to the special off-shell extrapolation given in Eq. (20), the
coefficients α and β can be evaluated as follows [17]: (i) At the
off-shell Weinberg point, we have T (+)(0;mπ ) = α = −σπ N/F 2

π
with the π N sigma term σπ N ' 45 MeV [18]. (ii) At the on-shell
threshold, we have T (+)(ω = mπ ;mπ ) = 4π(1 +mπ /mN)aπ N with
the scattering length aπ N = (0.0016 ± 0.0013)m−1

π [19]. Combining
these, we obtain

β ' σπ N

F 2
πm2

π
+

(
1 + mπ

mN

)
4πaπ N

m2
π

. (22)

Numerically, the first term in the right-hand side of Eq. (22) dom-
inates over the second term and we find β = 2.17 ± 0.04 fm3.

To obtain a relation between β and Z∗
π , we now consider the

correlation of φa
5 in symmetric nuclear matter in the chiral limit

expanded up to linear in density according to Eqs. (15), (20) and
(21);

Dab(q) =
∫

d4x eiq·x〈Ω|T
[
φa

5(x)φb
5(0)

]
|Ω〉 (23)

−→
q=0

iδabGπ

[
1
ω2 − 1

ω2 T (+)(ω;0)ρ
1
ω2

]
(24)

= iδab Gπ (1 − βρ)

ω2 = iδab G∗
π

ω2 . (25)

Then, we obtain

Z∗1/2
π ≡

(
G∗

π

Gπ

)1/2

= 1 − γ
ρ

ρ0
, (26)

with γ = βρ0/2 ' 0.184. Notice that the reduction of Z∗
π in the

nuclear medium given in Eq. (26) stems solely from the s-wave
pion–nucleon interaction.

5. In-medium Tomozawa–Weinberg relation

In-medium pion properties are conventionally expressed in
terms of the pion–nucleus optical potential. For instance, the s-
wave potential for π− is parametrized as [6]

2mπ Us = −4π

[
1 + mπ

mN

](
b∗

0(ρ)ρ − b∗
1(ρ)δρ

)
(27)

= −T (+)∗(ω = mπ ;mπ )ρ − T (−)∗(ω = mπ ;mπ )δρ, (28)
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5 (q) in Eq. (1), the first term in the right-hand side of
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second term corresponds to the forward scattering amplitude of
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pling in (a), (b), (c) can leave finite contributions even in the soft
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from 1 can be evaluated from the isosinglet pion–nucleon scatter-
ing amplitude, while F t

π/Fπ is related to the pion–nucleus isovec-
tor scattering lengths through the in-medium TW relation. There-
fore, Eq. (17) gives a direct link between the in-medium modifica-
tion of the quark condensate and that of the pion decay constant.3

Alternative relation between 〈q̄q〉∗ and F t
π is obtained by tak-

ing the matrix element of the PCAC relation ∂ · Aa(x) = 2mqφ
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5(x)

slightly away from the chiral limit. With the matrix elements
given in Eqs. (6) and (12) with α = π , we have (ε2 − v2
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π =
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π , where F t
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Eq. (18) is the in-medium generalization of the Gell-Mann–Oakes–
Renner relation [14] and was derived before in the Nambu–Jona-
Lasinio model [15] and in chiral perturbation theory [11,16]. The-
oretically, Eq. (17) is equivalent to Eq. (19). Experimentally, the

3 There is also a well-known low-energy theorem at low density which relates
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information on m∗
π is necessary to check the latter sum rule, which

is relatively difficult.
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Let us consider the relation between the pion wave function
renormalization constant Z∗

π and the isospin singlet pion–nucleon
scattering amplitude. For this purpose, we introduce the off-shell
πN amplitude near the pion pole through the operator φa

5(x), as is
done in [17],

T ab
π N(ν,νB ;mπ )

= δab T (+) + 1
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τ a,τ b] T (−)

≡ i
Gπ
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∫

d4x eiq·x〈N(P ′)
∣∣T

[
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5(x)φb
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(20)

with the in-coming (out-going) pion momentum q (q′) and the
kinematical variables defined as ν ≡ P · (q + q′)/(2MN ) and νB ≡
−q · q′/(2MN ). In the forward limit q′ → q with &q = 0, the scatter-
ing amplitude is a function solely of ω. Thus, the isospin singlet
amplitude for small ω is written as

T (+)(ω;mπ ) ' α + βω2. (21)

Thanks to the special off-shell extrapolation given in Eq. (20), the
coefficients α and β can be evaluated as follows [17]: (i) At the
off-shell Weinberg point, we have T (+)(0;mπ ) = α = −σπ N/F 2

π
with the π N sigma term σπ N ' 45 MeV [18]. (ii) At the on-shell
threshold, we have T (+)(ω = mπ ;mπ ) = 4π(1 +mπ /mN)aπ N with
the scattering length aπ N = (0.0016 ± 0.0013)m−1

π [19]. Combining
these, we obtain

β ' σπ N
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+
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1 + mπ

mN

)
4πaπ N

m2
π

. (22)

Numerically, the first term in the right-hand side of Eq. (22) dom-
inates over the second term and we find β = 2.17 ± 0.04 fm3.

To obtain a relation between β and Z∗
π , we now consider the

correlation of φa
5 in symmetric nuclear matter in the chiral limit

expanded up to linear in density according to Eqs. (15), (20) and
(21);

Dab(q) =
∫

d4x eiq·x〈Ω|T
[
φa

5(x)φb
5(0)

]
|Ω〉 (23)

−→
q=0

iδabGπ

[
1
ω2 − 1

ω2 T (+)(ω;0)ρ
1
ω2

]
(24)

= iδab Gπ (1 − βρ)

ω2 = iδab G∗
π

ω2 . (25)

Then, we obtain

Z∗1/2
π ≡

(
G∗

π

Gπ

)1/2

= 1 − γ
ρ

ρ0
, (26)

with γ = βρ0/2 ' 0.184. Notice that the reduction of Z∗
π in the

nuclear medium given in Eq. (26) stems solely from the s-wave
pion–nucleon interaction.

5. In-medium Tomozawa–Weinberg relation

In-medium pion properties are conventionally expressed in
terms of the pion–nucleus optical potential. For instance, the s-
wave potential for π− is parametrized as [6]

2mπ Us = −4π

[
1 + mπ

mN

](
b∗

0(ρ)ρ − b∗
1(ρ)δρ

)
(27)

= −T (+)∗(ω = mπ ;mπ )ρ − T (−)∗(ω = mπ ;mπ )δρ, (28)
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with the isoscalar density ρ = ρp + ρn and the isovector density
δρ = ρp − ρn . The parameters b∗

0 and b∗
1 represent the pion–

nucleus scattering lengths in isoscalar and isovector channels,
respectively. T (±)∗(ω;mπ ) are the isoscalar and isovector pion–
nucleus scattering amplitude at zero spatial momentum. The value
of b∗

1 extracted from the pionic atom and π−–nucleus scattering
data is larger than that in the vacuum, which indicates an en-
hanced repulsion from nuclei [1,2]. This extra repulsion expressed
by b∗

1 is interpreted as originating from the in-medium reduction
of F t

π through the in-medium generalization of the Tomozawa–
Weinberg relation [6,7].

Let us derive a relation between b∗
1 and F t

π in a way parallel to
the derivation of Z∗

π in the previous section using current commu-
tation relations. We consider the following axial vector correlator
in a slightly asymmetric nuclear matter |Ω ′〉 in the chiral limit:

Πab
ν (q) =

∫
d4x eiq·x∂µ〈Ω ′|T

[
Aa

µ(x)Ab
ν(0)

]
|Ω ′〉. (29)

Then using the current conservation ∂ · A = 0 and the relation∫
d4x ∂µT[Aa

µ(x)Ab
ν(0)] = [Q a

5 , Ab
ν(0)] = iεabc V c

ν(0) satisfied in the
chiral limit, we obtain the sum rule

Πab
0 (0) = iεab3〈Ω ′|V 3

0 |Ω ′〉 & iεab3 1
2
δρ. (30)

On the other hand, Eq. (29) at the chiral and soft limits is saturated
with linear in isovector density as

Π12
0 (q)−→

q=0
iω

[
ωF t

π

ω2 · T (−)∗(ω;0)δρ · ωF t
π

ω2

]
. (31)

Comparing Eqs. (30) and (31), we find

T (−)∗(ω;0) & ω

2(F t
π )2 . (32)

This is an in-medium generalization of the Tomozawa–Weinberg
relation [17,20] and was obtained before in Ref. [6] with chiral per-
turbation approach.

Using the definitions Eqs. (27), (28) together with Eq. (32), we
obtain a formula relating the in-medium change of the isovector
scattering length and the in-medium change of the pion decay
constant in the chiral limit:

b1

b∗
1

=
(

F t
π

Fπ

)2

. (33)

6. In-medium quark condensate

Now, inserting Eqs. (26) and (33) into Eq. (16), we arrive at one
of the central results in this work,

〈q̄q〉∗
〈q̄q〉 &

(
b1

b∗
1

)1/2(
1 − γ

ρ

ρ0

)
, (34)

which directly relates the in-medium quark condensate with the
observables related to the pion in nuclei. The deeply bound pio-
nic atom data suggest the repulsive enhancement of b∗

1 [1]. The
πN scattering data tell that γ > 0. Thus, Eq. (34) implies that
these experimental facts give a direct evidence of the reduction
of the quark condensate in nuclear medium. Quantitatively, the
experimental value of b1/b∗

1 is obtained as 0.79 ± 0.05 at the
effective density ρ ≈ 0.6ρ0 in deeply bound pionic atoms [1].
With this value and γ = 0.184 estimated in Section 4 together
with the linear density approximation, we find for the ratio of
the quark condensates 〈q̄q〉∗/〈q̄q〉 & 1 − 0.37ρ/ρ0. We also eval-
uate this ratio with b1/b∗

1 = 0.75 obtained in elastic π–nucleus
scatterings [2] assuming the effective density ρ ≈ ρ0. The result
is 〈q̄q〉∗/〈q̄q〉 & 1 − 0.43ρ/ρ0. These numbers are consistent with

that given by the formula expressed with the pion–nucleon σ -
term (see footnote 3). For further quantitative argument, one has
to take into account explicit chiral symmetry breaking effects and
higher density contributions.

Here we emphasize that the renormalization of the pion field
is inevitable in describing the pion dynamics when partial restora-
tion of chiral symmetry occurs. This is understood clearly in the
context of the chiral effective theory. The chiral effective theory
is based on a consistent decomposition of the field variables on
the chiral manifold with the original symmetry to radial (σ ) and
angular (pionic, i.e., Nambu–Goldstone) ones. For dynamics in the
vacuum, the relevant degree of freedom is the massless angular
mode expressed by the dimensionless chiral field U . Since the pion
field has the dimension of energy and the order parameter of the
dynamical symmetry breaking provides the only relevant energy
scale in the chiral limit, the pion field should be normalized by the
quark condensate. Therefore, when partial restoration of the chiral
symmetry takes place, the pion field is necessarily renormalized
according to the reduction of the quark condensate [8]; see also
Section 8.

7. The sum rule beyond the chiral limit

Let us generalize the in-medium sum rule Eq. (11) in the chi-
ral limit to the case with a finite quark mass mq . From the PCAC
relation ∂ · Aa(x) = 2mqφ

a
5(x), Eq. (2) is easily generalized to

Πab
5 (0) − 2mq Dab(0) = −iδab〈q̄q〉∗, (35)

where Dab(q) is the correlation function of the pseudoscalar den-
sity φa

5 given in Eq. (23).
Also, the definition of the coupling constants, Eqs. (6) and

(7), together with the PCAC relation lead to the generalization of
Eq. (8),

ε2
.

(
N∗

. + F ∗
.

)
− k2 F ∗

. = 2mqG∗1/2
. . (36)

The hadronic matrix elements in the left-hand side of Eq. (35)
can be evaluated as before and we find the sum rule away from
the chiral limit,
∑

.

Re
[(

N∗
. + F ∗

.

)
G∗1/2

.

]
= −〈q̄q〉∗, (37)

where the summation is taken over all states coupled to Aµ

and φ5, and the matrix elements are evaluated at k. = (ε.(k =
0),0). Modes . may be classified into would-be zero modes (. =
α) and would-be non-zero modes (. = β). Then, Eq. (36) shows
that, in the soft limit, N∗

α + F ∗
α = const + O (mq) for would-be

zero-modes, while N∗
β + F ∗

β = O (mq) for would-be non-zero modes.
Namely, the quark mass correction to 〈q̄q〉∗ in the rhs of Eq. (37)
receives both effects. To evaluate them, detailed hadronic model
calculations such as given in Ref. [21] are needed.

8. Relation to the chiral effective theory

So far, we have derived the in-medium sum rule Eq. (11) based
only on general operator relations in QCD without assuming any
hadronic descriptions. The sum rule can be used for checking con-
sistency of theoretical models with the fundamental symmetry of
QCD, and also for experimental confirmations of partial restoration
of chiral symmetry in nuclear medium, once the matrix elements
of the currents are experimentally extracted, as discussed in Sec-
tion 6.

Let us demonstrate here how the in-medium GW relation (16)
is expressed in terms of the low energy constants in chiral per-
turbation theory. An effective Lagrangian for the pion in nuclear
medium is obtained in the mean field approximation of the nu-
cleon field [16]:

D. Jido et al. / Physics Letters B 670 (2008) 109–113 111

Fig. 1. Diagrams for the πN scattering amplitude induced by the external fields,
Aa

µ and φb
5 . The solid, dotted and wavy lines denote nucleon, pion and external

fields, respectively.

For Πab
5 (q) in Eq. (1), the first term in the right-hand side of

Eq. (15) is dominated by the massless pion in the chiral limit. The
second term corresponds to the forward scattering amplitude of
the external fields (Aa

µ and φb
5 ) with the nucleon multiplied by qµ .

As shown in Fig. 1, there are four different contributions to the
forward amplitude: (a) the term with double π pole where both
Aa

µ and φb
5 couple directly to the pion, (b), (c) the term with single

π pole where either Aa
µ or φb

5 couples directly to the pion, and (d)
the term without π pole where the external fields couple directly
to the nucleon.

It is easy to see that the p-wave coupling of the pion or the
external fields to the nucleon gives vanishing contribution to the
forward amplitude in (a)–(d). On the other hand, the s-wave cou-
pling in (a), (b), (c) can leave finite contributions even in the soft
limit due to the pion pole(s). In particular, particle–hole excitations
do not contribute to the sum rule in the linear-density approxima-
tion. This leads to the conclusion that only the pionic mode with
possible medium modification contributes to the sum rule in the
previous section at low density:

F t
π G∗1/2

π = −〈q̄q〉∗. (16)

Note that Eq. (16) is only valid if both sides are expanded up to
O (ρ).

Taking the ratio of Eq. (16) and its counterpart at zero density,
we find the scaling law:
(

F t
π

Fπ

)
Z∗1/2
π = 〈q̄q〉∗

〈q̄q〉 , (17)

with the in-medium wave function renormalization Z∗
π ≡ G∗

π /Gπ .
As will be shown in the next section, in-medium change of Z∗

π
from 1 can be evaluated from the isosinglet pion–nucleon scatter-
ing amplitude, while F t

π/Fπ is related to the pion–nucleus isovec-
tor scattering lengths through the in-medium TW relation. There-
fore, Eq. (17) gives a direct link between the in-medium modifica-
tion of the quark condensate and that of the pion decay constant.3

Alternative relation between 〈q̄q〉∗ and F t
π is obtained by tak-

ing the matrix element of the PCAC relation ∂ · Aa(x) = 2mqφ
a
5(x)

slightly away from the chiral limit. With the matrix elements
given in Eqs. (6) and (12) with α = π , we have (ε2 − v2

π k2)F t
π =

2mqG∗1/2
π , where F t

π and G∗
π are the values in the chiral and soft

limit. Since the in-medium pion mass is given by ε2 = m∗2
π +

v2
π k2 + O (&k4), we have m∗2

π F t
π = 2mqG∗1/2

π . Combining this with
Eq. (11), we obtain
(

F t
π

)2
m∗2

π = −2mq〈q̄q〉∗, (18)
(

F t
π

Fπ

)2(m∗
π

mπ

)2

= 〈q̄q〉∗
〈q̄q〉 . (19)

Eq. (18) is the in-medium generalization of the Gell-Mann–Oakes–
Renner relation [14] and was derived before in the Nambu–Jona-
Lasinio model [15] and in chiral perturbation theory [11,16]. The-
oretically, Eq. (17) is equivalent to Eq. (19). Experimentally, the

3 There is also a well-known low-energy theorem at low density which relates
the in-medium modification of the quark condensate to the pion–nucleon σ -term
[13]: 〈q̄q〉∗/〈q̄q〉 = 1 − σπ Nρ/(F 2

π m2
π ) with σπ N ' 45 MeV.

information on m∗
π is necessary to check the latter sum rule, which

is relatively difficult.

4. In-medium wave-function renormalization

Let us consider the relation between the pion wave function
renormalization constant Z∗

π and the isospin singlet pion–nucleon
scattering amplitude. For this purpose, we introduce the off-shell
πN amplitude near the pion pole through the operator φa

5(x), as is
done in [17],

T ab
π N(ν,νB ;mπ )

= δab T (+) + 1
2

[
τ a,τ b] T (−)

≡ i
Gπ

q2q′ 2
∫

d4x eiq·x〈N(P ′)
∣∣T

[
φa

5(x)φb
5(0)

]∣∣N(P )
〉

(20)

with the in-coming (out-going) pion momentum q (q′) and the
kinematical variables defined as ν ≡ P · (q + q′)/(2MN ) and νB ≡
−q · q′/(2MN ). In the forward limit q′ → q with &q = 0, the scatter-
ing amplitude is a function solely of ω. Thus, the isospin singlet
amplitude for small ω is written as

T (+)(ω;mπ ) ' α + βω2. (21)

Thanks to the special off-shell extrapolation given in Eq. (20), the
coefficients α and β can be evaluated as follows [17]: (i) At the
off-shell Weinberg point, we have T (+)(0;mπ ) = α = −σπ N/F 2

π
with the π N sigma term σπ N ' 45 MeV [18]. (ii) At the on-shell
threshold, we have T (+)(ω = mπ ;mπ ) = 4π(1 +mπ /mN)aπ N with
the scattering length aπ N = (0.0016 ± 0.0013)m−1

π [19]. Combining
these, we obtain

β ' σπ N

F 2
πm2

π
+

(
1 + mπ

mN

)
4πaπ N

m2
π

. (22)

Numerically, the first term in the right-hand side of Eq. (22) dom-
inates over the second term and we find β = 2.17 ± 0.04 fm3.

To obtain a relation between β and Z∗
π , we now consider the

correlation of φa
5 in symmetric nuclear matter in the chiral limit

expanded up to linear in density according to Eqs. (15), (20) and
(21);

Dab(q) =
∫

d4x eiq·x〈Ω|T
[
φa

5(x)φb
5(0)

]
|Ω〉 (23)

−→
q=0

iδabGπ

[
1
ω2 − 1

ω2 T (+)(ω;0)ρ
1
ω2

]
(24)

= iδab Gπ (1 − βρ)

ω2 = iδab G∗
π

ω2 . (25)

Then, we obtain

Z∗1/2
π ≡

(
G∗

π

Gπ

)1/2

= 1 − γ
ρ

ρ0
, (26)

with γ = βρ0/2 ' 0.184. Notice that the reduction of Z∗
π in the

nuclear medium given in Eq. (26) stems solely from the s-wave
pion–nucleon interaction.

5. In-medium Tomozawa–Weinberg relation

In-medium pion properties are conventionally expressed in
terms of the pion–nucleus optical potential. For instance, the s-
wave potential for π− is parametrized as [6]

2mπ Us = −4π

[
1 + mπ

mN

](
b∗

0(ρ)ρ − b∗
1(ρ)δρ

)
(27)

= −T (+)∗(ω = mπ ;mπ )ρ − T (−)∗(ω = mπ ;mπ )δρ, (28)



In-medium GOR

, where

＊Model independent (low density expression)
＊ Zπ︓wave function renormalization 
＊ Equivalent to GOR
＊ mπ* not necessary (but scattering length) 
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