

7th June 2023

Genova, Italy

Saloshi N. Nakamura The University of Tokyo

Reaction spectroscopy of Lambda hypernuclei at JLab and J-PARC

Lambda production with electron and meson beams

(e,e'K⁺) @ JLab

Excellent mass resolution ~ 0.5 MeV(FWHM) Absolute energy calibration $p(e,e'K^+) \Lambda, \Sigma^0$ High Intensity $100 \mu A = 6 \times 10^{14}$ /s

eg. ^{40,48}Ca, ³H

Intensity limitation $< a \text{ few} \times 10^6$ /s

1-2 MeV resolution $^{12}_{\Lambda}$ C mass

Lambda production with electron and meson beams

Excellent mass resolution ~ 0.5 MeV(FWHM) Absolute energy calibration $p(e,e'K^+) \Lambda, \Sigma^0$ High Intensity 100 $\mu A = 6 \times 10^{14}$ /s Thin target (isotopically enriched) eg. ^{40,48}Ca, ³H

Intensity limitation < a few $\times 10^6$ /s

1-2 MeV resolution Normalized to ¹²_AC mass

(π⁺, K⁺)

(K⁻, π⁻)

HIHR@J-PARC HD. EX

Excellent mass resolution < 0.4 MeV Thin target (isotopically enriched) No limitation for beam intensity

(e,e'K⁺) reaction spectroscopy

HKS+HES+SPL @JLab Hall-C (2009)

Approved JLab Hypernuclear Experiments

E12-15-008 40,48 Ca $(e, e'K^+) {}^{40,48}_{\Lambda}$ K [on the jeopardy list To be re-approved] E12-19-002 Cryo. Gas 3,4 He (e,e'K) ${}^{3,4}_{\Lambda}$ H E12-18-013 208 Pb (e,e'K) ${}^{208}_{\Lambda}$ Tl

From Hypernuclei to Neutron Stars

E12-15-008 ($^{40,48}_{\Lambda}$ K), E12-20-013 ($^{208}_{\Lambda}$ Tl), E12-19-002 ($^{3,4}_{\Lambda}$ H)

Originally proposed setup (PAC44, 2016)

Increase beam energy

Introduction PCS magnets

Vertical bending Spectrometer H

Excellent S/N ratio Suitable for high-Z targets Z-vertex info. for gas targets

Newly constructed PCS magnets (TOKIN, 2020.3)

Finally delivered to JLab (2022.2 @ JLab)

RE-OPTIMIZATION FOR HALL-C

Reconsider Hall-C option due to beam availability in Hall-A

HKS+HES(H)+PCS@Hall-C

	Original	Updated
Experimental Hall	Hall-A	Hall-C
Beam Energy $[/(GeV)]$	4.532	2.240
Electron spectrometer	HRS	HES
Bending direction	Vertical	Horizontal
Central momentum $[/(\text{GeV}/c)]$	3.03	0.74
Kaon spectrometer	HKS	HKS
Bending direction	Horizontal	Horizontal
Central momentum $[/(\text{GeV}/c)]$	1.20	1.20
		7

Better S/N

Larger SA

(PCS+HRS)

Thicker Targets

Better Res.

Current plan of JLab hypernuclear experiments

Beam	Energy E_e [/(GeV)]	2.240
	Energy stability $\Delta E_e/E_e$	3×10^{-5}
PCS + HES	Central momentum $P_e \left[/ (\text{GeV}/c) \right]$	0.744
	Central angle $\theta_{e,e'}$ [/(deg)]	8
	Solid angle $\Delta \Omega_{e'}$ [/(msr)]	3.4
	Momentum resolution $\Delta P_{e'}/P_{e'}$	$4.4 imes 10^{-4}$
PCS + HKS	Central momentum $P_K \left[/ (\text{GeV}/c) \right]$	1.200
	Central angle θ_K [/(deg)]	15
	Solid angle $\Delta \Omega_K \ [/(\text{msr})]$	8.3
	Momentum resolution $\Delta P_K / P_K$	2.9×10^{-4}

First campaign : concentrate on solid targets E12-15-008 40,48 Ca (*e*, *e'K*⁺) ${}^{40,48}_{\Lambda}$ K E12-19-002 E12-18-013 208 Pb (*e*,*e'K*) ${}^{208}_{\Lambda}$ T*l* Lol1 27 Al (*e*,*e'K*) ${}^{27}_{\Lambda}$ Mg : triaxial deform. 26 Mg Lol2 6 Li (*e*,*e'K*) ${}^{6}_{\Lambda}$ He, 9 Be (*e*,*e'K*) ${}^{9}_{\Lambda}$ Li, 11 B(*e*,*e'K*) ${}^{11}_{\Lambda}$ Be CSB Lol3 Decay π Spectroscopy with ENGE

Future programs : cryogenic gas targets E12-19-002 Cryo. Gas 3,4 He (e,e'K) ${}^{3,4}_{\Lambda}$ H E12-17-003ext Cryo. Gas 3 H (e,e'K) [nn Λ]

Current plan of JLab hypernuclear experiments

Beam	Energy E_e [/(GeV)]	2.240
	Energy stability $\Delta E_e/E_e$	3×10^{-5}
PCS + HES	Central momentum $P_e \left[/ (\text{GeV}/c) \right]$	0.744
	Central angle $\theta_{e,e'}$ [/(deg)]	8
	Solid angle $\Delta \Omega_{e'}$ [/(msr)]	3.4
	Momentum resolution $\Delta P_{e'}/P_{e'}$	4.4×10^{-4}
PCS + HKS	Central momentum $P_K \left[/ (\text{GeV}/c) \right]$	1.200
	Central angle θ_K [/(deg)]	15
	Solid angle $\Delta \Omega_K [/(\text{msr})]$	8.3
	Momentum resolution $\Delta P_K / P_K$	2.9×10^{-4}

First campaign : concentrate on solid targets E12-15-008 40,48 Ca $(e, e'K^+) {}^{40,48}_{\Lambda}$ K E12-18-013 208 Pb $(e, e'K) {}^{208}_{\Lambda}$ Tl Lol1 27 Al $(e, e'K) {}^{27}_{\Lambda}$ Mg : triaxial deform. 26 Mg Lol2 6 Li $(e, e'K) {}^{6}_{\Lambda}$ He, 9 Be $(e, e'K) {}^{9}_{\Lambda}$ Li, 11 B $(e, e'K) {}^{11}_{\Lambda}$ Be CSB Lol3 Decay π Spectroscopy with ENGE S. Nagao's talk (8th June) D π S at MAMI

J-PARC E94 (π^+, K^+) Spectroscopy of Λ hypernuclei with S-2S

⁷Li(π^+, K^+)⁷_{\Lambda}Li ¹⁰B(π^+, K^+)¹⁰_{\Lambda}B ¹²C(π^+, K^+)¹²_{\Lambda}C

New energy calibration reference

CSB

Precise measurement of B_{Λ}

Hypernucleus	$^{7}_{\Lambda}$ Li (g.s.)	$^{10}_{\Lambda}\mathrm{B} \ (\mathrm{g.s.})$	$^{12}_{\Lambda}$ C (g.s.)	
Differential Cross Section $\frac{d\sigma}{d\Omega}$ [/(µb/sr)]	1.2	1.2	5	
Target (thickness)	7 Li (1 g/cm^{2}) 10 B (1 g/cm^{2}) 12 C (1 g/cm^{2})		${\rm ^{12}C}~(1~{\rm g/cm}^2)$	
The Number of Target Nuclei $N_{\rm target}~(/{\rm cm}^{-2})$	8.60×10^{22}	6.02×10^{22}	5.02×10^{22}	
Solid Angle Acceptance $\Delta\Omega~(/{\rm msr})$	55			
	0.1			
Total Efficiency ϵ	$\left[K^+ \text{ survival ratio } (=0.2) \text{ and others } (=0.5)\right]$			
Beam Intensity	5M pions / spill (4.2 sec)			
Beam time (/hours)	80	112	36	
Yield	194	190	212	

HADRON EXPERIMENTAL FACILITY EXTENSION (HEF-EX) PROJECT @J-PARC F.Sakuma (8th June) @ New Facility Session

2 charged beamlines (K1.8/1.8BR, High-p) 1 neutral beamline (KL) 1 muon beamline (COMET)

1 new production target (T2) +
4 new beamlines (HIHR, K1.1/K1.1BR, KL2, K10) +
2 modified beamlines (High-p (π20), Test-BL)

International competition for High-resolution (π^+, K^+) spectroscopy at HIHR

HIHR, JLab and MAMI are possible competitors. But simultaneously complementary!

	HIHR	JLab	Mainz
Reaction	$n(\pi^+,K^+)A$	p (e,e'K⁺) ∧	Decay π
Achievable Precision (keV)	© <100	© <100	© <100
Applicable hypernuclei	© All Z	Light – Medium Heavy (Larger Z, higher BG)	X Only Ground states of light hypernuclei
Flexibility of beamtime	© Standing Beamline with dedicated spectrometer Hypernuclear Factory	X Large-scale Installation (several months)	C Kaon Spectrometer Installation (a few weeks)
Absolute Energy Calibration	$igsquiring \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	\odot $p(e,e'K^+)\Lambda,\Sigma^0$	© Elastic e scattering Abs Ee measure

HIHR

High-Intensity High-Resolution Beamline for High Precision (π , K) Spectroscopy

Momentum dispersion matching

Exist beamlines: $\sim 10^6$ pions/pulse, $\Delta p/p \sim 1/1000$

200 x 10⁶ pions/pulse, ∆p/p ~ 1/10000

no beam tracking = **NO limit for** π rate from detectors

HR beamline (P_{max} = 2 GeV/c) + High Res. Kaon sectrometer

MOMENTUM DISPERSION MATCH

Super high resolution (π⁺,K⁺) spectroscopy ¹²C, ^{6,7}Li, ⁹Be, ^{10,11}B, ²⁸Si, ⁴⁰Ca, ⁵¹V, ⁸⁹Y, ¹³⁹La, ²⁰⁸Pb

KEK-PS E369 with SKS

60 days \times 3M π /spill @ KEK K6 Δ E~2.3 MeV(FWHM)

Expected at HIHR beamline

60 days × 200M π/spill @ HIHR ΔE~**0.4 MeV(FWHM)**

Various options for HIHR

SπK DCX πK⁰ ${}^{A}Z(\pi^{+}, K^{+})^{A}_{\Lambda}Z$ ${}^{A}Z(\pi^{-}, K^{+})^{A}_{\Lambda}(Z-2)$ ${}^{A}Z(\pi^{-}, K^{0})^{A}_{\Lambda}(Z-1)$ $\rightarrow \pi^{-} + \pi^{+}$

Super high resolution πK
 Standard HIHR
 Change beam polarity
 Additional π spectrometer intermediate detector

Decaym $^{A}_{\Lambda}Z \rightarrow ^{A}(Z+1) + \pi^{-}$

Additional π spectrometer

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

Hypernuclear Factory at HIHR

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

SUMMARY

Hypernuclear physics is now more important than previous.
 At JLab, (e, e'K⁺): ^{40,48}_ΛK, ²⁰⁸_ΛTl, ⁶_ΛHe, ⁹_ΛLi, ¹¹_ΛBe, ²⁷_ΛMg, Decay π in Hall-C
 At J-PARC (π⁺, K⁺) with S-2S: ⁷_ΛLi, ¹⁰_ΛB, ¹²_ΛC

 New HIHR beamline at J-PARC Hadron Hall Extension Project
 Spectroscopy of Λ hypernuclei with (π⁺, K⁺) reaction at HIHR Precise Spectroscopy of Λ hypernuclei in all mass range Challenge to Hyperon Puzzle *Hypernuclear Factory* Various options at HIHR, (π⁻, K⁺), (π⁻, K⁰), Decay π as well as (π⁺, K⁺)

