$T_{cc}(3875)^+$ and $T_{cc}(3875)^-$ in nuclear matter

V. Montesinos-Llácer * $\,$ M. Albaladejo * $\,$ J. Nieves * $\,$ L. Tolos †

IFIC (Valencia, Spain)*

ICE, IEEC (Barcelona, Spain)[†]

Generalities about $T_{cc}(3875)^+$

- · First reported by LHCb in 2021
- · Very narrow state, very close to $D^{*+}D^0$ and $D^{*0}D^+$ thresholds
 - $\cdot \ m_{D^{*+}} + m_{D^0} m_{T^+_{cc}} = 360 \pm 40 \text{ keV}$ $\cdot \ \Gamma_{T^+_{cc}} = 48 \pm 2 \text{ keV}$
- $\cdot\,$ Most probably an isoscalar state
- · Quark content: $cc\bar{u}\bar{d}$. Exotic!
- Internal structure? Ongoing debate

$T_{cc}(3875)^+$ in nuclear medium: overview

- · The nuclear medium changes the properties of $D^{(*)}$ and $\overline{D}^{(*)}$ mesons
- T_{cc}^+ couples to the $D^{*+}D^0$ and $D^{*0}D^+$ channels

- · The D^*D meson loop renormalizes the T_{cc}^+ propagator
- · The T_{cc}^+ and $T_{\overline{cc}}^-$ may behave very differently

L. Tolos, C. Garcia-Recio, J. Nieves, PRC 80, 065202 ('09) C. Garcia-Recio, J. Nieves, L.L. Salcedo, L. Tolos, PRC 85, 025203 ('12)

D and D^* mesons in nuclear matter

More details on the DN and D*N interaction: L. Tolos, C. Garcia-Recio, J. Nieves, PRC 80, 065202 ('09)

Ν

$$\begin{array}{c}
N \\
D^{(*)} \\
D^{(*)} \\
\hline \\
D^{(*)}$$

- Self-consistent procedure for computing the *D* and *D** self-energies
- \cdot In the isospin limit, $\Pi_{D^{0(*)}}=\Pi_{D^{+(*)}}\equiv\Pi_{D^{(*)}}$
- · However $\Pi_{D^{(*)}} \neq \Pi_{\overline{D}^{(*)}}$
- · Note that $\Pi_{D^{(*)}}(q; \rho = 0) = 0$

$$\Delta_{D^{(*)}}(q; \rho) = \frac{1}{q^2 - m_{D^{(*)}}^2 - \Pi_{D^{(*)}}(q; \rho)}$$

T_{cc}^+ Self-energy in nuclear matter

M. Albaladejo, J. Nieves, L. Tolos, PRC 104, 03520 ('21)

$$T_{cc}^{+} = T_{cc}^{+} = T_{cc}^{+} \underbrace{\bigcap_{D^{*}}^{D}}_{D^{*}} T_{cc}^{+} + T_{cc}^{+} \underbrace{\bigcap_{D^{*}}^{D}}_{D^{*}} \underbrace{\prod_{D^{*}}^{T^{+}}}_{D^{*}} \underbrace{\bigcap_{D^{*}}^{D}}_{D^{*}} \underbrace{\prod_{D^{*}}^{D}}_{D^{*}} T_{cc}^{+} + \cdots$$

· Renormalized T_{cc}^+ propagator in terms of the bare mass (\hat{m}) and coupling (\hat{g})

$$\Delta_{T_{cc}^+}^{-1}(p;\rho) = p^2 - \hat{m}^2 - \hat{g}^2 \Sigma(p;\rho) \quad \leftarrow \quad \Sigma(p;\rho) = i \int \frac{d^4q}{(2\pi)^4} \underbrace{\Delta_{D^*}(p-q;\rho)\Delta_D(q;\rho)}_{\Delta_{D^*} \text{ and } \Delta_D \text{ in nuclear medium}}$$

- · We introduce a sharp cutoff $\Lambda = 0.7$ GeV in the d^3q integral to regularize $\Sigma(p; \rho)$
- · The T_{cc}^+ mass for finite density in terms of the vacuum mass (m_0) and coupling (g_0)

$$m^{2}(\rho) = m_{0}^{2} + \frac{g_{0}^{2}}{1 + g_{0}^{2}\Sigma'(m_{0}; 0)} \{\Sigma[m(\rho); \rho] - \Sigma(m_{0}; 0)\}$$

 $\Sigma(p; \rho)$ develops an imaginary part, and so does $m^2(\rho)$

D^*D scattering in nuclear matter

· We solve the Bethe-Salpeter Equation in the on-shell approximation to obtain the I = 0 D^*D T-matrix

$$\Gamma^{-1}(\mathsf{s};\,
ho) = V^{-1}(\mathsf{s}) - \Sigma(\mathsf{s};\,
ho)$$

 \cdot We consider two families of potentials

$$\begin{cases} V_A(s) = C_1 + C_2 s \\ V_B(s) = (C'_1 + c'_2 s)^{-1} \end{cases}$$

 $\cdot C_1^{(\prime)}$ and $C_2^{(\prime)}$ constants fixed by imposing

$$\begin{cases} T^{-1}(m_0^2; 0) = 0\\ \frac{dT^{-1}(s; 0)}{ds}\Big|_{s=m_0^2} = \frac{1}{g_0^2} \end{cases}$$

- The loop function contains the medium effects
- · Weinberg compositeness condition:

$$P_0 = -g_0^2 \Sigma'(m_0; 0)$$

S. Weinberg, Phys.Rev. 137, B672 ('65) D. Gamermann, J. Nieves, E. Oset, E. Ruiz Arriola, PRD 81, 014029 ('10)

- P_0 is interpreted as the D^*D molecular component in the T_{cc}^+ wavefunction
- \cdot We use P_0 instead of g_0

PRELIMINARY RESULTS: D*D LOOP FUNCTION

Figure: D^*D loop function for different values of ρ .

PRELIMINARY RESULTS: D*D AMPLITUDE

Figure: D^*D scattering T-matrix for different values of P_0 and ρ .

PRELIMINARY RESULTS: T_{cc}^- VS T_{cc}^+ : LOOP FUNCTION

Figure: $\overline{D}^*\overline{D}$ vs D^*D scattering loop functions for different values of ρ .

PRELIMINARY RESULTS: T_{cc}^- VS T_{cc}^+ : AMPLITUDES

Figure: $\overline{D}^*\overline{D}$ vs D^*D amplitude for different values of P_0 and ρ .

- · Nuclear medium effects greatly modify the $T_{cc}(3875)^+$ properties, and are strongly dependent on the D^*D component
- Nuclear medium effects allow us to tell apart the $T_{cc}(3875)^-$ from the $T_{cc}(3875)^+$ in the high molecular component scenarios
- Measuring these amplitudes in nuclear matter should help in understanding the $T_{cc}(3875)^+$ and $T_{c\bar{c}}(3875)^-$ in vacuum

 $\cdot\,$ In order to get how the mass gets modified in the medium we take

$$\boldsymbol{\Sigma}(E;\,\rho)\simeq G\left[E;\,m_{D^*}^{(\mathrm{eff})}(\rho),\,m_D^{(\mathrm{eff})}(\rho)\right]\equiv G^{(\mathrm{eff})}\left(E;\,\rho\right),$$

where

$$m_D^{(\text{eff})}(\rho) = m_D + \Delta m(\rho) - i \frac{\Delta \Gamma(\rho)}{2},$$

$$m_{D^*}^{(\text{eff})}(\rho) = m_{D^*} + \Delta m(\rho) - i \frac{\Delta \Gamma(\rho)}{2}.$$

· We fit the Δm and $\Delta \Gamma$ parameters of the $G^{(\mathrm{eff})}$ loop function to best reproduce the exact Σ function

BACKUP: T_{cc}^+ mass in the medium

Figure: Mass of the $T_{cc}(3875)^+$ for different values of ρ and P_0 .

BACKUP: T_{cc}^{-} mass in the medium

Figure: Mass of the $T_{c\bar{c}}(3875)^-$ for different values of ρ and P_0 .

D^*D					$ar{D}^*ar{D}$			
$ ho/ ho_0$	Δm [MeV]	$\Delta\Gamma/2$ [MeV]	χ^2		$ ho/ ho_0$	Δm [MeV]	$\Delta\Gamma/2$ [MeV]	χ^2
0.10	0.58	2.8	1.0		0.10	-0.55	2.2	4.2
0.30	1.48	8.4	2.4		0.30	-1.61	6.0	13.4
0.50	2.19	14.2	3.1		0.50	-2.48	9.5	18.4
0.75	2.77	21.5	4.0		0.75	-3.50	13.5	21.4
1.00	3.03	28.7	5.6		1.00	-4.41	17.4	23.9

Table: Fitted Δm and $\Delta \Gamma$ parameters.