

The 20th Interaction Conference on Hadron Spectroscopy and Structure (HADRON 2023)

Jun. 6, 2023

p- and *sd*-shell Λ -hypernuclei with shell model approach

Atsushi UMEYA (Nippon Inst. of Tech.)

collaborated with Toshio MOTOBA (RCNP, Osaka Univ. / Osaka E-C Univ.) Kazunori ITONAGA (Miyazaki Univ. / Gifu Univ.)

Introduction (1)

- Hypernuclear structure studies have been progressing steadily through the *K*- and π -induced production reaction experiments, especially by the recent γ -ray coincidence measurements with the large volume Ge detector. Moreover a series of recent ($e, e'K^+$) reaction experiments from the Jefferson Laboratory provide high-resolution data of the low-lying energy levels for *p*-shell hypernuclei. These data are quite helpful in better understanding of hyperon-nucleon interactions, though the data are still limited to about ten hypernuclear species.
- As the next stage of hypernuclear studies, new projects of high-intensity and high-resolution $(K^-, \pi^-\gamma)$ and $(\pi^+, K^+\gamma)$ reaction experiments are being scheduled at the J-PARC facility. New experiments are also planned at the Jefferson Laboratory.
- In order to meet these experimental projects, updated theoretical studies are needed for prediction and/or comparison with the coming quality data.

Introduction (2)

- In this talk we focus our attention on the interplay between the hyperon motion and the nuclear core states.
- First, we discuss that the extended shell-model calculation is successful in explaining the new peak observed in the ¹⁰B $(e, e'K^+)$ ¹⁰_{Λ}Be experiment. It is attributed to the lowering of p_{Λ} (parallel) state due to the strong coupling with α - α like nuclear core deformation as already known in the case of ${}^9_{\Lambda}$ Be.
- Second, we will show the results of new calculations for an *sd*-shell hypernuclear structure of ${}^{27}_{\Lambda}$ Mg, in which the even-even core nucleus 26 Mg is shown to have rotational bands. Thus we see coupling of the p_{Λ} orbital and the core deformation. For the 27 Al (γ , K^+) ${}^{27}_{\Lambda}$ Mg reaction, we also discuss the DWIA cross-section spectra that are calculated with the microscopic shell-model wave functions.

Jun. 6, 2023

Recent ¹⁰B ($e, e'K^+$) reaction experiment done at the Jefferson Lab

The cross sections have been obtained with high resolusion.

Recent experimental result

T. Gogami et al., PRC93, 034314 (2016)

Shell-model prediction

T. Motoba et al., PTPS117, 123 (1994)

- Core nucleus calculated with conventional *p*-shell model
- A in s-orbit

This experiment has confirmed the major peaks (#1, #2, #3, #4) predicted by the DWIA calculations based on the normal-parity nuclear core wave functions coupled with a Λ -hyperon in *s*-orbit.

At the same time, the data also show an extra subpeak (#a) which seem difficult to be explained within the *p*-shell nuclear normal parity configurations employed so far.

Extension of the model space in the shell model $\binom{10}{4}$ Be case)

Model space for ⁹Be core

(A) conventional $\rightarrow J_{\text{core}}^ (0s)^4 (0p)^5$ $(0p-0h, 0\hbar\omega)$ (B) extended $\rightarrow J_{\text{core}}^+$ $(0s)^3 (0p)^6$ \oplus $(0s)^4 (0p)^4 (sd)^1$ $(1p-1h, 1\hbar\omega)$

Conventional model space for $^{10}_{\Lambda}$ Be

(I)
$$J_{\text{core}}^- \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^-)$$
 (II) $J_{\text{core}}^- \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^+)$

Extension (1) 1*p*-1*h* (1 $\hbar\omega$) core excitation is taken into account

(a)
$$J_{\text{core}}^{-} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{-})$$
 (b) $J_{\text{core}}^{-} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{+})$
(c) $J_{\text{core}}^{+} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{+})$ (d) $J_{\text{core}}^{+} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{-})$

Extension (2) Configrations mixed by ΛN **interaction**

Jun. 6, 2023

Configration mixing in ${}^{10}_{\Lambda}$ Be unnatural parity states

In the conventional shell model, only natural-parity nuclaer-core states (J_{core}^-) are taken into account. A particle is in the 0s orbit in ${}^{10}_{\Lambda}\text{Be}(J^-)$.

In ${}^{10}_{\Lambda}$ Be(J^+), the energy difference between $\Lambda(0s)$ and $\Lambda(0p)$ is $1\hbar\omega$, and the energy difference between 9 Be(J^-_{core}) and 9 Be(J^+_{core}) is $1\hbar\omega$.

By ΛN interaction, natural-parity nuclaer-core configurations and unnatural-parity nuclaer-core configurations can be mixed.

Jun. 6, 2023

Results : Energy levels of ${}^{9}Be$ and ${}^{10}_{\Lambda}Be$

Jun. 6, 2023

Results : Energy levels of ${}^{10}_{\Lambda}$ **Be (comparison with JLab experiments)**

8

Jun. 6, 2023

Results : Cross sections of the ¹⁰B (γ , K^+) ¹⁰_ABe reaction

Recent experimental result T. Gogami *et al.*, PRC93, 034314 (2016)

DWIA calculation by using Saclay-Lyon model A

Our calculation reproduces the four major peaks (#1, #2, #3, #4).

Our new calculation explains the new bump (a) as a sum of cross sections of some J^+ states.

The present calculation by using the extended shell model configurations can provide us with new positive-10 parity-states at right position.

Jun. 6, 2023

Results : Configrations of J^+ **states corresponding to the new bump**

$J_n^{\pi}(-B_{\Lambda}[\text{MeV}])$	$[J_{\rm core}^{\pi}]j^{\Lambda}$	$[J_{\rm core}^{\pi}]j^{\Lambda}$	$[J_{\rm core}^{\pi}]j^{\Lambda}$
XS [nb/sr]			
$2^+_3(-0.739)$		$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
4.49		82.5%	15.8%
$1_3^+(-0.665)$		$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-]p_{3/2}^{\Lambda}$
4.97		79.5%	17.9%
$2_4^+(0.228)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
1.43	87.5%	9.4%	2.4%
$2_5^+(0.402)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
9.89	11.3%	70.9%	10.8%
$3_2^+(0.112)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-]p_{3/2}^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
6.15	31.6%	55.4%	9.7%
$3_3^+(0.459)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-]p_{3/2}^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
2.43	67.5%	27.1%	2.7%

The large mixing in four positive-parity states

Splitting of *p*-state in the deformed nuclei

The bump in the cross sections of ${}^{10}_{\Lambda}$ Be will be explained by the splitting of p^{Λ} -state in the deformed core-nucleus.

The nucleon $p_{3/2}$ -state splits into two orbital states in the deformed nuclei described by the Nilsson model.

Deformation parameter δ

S. G. Nilsson, Mat. Fis. Medd. Dan. Vid. Selsk. 29 (1955) No. 16

Eigenvalues Ω of *z*-component of angular momentum operator and parities are good quantum numbers in the Nilsson diagram.

$$p_{3/2} \to \Omega^{\pi} = 1/2^{-}, 3/2^{-}$$

Jun. 6, 2023

Splitting of p_{λ} -state in the ${}^{9}_{\lambda}$ Be hypernucleus

In ${}^{9}_{\Lambda}$ Be, it is well known that the p_{Λ} -state splits into two orbital states expressed by p_{\perp} and $p_{//}$, which is due to the strong coupling with nuclear core deformation having the α - α structure. T. Motoba *et al.*, PTPS81, 42 (1985) R. H. Dalitz, A. Gal, PRL36, 362 (1976); AP131, 314 (1981)

Jun. 6, 2023

The DWIA cross-sections of the ⁹Be (K^-, π^-) ⁹Be reaction

Our new results are good agreement with the cluster-model calculation, and show the $p_{//}^{\Lambda}$ - and p_{\perp}^{Λ} -states.

Jun. 6, 2023

Cross sections of ⁹Be $(K^-, \pi^-)^{9}_{\Lambda}$ Be and ⁹Be $(\pi^+, K^+)^{9}_{\Lambda}$ Be reactions

O. Hashimoto, H. Tamura,

R. Bertini et al. (H-S-S Collaboration), NPA368, 365 (1981)

In the (π^+, K^+) production, the peak #3 is explained by the $p_{1/}^{\Lambda}$ -state in the present extended shell model.

Jun. 6, 2023

Splitting of p_{Λ} -state in the ${}^{10}_{\Lambda}$ Be and ${}^{10}_{\Lambda}$ B hypernuclei (1)

In the (K^-, π^-) reaction, the large peak at $E_{\Lambda} = 4.4$ MeV is a *p*-substitutional state via the $p_{3/2}^N \rightarrow p_{3/2}^{\Lambda}$, which is strongly excited by recoilless reaction.

The small peak at $E_{\Lambda} = 0 \text{ MeV}$ corresponds to the new bump and is explained as a mixture of s^{Λ} and p^{Λ} states.

The large peak at $E_{\Lambda} = 4.4 \text{ MeV}$ in ${}^{10}_{\Lambda}\text{Be}$ corresponds to the $[p^{-1}p_{\perp}^{\Lambda}]$ state in ${}^{9}_{\Lambda}\text{Be}$ (⁹Be analog state).

The small peak at $E_{\Lambda} = 0 \text{ MeV}$ in ${}^{10}_{\Lambda}\text{Be}$ corresponds to the $[p^{-1}p^{\Lambda}_{//}]$ state in ${}^{9}_{\Lambda}\text{Be}$.

Splitting of p_{Λ} -state in the ${}^{10}_{\Lambda}$ Be and ${}^{10}_{\Lambda}$ B hypernuclei (2)

CONCLUDE:

 $\alpha \alpha$ -like core deformation causes splitting of p^{Λ} -states, then lowenergy $p^{\Lambda}_{//}$ can mix with s^{Λ} -states.

 $[{}^{9}\text{Be}(J^{-}) \times \Lambda(p_{//})] + [{}^{9}\text{Be}(J^{+}) \times \Lambda(s)]$

These parity-mixed wave functions at $E_{\Lambda} = 0$ MeV can explain the extra peak #a.

Model space for *sd*-shell hypernuclei

We applied this extended model to sd-shell hypernuclei.

Core nucleus ²⁶Mg

 $J_{\text{core}}^+(0\hbar\omega) = ({}^{16}\text{O})(sd){}^{10}, J_{\text{core}}^-(1\hbar\omega) = ({}^{16}\text{O})(0p){}^{-1}(sd){}^{11}$

 Λ hyperon

 $0s(0\hbar\omega), 0p(1\hbar\omega), sd(2\hbar\omega)$

6 type configuration sets for $^{27}_{\Lambda}Mg(J)$

$$\begin{split} J^{+}_{\rm core} \otimes \Lambda(0s) &\to J^{+} (0\hbar\omega) & J^{-}_{\rm core} \otimes \Lambda(0s) \to J^{-} (1\hbar\omega) \\ J^{+}_{\rm core} \otimes \Lambda(0p) \to J^{-} (1\hbar\omega) & J^{-}_{\rm core} \otimes \Lambda(0p) \to J^{+} (2\hbar\omega) \\ J^{+}_{\rm core} \otimes \Lambda(sd) \to J^{+} (2\hbar\omega) & J^{-}_{\rm core} \otimes \Lambda(sd) \to J^{-} (3\hbar\omega) \end{split}$$

For *sd*-shell hypernucleus ${}^{27}_{\Lambda}Mg$, we will show the first stage calculation within each of the configuration-diagonal spaces for the positive-parity core states.

Jun. 6, 2023

Results : Energy levels of ²⁶**Mg and** ²⁷**Mg**

The energy spacings of doublets with the 2_1^+ and 2_2^+ core nuclei are narrow. \leftarrow The 2_1^+ and 2_2^+ cores are states with spin S = 0 of rotational bands. **Results : Rotational bands in ²⁶Mg (1)**

The effective charges are used to reproduce the experimental value $B(E2; 2_1^+ \rightarrow 0_{g.s.}^+)_{exp.} = 61.3 e^2 \text{fm}^4$

Jun. 6, 2023

Results : Rotational bands in ²⁶Mg (2)

Y. Kanada-En'yo, Y. Shikata, Y. Chiba, K. Ogata, The effective charges are used to reproduce Phys. Rev. C 102, 014607 (2020)

Λ coupling with rotational bands

In the hypernuclear states consisting of a rotor core with S = 0 and a $\Lambda(0s)$ hyperon, a spin-spin ΛN interaction cannot contribute to energy.

 $\langle (LS=0)J_{\rm core}\otimes \Lambda(0s) \,|\, V_{\sigma}(\sigma_N\cdot\sigma_\Lambda)\,|\, (LS=0)J_{\rm core}\otimes \Lambda(0s)\,\rangle = 0$

Thus, the doublet states with the pure rotor core are degenerate.

The low-lying negative-parity states show an admixture of the $\Lambda(0p)$ configurations coupled with nuclear core states having J_{core} and $J_{\text{core}} \pm 2$. The mixing amplitude is large for the deformed core.

← It is suggested by the study for ${}^{145-155}_{\Lambda}$ Sm by using a covariant density functional theory. H. Mei, K. Hagino, J.M. Yao, T. Motoba, Phys. Rev. C 96, 014308 (2017)

Results : Configurations of the several states of $^{27}_{\Lambda}Mg$

state	E_x	E_{Λ}	confi	gur	percentage	
	[MeV]	[MeV]	²⁶ Mg	\otimes	Λ	[%]
$1/2_{g.s.}^+$	0.000	-17.000	$0_{g.s.}^{+}$	\otimes	$0s^{\Lambda}_{1/2}$	99
$5/2_1^+$	1.932	-15.068	2_{1}^{+}	\otimes	$0s^{\Lambda}_{1/2}$	99
$3/2_1^+$	1.935	-15.065	2^+_1	\otimes	$0s^{\Lambda}_{1/2}$	99
1/2-	10.615	-6.385	0 ⁺ _{g.s.}	\otimes	$0p_{1/2}^{\Lambda}$	70
			2^+_1	\otimes	$0p^{\Lambda}_{3/2}$	28
3/2-	10.685	-6.315	$0_{g.s.}^{+}$	\otimes	$0p^{\Lambda}_{3/2}$	68
			2^+_1	\otimes	$0p^{\Lambda}_{3/2}$	15
			2^+_1	\otimes	$0p_{1/2}^{\Lambda}$	15

The mixing amplitudes are large for the negative parity states, which have the deformed core.

Jun. 6, 2023

Results : Cross sections of the ²⁷Al (γ , K^+) ²⁷Mg reaction (1)

Jun. 6, 2023

Results : Cross sections of the ${}^{27}Al (\gamma, K^+) {}^{27}Mg$ reaction (2)

Summary

We have calculated the energy levels and the production cross sections for the ${}^{10}_{\Lambda}$ Be and ${}^{27}_{\Lambda}$ Mg hypernuclei by using the shell-model wave functions.

- Strong coupling between *p*-state Λ and core deformation is realized in ${}^{10}_{\Lambda}\text{Be}$ and ${}^{27}_{\Lambda}\text{Mg}$.
- For deformed core, p^{Λ} -state splits into $p^{\Lambda}_{/\!/}$ and p^{Λ}_{\perp} .
- In ${}^{10}_{\Lambda}\text{Be}$, the lower $p_{//}^{\Lambda}$ comes down in energy and $[{}^{9}\text{Be}(J^{-}) \times \Lambda(p_{//})]$ couples easily with $[{}^{9}\text{Be}(J^{+}) \times \Lambda(s)]$.
- In the energy levels of ${}^{27}_{\Lambda}$ Mg, the energy spacings of doublets with the 2^+_1 and 2^+_2 core nuclei are narrow because these cores are states with spin S = 0 of rotational bands.
- In ${}^{27}_{\Lambda}$ Mg, the low-lying negative-parity states show an admixture of the $\Lambda(0p)$ configurations coupled with nuclear core states having 0^+ and 2^+ , which are deformed.

Backup

Jun. 6, 2023

Results : Spectroscopic factors of the pickup reaction, ${}^{10}B \rightarrow {}^{9}Be$

Jun. 6, 2023

Results ¹⁰Be Cross Sections of the Sum Rary 10 Be reaction

	$E_{\gamma} = 1.5 \text{ GeV}$						EXP = 1. Gogami et al, PRC93 (2016)					
	⁹ Be (<i>J</i> _i)		۸ ¹⁰	Be (<i>J_k</i>) C	AL	$\theta = 7 \deg$	J				EXP	Fit I
Ji	E _i (exp)	<i>E</i> i(cal)	J_k	Ex	<i>−B</i> ∧	dσ/dΩ		[exp	E _x	<i>−B</i> ∧	dσ/dΩ
	C2S	C2S		[MeV]	[MeV]	[nb/sr]			peak	[MeV]	[MeV]	[nb/sr]
3/2-	0.000	0.000	1-	0.000	-8.600	9.609	21.62		#1	0.00	-8.55±0.07	17.0±0.5
	1.0(rel)	1.0(rel)	<mark>2⁻</mark>	0.165	-8.435	12.008			#1			
5/2-	2.429	2.644	<u>2</u> -	2.712	-5.888	11.654	21.05		#2	2.78±0.11	-5.76±0.09	16.5±0.5
	0.958	1.020	<u>3</u> -	2.860	-5.740	9.391						
7/0-	6.380	6 189	Q-	6 183	_2 417	7 625	21.13			6.26±0.16	-2.28±0.14	
112	0.668	0.942	<u></u>	6.370	_2 230	13 505			#3			10.5±0.3
	0.000	0.072		0.070	2.200	10.000						
			2+(3)	7.807	-0.793	4.495	0.46					
			1+(3)	7.935	-0.665	4.968	9.40			8.34±0.41	-0.20±0.40	23.2±0.7
			3+(2)	8.712	0.112	6.150			#2			
			2+(4)	8.828	0.228	1.431	19.91		#a			
			2+(5)	9.002	0.402	9.893	(29.37)					
			3+(3)	9.059	0.459	2.434						
7/2-	11.283	10.241	<mark></mark>	10.105	1.505	3.913	21.90 29.54 (51.44)		#4	10 83+0 10	2 28+0 07	17 2+0 5
	1.299	1.355	4-	10.455	1.855	17.985			<i></i>	10.00±0.10	2.20±0.07	17.2±0.0
			1+(5)	10.828	2.228	4.598						
			4+(3)	11.318	2.718	11.185						
			3+(5)	11.543	2.943	13.759						

Jun. 6, 2023

Parity-mixing and the new bump

Jun. 6, 2023

Results : Spectroscopic factors of proton pickup reaction from ²⁷**AI**

(Exp.) J. Vernotte et al., Phys. Rev. C 48, 205 (1993)