

CONSTRAINING THE FORMATION MECHANISMS OF LIGHT (ANTI)NUCLEI AT THE LHC AND APPLICATIONS FOR COSMIC RAY PHYSICS

GIOVANNI MALFATTORE | UNIVERSITY & INFN BOLOGNA, ITALY

INFN Istituto Nazionale di Fisica Nucleare

Light (anti)nuclei at the LHC - the antinucleus factory

The production **mechanism** of light (anti)nuclei in high energy collisions is **not fully understood**

Low binding energy and large mass implies that their formation is strongly sensitive to the chemical freeze-out temperature

Astrophysics applications:

measurements in controlled conditions costrain searches for **antimatter** from dark matter in cosmic rays

The ALICE collaboration performed several (anti)nuclei measurements since the beginning of operations

See **Marika**'s talk for an exhaustive overview of these (anti)nuclei measurements performed during LHC Run1 and Run2!

Rarely produced in high-energy collisions → Requires large integrated luminosity

At LHC, same amount of matter and antimatter^[1]

→ Ideal conditions for studying **antinuclei**

Nuclei production described by models:

- Statistical hadronization (SHM)

- Coalescence

[1] Physical Review C97, 024615 (2018)

(Anti)nuclei production in statistical hadronisation (thermal) models

- Hadrons emitted from the interaction region in thermal equilibrium when the fireball reaches the freeze-out
- Abundances are fixed at chemical freeze-out (T_{chem})

The abundance of nuclei strongly depends on the T_{chem} as

$dN/dy \sim \exp(-m/T_{\rm chem})$

- Nuclei have large mass m
- Little or no feed-down from higher mass states

Notes:

- SHM predict particle abundances
- Nuclei might break and re-form between chemical and kinetic freeze-out in heavy-ion collisions
- Extension to pp collisions → canonical ensemble and exact conservation of quantum numbers over a correlation volume

Andronic, A. et al., Nature 561, 321-330 (2018)

(Anti)nuclei production in coalescence models

J. I. Kapusta, Phys.Rev. C21, 1301 (1980)

F. Bellini et al., PRC 103, 014907

Scheibl, Heinz, Phys. Rev. C59:1585-1602 (1999)

Nucleons close in the phase space at the freeze-out can form a nucleus via **coalescence**

Formation probability is related to the coalescence parameter B_A

• Wigner-function approach → nucleon momentum and position, nucleus wavefunction matter

The expansion of highly-excited state (after collisions) leads to kinetic freeze-out with nucleons → Described by a QM density matrix → Projection onto particle states at the detector gives particle spectra → Final state interaction admits bound-state solutions → nuclei

i.e., for $d: \mathbf{r} = r_p - r_n$, $q = (p_p - p_n)^2$, $\phi_d(\mathbf{r}_d, \mathbf{p}_d) \propto \varphi_d e^{ip_d \cdot r_d}$, where φ_d is the deuteron internal wavefunction, $S_2(\mathbf{r})$ the source of nucleons $B_2(p) \approx \frac{2(2s_d+1)}{m(2s_N+1)^2} (2\pi)^3 \int d^3 \vec{r} |\varphi_d(\vec{r})|^2 S_2(\vec{r})$

Nuclei over p ratio

d/p rises with charged particle multiplicity or particle density \rightarrow Coalescence model agrees with the data

Theoreticalmodelsprovideabetterdescriptionofthedeuteron(wrt³Heproduction

 $^{3}_{\Lambda}$ H is strongly sensitive to coalescence space-constraint

Recent ${}^{3}_{\Lambda}$ H/ Λ measurements exclude with high significance the canonical version of the SHM with $V_c > 3 \text{ dV/dy}$, while support coalescence

Our main observable: the particle yield

Measured in inelastic pp collisions and as a function of the multiplicity

Production spectra get harder with increasing multiplicity -> Hardening also observed in proton spectra

New Run 3 ALICE measurements will allow the extension of the p_T coverage in pp collision at $\sqrt{s} = 900$ GeV (lowest LHC energy) and new measurements at the highest energy so far, $\sqrt{s} = 13.6$ TeV

HADR

2023

Derived observable: coalescence probability

High precision of ALICE data \rightarrow also multidifferential (p_T & multiplicity)

Derived observable: coalescence probability

High precision of ALICE data \rightarrow also multidifferential (p_T & multiplicity) Low energy \rightarrow No significant energy dependence

Derived observable: coalescence probability

High precision of ALICE data \rightarrow also multidifferential (p_T & multiplicity) Low energy \rightarrow No significant energy dependence Trend with $p_T \rightarrow$ effect of p_T shape of proton

Dependence of **coalescence probability** on the charged particle multiplicity (\rightarrow source size):

Dependence of **coalescence probability** on the charged particle multiplicity (\rightarrow source size):

High multiplicity (Pb-Pb) \rightarrow significant drop \rightarrow effect of space separation in a large source (~2-5 fm radius)

Dependence of **coalescence probability** on the charged particle multiplicity (\rightarrow source size):

High multiplicity (Pb-Pb) \rightarrow significant drop \rightarrow effect of space separation in a large source (~2-5 fm radius) Low multiplicity (pp, p-Pb) \rightarrow weak dependence on multiplicity in small sources (~ 1 fm radius)

Particle yield and nucleon source measurement

Particle yield and nucleon source measurement

G. Malfattore on behalf of the ALICE collaboration

ALICE experimental input to coalescence modelling

Light antinuclei as smoking guns for Dark Matter

[M. Korsmeier, F. Donato, N. Fornengo, Phys. Rev. D 97, 103011 (2018)]

Cosmic ray antideuteron and antihelium nuclei have been suggested as possible **smoking guns** for dark matter **WIMPs**, χ ($m_{\chi} \sim$ few GeV – few TeV)p-p

- Produced by $\chi \overline{\chi}$ pair annihilation or χ decay in the galactic halo
- Low or no background from interactions of cosmic rays (CR) with interstellar matter (ISM) → to be estimated carefully!
- Subject for indirect DM searches with space-based experiments as AMS-02 (ongoing) or GAPS (planned end of 2023)
 → Observable: cosmic antinuclei flux

AMS-02

The Alpha Magnetic Spectrometer (AMS) detector allows for multiple and independent measurement of CR charge (with sign) and energy → Separate CR chemical and isotopic composition in GeV to TeV range

It collected > 220 billions CRs up to now, but any **antinucleus** signal?

→ 6^{3} He + 2^{4} He candidates reported (to be confirmed)

Towards prediction of cosmic antinuclei flux

DM signal: dark matter source and processes

- Background: secondary CR from pp, p-A collisions in space (e.g. tuned Monte Carlo generators)
- Antiproton production cross section constrained with measurements (e.g. LHCb, AMBER, ...)
- Formation mechanism of antinuclei → typically via coalescence → constrain with data!
- **Propagation** in the Galaxy and the heliosphere → parameters constrained from CR measurements
- Antinucleus inelastic cross section to account for absorption by ISM

Measurement of the inelastic ³He cross section

σ_{inel} (³He – A) – how to estimate it with ALICE?

Antimatter-to-matter ratio method: Measurement of reconstructed ³He / ³He ratio and comparison with MC simulation

Pros: access to lower momentum Cons: higher background from secondaries, relies on σ_{inel}

TOF-to-TPC ratio method: Measurement of reconstructed ³He_{TOF} / ³He_{TPC} ratio and comparison with MC simulation

Pros: Higher stats, larger momentum range available Cons: No access to low momenta

Measurement of the inelastic ³He cross section

σ_{inel} (³He – A) – the results

Significant impact on ³He propagation in space

- ¹st measurement of ³He absorption cross section in matter
- Compatible results (higher precision in Pb-Pb)
- Experimental data show 2σ agreement wrt GEANT4

🛞 ואיזאו

Transparency of the Galaxy to (anti)helium fluxes

- ³He fluxes depend on the effect of different inelastic cross sections
- Small uncertainties on cosmic ray fluxes from $\sigma_{inel}({}^{3}\overline{He})$ compared to other uncertainties in the field

Transparency of the Galaxy to (anti)helium fluxes

• ³He fluxes depend on the effect of different inelastic cross sections

• Small uncertainties on cosmic ray fluxes from $\sigma_{inel}({}^{3}\overline{He})$ compared to other uncertainties in the field

• Transparency =
$$\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel}=0)}$$

³He transparency at low E_{kin} :

- 25% from CR interactions
- 50% from DM candidates

The Galaxy is highly transparent to ³He nuclei

The ALICE apparatus: upgraded for LHC Run3

The unique tracking and particle identification (PID) capabilities of ALICE, allow the detection of light (anti)nuclei produced during LHC collisions

For antinuclei measurement we use:

- The Inner Tracking System (ITS2)
- The Time Projection Chamber (TPC)
- The Time-Of-Flight detector (TOF)

To measure (anti)nuclei we need:

- Excellent tracking down to low p_T (~100 MeV/c) \rightarrow ITS2 + TPC
- Discrimination between **primary** and secondary (from material) nuclei → ITS2
- Low material budget → ITS2
- Excellent **PID** performance → TPC +TOF

Run 3 ALICE performance allow for antinuclei measurements!

The ALICE apparatus: upgraded for LHC Run3

Time Projection Chamber (TPC)

- New GEM-based readout pads
- Rate restriction removal and ion backflow reduced to under 1%
- Allows for continuous readout

PID via dE/dx in the TPC gas Excellent separation of different particle species at low p_T

The ALICE apparatus: upgraded for LHC Run3

Supermodule

9.3 m

Backframe

Spaceframe

Time Of Flight detector (TOF)

- Upgrade of the readout system to allow for continuous readout
- Excellent separation of different particle species at intermediate $p_{\rm T}$

PID via time-of-flight measurements

Babyframe

Custom crate

ALI-PERF-526968

- LHC can be used as **antimatter factory** to study the production of light (anti)nuclei
- The increased integrated luminosity foreseen for Runs 3 and 4 will allow us to study A=3 and A=4 (anti)nuclei with a similar statistical precision as reached for A=2 in Runs 1 and 2
- Data taking with pp collisions at $\sqrt{s} = 13.6$ TeV and Pb-Pb at $\sqrt{s_{NN}} = 5.36$ TeV is **ongoing**
- First performance of the detector are promising for antinuclei identification in a broad momentum range

→ Stay tuned for new results!

HADRON 2023

THANK YOU FOR THE ATTENTION