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binding energy was deduced using the 
nuclear emulsions in 1968 (REF.21) and 
1973 (REF.22), additional experimental 
studies of the hypertriton binding energy 
have not been performed. Only recently, 
the STAR collaboration derived18 the 
binding energy of the hypertriton BΛ 
to be 0.41 ± 0.12(stat.) ± 0.11(syst.) by 
combining the data of hypertritons and 
anti- hypertritons assuming the charge, 
parity and time reversal symmetry 
invariance. This value is significantly larger 
than the previously known binding energy 
of 0.13 ± 0.05 MeV; however, the accuracy of  
this result is not sufficient to reach a 
firm conclusion. In addition, the binding 
energy and lifetime of the hypertriton were 
theoretically calculated by means of a chiral 
effective field theory approach, showing 
a strong correlation between the binding 
energy and lifetime32. An effective field  
theory has also been used to study the 
lifetime of the hypertriton33, and the ratio of 
partial decay widths with R = Γ3He/(Γ3He + Γpd) 
has shown a strong dependence on the 
hypertriton binding energy, where  
ΓX denotes a partial decay width of the  
single decay channel involving the X final 
states; however, a firm conclusion has  
not yet been drawn. Further theoretical 
calculations are awaiting experimental data 
on both the binding energy and quantities 
related to the lifetime with improved 
precision.

To summarize the recent situation 
regarding our understanding of the 
hypertriton, the HypHI and STAR 
experiments have shown a short lifetime 
of the hypertriton, which can be hardly 
reproduced by theoretical models due to 
its known small binding energy, whereas 
the ALICE experiment has shown a longer 
lifetime close to that of the free Λ hyperon. 
This issue should be resolved by another 
measurement with improved precision. 
The recently derived binding energy of the 
hypertriton by the STAR experiment is 
significantly larger than the previously 
known value, but its precision is not 
sufficient to draw a definitive conclusion.

Existence of an unexpected Λnn bound 
state. One surprising result from the 
HypHI collaboration is the observation 
of the enhancement in the invariant mass 
distributions of the d+π− and t+π− final 
states19. Although the significance of the 
possible signals is not large, approximately 
5σ, these results, together with the derived 
lifetime of the mother state decaying to 
these final states, may indicate the existence 
of an unexpected neutral bound state 

with both a Λ hyperon and two neutrons, 
that is, Λnn (REF.19). This observation has 
attracted the interest of both theorists and 
experimentalists. Significant theoretical 
effort has been dedicated to various 
approaches to check the existence of the 
Λnn bound state34–37. However, all of these 
calculations could not reproduce the bound 
state. However, the Λnn state with the 
isospin I = 0 has also been studied using 
pion- less effective field theory and these 
works have not ruled out the bound state38,39. 
Possible resonance states37,40 of Λnn have 
also been studied theoretically, which were 
not studied by the HypHI collaboration30. 
The E12-17-003 experiment performed at 
JLab was meant to search for bound and 
resonance states with Λnn using electron 
beams to bombard a tritium target41 and a 
new data analysis is currently in progress. 

This experiment used a well- known and 
controlled elementary process induced by 
virtual photons to convert a proton to a 
Λ hyperon in the tritium target nucleus, 
and, thus, the production of a Λnn bound 
state or associated resonance states could 
be clearly observed if they are produced 
in this reaction. However, the Λnn state 
may not be observed in this experiment, 
even though it may exist, because the 
production mechanism of Λnn is very 
different from that of HypHI. Interest 
in neutral hypernuclear systems such 
as Λnn has been extended to double 
strangeness. A reanalysis of the former 
BNL- AGS E906 experiment at BNL 
has shown the possibility of a bound 
double- strangeness neutral hypernucleus, 

nΛΛ
4 , although it yields a null result on the 
observation of Λnn (REF.42).

Box 2 | Experimental production of hypernuclei

After the discovery of the first hypernucleus77 in 1953, hypernuclei have been extensively studied  
by using cosmic rays and beams from accelerators such as secondary meson beams and primary 
electron beams, and these conventional experimental methods have provided interesting obser-
vations on the production, structure and decay of approximately 40 hypernuclei20,78. In experiments 
with these beams from accelerators, hypernuclei are produced from fixed stable target nuclei (such 
as 7Li, 12C) by converting one or two nucleon(s) to hyperon(s), and the isospin values of the produced 
hypernuclei are similar to those of the stable target nuclei.

The HypHI collaboration proposed performing experiments with reactions induced by relativistic 
heavy- ion beams bombarded onto a fixed nuclear target79,80 combined with the invariant mass 
method, in which hypernuclei of interest are produced via projectile fragments capturing hyperon(s) 
produced in a hot participant zone of the collisions, as illustrated below.

Due to the nature of projectile fragmentation reactions, the isospin of the produced hypernuclei  
is widely distributed; therefore, this approach can produce very- neutron- rich hypernuclei (also 
proton- rich hypernuclei). This method also provides opportunities to produce and study heavy 
hypernuclei, complementary to ultra- relativistic heavy- ion collisions, which face limitations in 
observing hypernuclei with A ≲ 4, since the yield is decreased by a factor of 1,000 as the mass 
number A is increased by one unit. The HypHI collaboration performed the first experiment, the 
so- called Phase 0, at the Heavy Ion Accelerator Facility of GSI with a reaction of 6Li+12C at 2 A GeV, 
successfully producing and identifying the hypertriton and ΛH

4 , as projectile fragments, and  
Λ hyperons30. The production cross section of those hypernuclei in this reaction was also derived11.

Below is a schematic explanation of how hypernuclei can be produced by induced reactions of 
heavy- ion beams on a fixed target. Projectiles from an accelerator are bombarded onto a fixed 
nuclear target with sufficiently large energies to produce hyperon(s), which should exceed at least 
approximately 1.7 A GeV for the case of productions of a Λ- hypernucleus. After the collision, a hot 
and dense nuclear matter is produced in the overlapping region between the projectile and the 
target nucleus, the so- called hot participant zone. The non- overlapping region of the projectile 
(called projectile fragment or spectator) proceeds almost in the same direction and with nearly  
the same velocity as the projectile, without having a large influence on the collision. A hyperon is 
produced together with other associated particles in the hot participant zone with a wide momentum 
distribution, and, sometimes, a hyperon with a large longitudinal momentum is captured in the 
projectile fragment, forming a hypernucleus.
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and the Λnn bound state. We discuss 
ongoing approaches to resolving these 
puzzles and future directions for further 
studies of hypernuclei.

Puzzles of hypernuclei
The hypertriton or/and anti- hypertriton 
have been studied using energetic heavy-ion 
beams by the HypHI collaboration’s 
so- called Phase 0, at the Heavy Ion 
Accelerator Facility of GSI (the GSI 
Helmholtz Center for Heavy Ion Research) 
(see BOX 2), the STAR collaboration at the 
Relativistic Heavy Ion Collider (RHIC) at 
Brookhaven National Laboratory (BNL) 
and the ALICE collaboration at the Large 
Hadron Collider (LHC) at CERN. The 
recently derived hypertriton lifetime by 
the HypHI Phase 0 experiment11, STAR12–15 
and ALICE16,17, together with the new 
measurement of the hypertriton binding 
energy by STAR18, have shown that the 
nature of the hypertriton can differ from 
the previous understanding. Furthermore, 
a signature of the unexpected Λnn bound 
state has been observed19 by HypHI, but 
theoretical considerations do not predict the 
existence of this bound state, and whether 

or not the Λnn bound state can exist should 
also be experimentally clarified.

Mystery of the hypertriton. The lightest 
hypernucleus, the hypertriton, was extensively 
studied until the 1970s by using nuclear 
emulsions and bubble chambers20. Those 
experiments concluded that a Λ hyperon is 
very weakly bound to a deuteron core with 
a small binding energy of 0.13 ± 0.05 MeV 
(REFS21,22). This binding energy has become 
a benchmark in theoretical calculations for 
hypernuclei. There have also been attempts at 
measuring the lifetime of the hypertriton23–28, 
but no firm result was established due to 
inaccuracies in the measurements. Therefore, 
the lifetime of the hypertriton has been 
assumed to be very close to the lifetime  
of free Λ hyperons, that is, 263 ps (REF.29),  
due only to its small binding energy.

The HypHI experiment at GSI used the 
6Li+12C reaction at 2 A GeV and showed that 
the derived lifetime of the hypertriton, 183−32

+42 
(stat.) ± 37(syst.) ps (REF.30), is significantly  
shorter than the assumed value (the first and  
second errors represent the statistical 
and systematic uncertainty, respectively). 
In addition, ultra- relativistic heavy- ion 

collisions have also become a powerful tool 
for studying the hypertriton. The lifetime 
of the hypertriton was also measured by 
the STAR collaboration at RHIC to be 
182−45

+89(stat.) ± 27(syst.) ps by combining 
their observations on the hypertriton 
and anti- hypertriton with collisions of 
197Au+197Au at nucleon–nucleon (NN) 
centre- of- mass energy s = 200NN  GeV. 
However, the value overlaps with the free 
Λ- lifetime within a standard deviation12. 
Later, STAR remeasured the hypertriton 
lifetime by considering its three- body 
decay channel to a proton (p), a deuteron 
(d) and pion (π−), → πH p + d +Λ

3 −, and 
discovered a significantly smaller value13, 
155−22

+25(stat.) ± 31(syst.) ps. The ALICE 
collaboration at LHC also measured the 
lifetime of the hypertriton with collisions 
of 208Pb+208Pb at .s = 2 76NN  TeV, and their 
result16 was also a significantly shorter 
lifetime than that of the free Λ hyperon, 
181−39

+54(stat.) ± 33(syst.) ps. Theoretical 
calculations can hardly reproduce these 
short lifetimes due to the observed weakly 
binding nature of the hypertriton, with 
a binding energy of 0.13 ± 0.05 MeV, because 
the deuteron core has almost no influence 
on the Λ hyperon.

The STAR and ALICE collaborations 
recently updated their measurements 
on the hypertriton lifetime. The STAR 
collaboration reported an even shorter 
lifetime14,15, 142−21

+24(stat.) ± 29(syst.) ps, 
whereas the value measured by the ALICE 
collaboration became larger17, 242−38

+34

(stat.) ± 17(syst.) ps. The HypHI measured 
value is between these two. Therefore, no 
conclusion can yet be drawn from these 
measurements of the hypertriton lifetime. 
Additional experimental projects are 
planned at J-PARC and ELPH in Japan 
with secondary meson and photon beams, 
respectively. However, the accuracy in these 
experiments will be similar to that of the 
other measurements and, therefore, they will 
not drastically improve the accuracy of the 
hypertriton lifetime. TABLE 1 summarizes  
the lifetime of the hypertriton measured 
by the HypHI, STAR and ALICE experiments, 
together with their reactions and production 
methods. It shows that their accuracies are 
similarly large and that the measured values 
overlap within the errors as summarized in 
REF.31. To reach a more definitive conclusion 
on the value of the hypertriton lifetime,  
at least one more precise measurement  
is needed.

Revisiting the binding energy of 
the hypertriton is also of great interest, 
since it is expected to be strongly 
correlated to its lifetime. After the 

Box 1 | Hypernuclear physics terminology

A particle composed of three, or an odd number of, quarks is called a baryon. An ordinary nucleus is 
formed by baryons called neutrons and protons. As illustrated in the figure, a neutron consists of a 
single up quark and two down quarks (udd), whereas a proton consists of two up quarks and a single 
down quark (uud). Baryons with strange quarks (s) are known as hyperons. An example of a hyperon 
with a single strange quark is a Λ hyperon with one up, one down and one strange quark (uds), which 
is illustrated in the figure. The isospin excitation of the Λ hyperon yields the so- called Σ hyperons:  
Σ+ (uus), Σ0 (uds) and Σ− (dds). Hyperons with two strange quarks are Ξ0 (uss) and Ξ− (dds). A Ξ− hyperon  
is also illustrated in the figure. There is also a hyperon with three strange quarks (sss), referred to as Ω−.

A hypernucleus is defined as a bound state with hyperon(s) and nucleons, and an example of  
a single Λ- hypernucleus is shown in the figure. When a single Ξ hyperon or two Λ hyperons are  
bound in the nucleus, they are called a Ξ- hypernucleus or a double Λ- hypernucleus, respectively.  
A hypernucleus is denoted in a similar manner as ordinary nuclei, but with an additional subscript, 
such as ZY

A . The total baryon number is denoted by A and Z corresponds to the total charge number, 
but one can also use an atomic symbol. The subscript Y indicates the type of hyperons bound in the 
hypernucleus. For example, a hypernucleus with two neutrons, two protons and a Λ hyperon is 
denoted as ΛHe

5 , and with an additional Λ hyperon, it is represented as ΛΛHe
6 .

Ordinary nucleus Single Λ-hypernucleus

Strange quarkUp quark
Down
quark

ProtonNeutron Λ Hyperon Ξ Hyperon
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Fig. 4. Invariant mass distributions of d+π− final state candidate in panels (a1) (a2), and of t+π− in panels (b1) (b2). 
Panels (a1) and (b1) are for −10 cm < Z < 30 cm, and (a2) and (b2) are for −2 cm < Z < 30 cm. Observed distributions 
are represented by the filled-in circles. The hashed orange region represents one standard deviation of the fitted model 
centred at the solid blue line of the total best fit. The black and coloured dotted-lines respectively show the separate 
contributions of the signal and the background. The open triangle represents the data corresponding to invariant mass 
distribution of the mixed event analysis. The figures are taken from [4]. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

−10 cm < Z < 30 cm includes vertices from the production target while the other condition ex-
cludes the target region. The deduced invariant mass distributions are represented by the filled-in 
circles. The mass values were calibrated by using the data for the reconstructed invariant mass 
peak positions of ", 3

"H and 4
"H. Fitting of the distributions of signal-plus-background from the 

data were performed in the similar fashion to 3
"H and 4

"H. By hypothesis testing via profiled like-
lihood ratio tests, the significance values of observed peaks of d+π− for −10 cm < Z < 30 cm
and −2 cm < Z < 30 cm were determined to be respectively 5.3 and 3.7 σ , and for t+π− they 
are 5.0 and 5.2 σ , respectively. Vertex distributions of the d+π− and t+π− were analysed to de-
duce the lifetime values of the initial states decaying those final states by using a similar manner 
for 3

"H and 4
"H. As shown in Fig. 5, resultant lifetime values with the d+π− and t+π− final 

states are respectively 181+30
−24 ps and 190+47

−35 ps.
As discussed in [4], we studied systematic uncertainties and possibility to produce peaks in 

the d+π− and t+π− invariant mass distributions by mis-reconstructing the other possible decay 
channels. It was concluded that the other channels could not create peaks like those observed 
in the d+π− and t+π− final states. Therefore, a possible interpretation for the observed t+π−

and d+π− final states might be the two- and three-body decays of an unknown bound state of 
two neutrons associated with ", 3

"n, via 3
"n→t+π− and 3

"n→t∗+π−→d+n+π−, respectively. 
With this interpretation, the production mechanism of 3

"n might be the Fermi break-up of excited 
heavier hyperfragments [43]. On the other hand, the direct coalescence of a "-hyperon and a 
di-neutron state is unlikely, because the di-neutron state is known to be unbound.

Short lifetime of 3ΛH

C. Rappold et al., PRC 88 (2013) 041001 

length, β and γ are particle velocity divided by the speed of
light and Lorentz factor, respectively. The raw signal
counts, Nraw, for each L=βγ interval are corrected for the
TPC acceptance, tracking, and particle identification effi-
ciency, using an embedding technique in which the TPC
response to Monte Carlo (MC) hypernuclei and their decay
daughters is simulated in the STAR detector described in
GEANT3 [40]. Simulated signals are embedded into the real
data and processed through the same reconstruction
algorithm as in real data. The simulated hypernuclei, used
for determining the efficiency correction, need to be
reweighted in 2D phase space (pT-y) such that the MC
hypernuclei are distributed in a realistic manner. This can
be constrained by comparing the reconstructed kinematic
distributions ðpT; yÞ between simulation and real data. The
corrected hypernuclei yield as a function of L=βγ is fitted
with an exponential function (see Supplemental Material
[35]) and the decay lifetime is determined as the negative
inverse of the slope divided by the speed of light.
We consider four major sources of systematic uncer-

tainties in the lifetime result: imperfect description of
topological variables in the simulations, imperfect knowl-
edge of the true kinematic distribution of the hypernuclei,
the TPC tracking efficiency, and the signal extraction
technique. Their contributions are estimated by varying
the topological cuts, the MC hypernuclei pT-y distribu-
tions, the TPC track quality selection cuts, and the back-
ground subtraction method. The possible contamination of
the signal due to multibody decays of A > 3 hypernuclei is
estimated using MC simulations and found to be negligible
(< 0.1%) within our reconstructed hypernuclei mass win-
dow. The systematic uncertainties due to different sources
are tabulated in Table I. They are assumed to be uncorre-
lated with each other and added in quadrature in the total
systematic uncertainty. As a cross-check, we conducted the
measurement of Λ lifetime from the same data and the
result is consistent with the Particle Data Group value [41]
(see Supplemental Material [35]).
The lifetime results measured at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 3.0 GeV andffiffiffiffiffiffiffiffi
sNN

p ¼ 7.2 GeV are found to agree well with each other.

The combined results are 221þ 15ðstatÞ þ 19ðsystÞ for 3ΛH
and 218þ 6ðstatÞ þ 13ðsystÞ for 4

ΛH. As shown in Fig. 2,
they are consistent with previous measurements from
ALICE [7,8], STAR [10,11], HypHI [9], and early experi-
ments using imaging techniques [3–5,10,42–48]. Using all
the available experimental data, the average lifetimes
of 3

ΛH and 4
ΛH are 200% 13 ps and 208% 12 ps, respec-

tively, corresponding to ð76% 5Þ% and ð79% 5Þ% of τΛ.
All data from ALICE, STAR, and HypHI lie within
1.5σ of the global averages. These precise data clearly
indicate that the 3

ΛH and 4
ΛH lifetimes are considerably

lower than τΛ.
Early theoretical calculations of the 3

ΛH lifetime typically
give values within 15% of τΛ [50–52]. This can be explained
by the loose binding ofΛ in the 3

ΛH.A recent calculation [49]
using a pionless effective field theory approach with Λd
degrees of freedom gives a 3

ΛH lifetime of ≈98%τΛ.
Meanwhile, it is shown in recent studies that incorporating
attractive pion final state interactions, which has been
previously disregarded, decreases the 3

ΛH lifetime by
∼15% [19,53]. This leads to a prediction of the 3

ΛH lifetime
to be ð81% 2Þ% of τΛ, consistent with the world average.
For 4

ΛH, a recent estimation [54] based on the empirical
isospin rule [55] agrees with the data within 1σ. The isospin
rule is based on the experimental ratio ΓðΛ → nþ π0Þ=
ΓðΛ → pþ π−Þ ≈ 0.5, which leads to the prediction
τð4ΛHÞ=τð4ΛHeÞ ¼ ð74% 4Þ% [54]. Combining the average
value reported here and the previous 4

ΛHe lifetime meas-
urement [56,57], the measured ratio τð4ΛHÞ=τð4ΛHeÞ is
ð83% 6Þ%, consistent with the expectation.

TABLE I. Summary of systematic uncertainties for the lifetime
and top 10% most central dN=dy (jyj < 0.5) measurements usingffiffiffiffiffiffiffiffi
sNN

p ¼ 3.0 GeV data.

Lifetime dN=dy

Source 3
ΛH

4
ΛH

3
ΛH

4
ΛH

Analysis cuts 5.5% 5.1% 15.1% 6.9%
Input MC 3.1% 1.8% 8.8% 3.8%
Tracking efficiency 5.0% 2.4% 14.1% 5.2%
Signal extraction 1.5% 0.7% 14.3% 7.7%
Extrapolation 13.6% 10.9%
Detector material < 1% < 1% 4.0% 2.0%

Total 8.2% 6.0% 31.9% 16.6%
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FIG. 2. 3
ΛH (a) and 4

ΛH (b) measured lifetime, compared to
previous measurements [3–5,7–11,42–48], theoretical calcula-
tions [49–54], and τΛ [41]. Horizontal lines represent statistical
uncertainties, while boxes represent systematic uncertainties. The
experimental average lifetimes and the corresponding uncertainty
of 3

ΛH and 4
ΛH are also shown as vertical blue shaded bands.
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Fig. 4. Invariant mass distributions of d+π− final state candidate in panels (a1) (a2), and of t+π− in panels (b1) (b2). 
Panels (a1) and (b1) are for −10 cm < Z < 30 cm, and (a2) and (b2) are for −2 cm < Z < 30 cm. Observed distributions 
are represented by the filled-in circles. The hashed orange region represents one standard deviation of the fitted model 
centred at the solid blue line of the total best fit. The black and coloured dotted-lines respectively show the separate 
contributions of the signal and the background. The open triangle represents the data corresponding to invariant mass 
distribution of the mixed event analysis. The figures are taken from [4]. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

−10 cm < Z < 30 cm includes vertices from the production target while the other condition ex-
cludes the target region. The deduced invariant mass distributions are represented by the filled-in 
circles. The mass values were calibrated by using the data for the reconstructed invariant mass 
peak positions of ", 3

"H and 4
"H. Fitting of the distributions of signal-plus-background from the 

data were performed in the similar fashion to 3
"H and 4

"H. By hypothesis testing via profiled like-
lihood ratio tests, the significance values of observed peaks of d+π− for −10 cm < Z < 30 cm
and −2 cm < Z < 30 cm were determined to be respectively 5.3 and 3.7 σ , and for t+π− they 
are 5.0 and 5.2 σ , respectively. Vertex distributions of the d+π− and t+π− were analysed to de-
duce the lifetime values of the initial states decaying those final states by using a similar manner 
for 3

"H and 4
"H. As shown in Fig. 5, resultant lifetime values with the d+π− and t+π− final 

states are respectively 181+30
−24 ps and 190+47

−35 ps.
As discussed in [4], we studied systematic uncertainties and possibility to produce peaks in 

the d+π− and t+π− invariant mass distributions by mis-reconstructing the other possible decay 
channels. It was concluded that the other channels could not create peaks like those observed 
in the d+π− and t+π− final states. Therefore, a possible interpretation for the observed t+π−

and d+π− final states might be the two- and three-body decays of an unknown bound state of 
two neutrons associated with ", 3

"n, via 3
"n→t+π− and 3

"n→t∗+π−→d+n+π−, respectively. 
With this interpretation, the production mechanism of 3

"n might be the Fermi break-up of excited 
heavier hyperfragments [43]. On the other hand, the direct coalescence of a "-hyperon and a 
di-neutron state is unlikely, because the di-neutron state is known to be unbound.

Short lifetime of 3ΛH

C. Rappold et al., PRC 88 (2013) 041001 

length, β and γ are particle velocity divided by the speed of
light and Lorentz factor, respectively. The raw signal
counts, Nraw, for each L=βγ interval are corrected for the
TPC acceptance, tracking, and particle identification effi-
ciency, using an embedding technique in which the TPC
response to Monte Carlo (MC) hypernuclei and their decay
daughters is simulated in the STAR detector described in
GEANT3 [40]. Simulated signals are embedded into the real
data and processed through the same reconstruction
algorithm as in real data. The simulated hypernuclei, used
for determining the efficiency correction, need to be
reweighted in 2D phase space (pT-y) such that the MC
hypernuclei are distributed in a realistic manner. This can
be constrained by comparing the reconstructed kinematic
distributions ðpT; yÞ between simulation and real data. The
corrected hypernuclei yield as a function of L=βγ is fitted
with an exponential function (see Supplemental Material
[35]) and the decay lifetime is determined as the negative
inverse of the slope divided by the speed of light.
We consider four major sources of systematic uncer-

tainties in the lifetime result: imperfect description of
topological variables in the simulations, imperfect knowl-
edge of the true kinematic distribution of the hypernuclei,
the TPC tracking efficiency, and the signal extraction
technique. Their contributions are estimated by varying
the topological cuts, the MC hypernuclei pT-y distribu-
tions, the TPC track quality selection cuts, and the back-
ground subtraction method. The possible contamination of
the signal due to multibody decays of A > 3 hypernuclei is
estimated using MC simulations and found to be negligible
(< 0.1%) within our reconstructed hypernuclei mass win-
dow. The systematic uncertainties due to different sources
are tabulated in Table I. They are assumed to be uncorre-
lated with each other and added in quadrature in the total
systematic uncertainty. As a cross-check, we conducted the
measurement of Λ lifetime from the same data and the
result is consistent with the Particle Data Group value [41]
(see Supplemental Material [35]).
The lifetime results measured at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 3.0 GeV andffiffiffiffiffiffiffiffi
sNN

p ¼ 7.2 GeV are found to agree well with each other.

The combined results are 221þ 15ðstatÞ þ 19ðsystÞ for 3ΛH
and 218þ 6ðstatÞ þ 13ðsystÞ for 4

ΛH. As shown in Fig. 2,
they are consistent with previous measurements from
ALICE [7,8], STAR [10,11], HypHI [9], and early experi-
ments using imaging techniques [3–5,10,42–48]. Using all
the available experimental data, the average lifetimes
of 3

ΛH and 4
ΛH are 200% 13 ps and 208% 12 ps, respec-

tively, corresponding to ð76% 5Þ% and ð79% 5Þ% of τΛ.
All data from ALICE, STAR, and HypHI lie within
1.5σ of the global averages. These precise data clearly
indicate that the 3

ΛH and 4
ΛH lifetimes are considerably

lower than τΛ.
Early theoretical calculations of the 3

ΛH lifetime typically
give values within 15% of τΛ [50–52]. This can be explained
by the loose binding ofΛ in the 3

ΛH.A recent calculation [49]
using a pionless effective field theory approach with Λd
degrees of freedom gives a 3

ΛH lifetime of ≈98%τΛ.
Meanwhile, it is shown in recent studies that incorporating
attractive pion final state interactions, which has been
previously disregarded, decreases the 3

ΛH lifetime by
∼15% [19,53]. This leads to a prediction of the 3

ΛH lifetime
to be ð81% 2Þ% of τΛ, consistent with the world average.
For 4

ΛH, a recent estimation [54] based on the empirical
isospin rule [55] agrees with the data within 1σ. The isospin
rule is based on the experimental ratio ΓðΛ → nþ π0Þ=
ΓðΛ → pþ π−Þ ≈ 0.5, which leads to the prediction
τð4ΛHÞ=τð4ΛHeÞ ¼ ð74% 4Þ% [54]. Combining the average
value reported here and the previous 4

ΛHe lifetime meas-
urement [56,57], the measured ratio τð4ΛHÞ=τð4ΛHeÞ is
ð83% 6Þ%, consistent with the expectation.

TABLE I. Summary of systematic uncertainties for the lifetime
and top 10% most central dN=dy (jyj < 0.5) measurements usingffiffiffiffiffiffiffiffi
sNN

p ¼ 3.0 GeV data.

Lifetime dN=dy

Source 3
ΛH

4
ΛH

3
ΛH

4
ΛH

Analysis cuts 5.5% 5.1% 15.1% 6.9%
Input MC 3.1% 1.8% 8.8% 3.8%
Tracking efficiency 5.0% 2.4% 14.1% 5.2%
Signal extraction 1.5% 0.7% 14.3% 7.7%
Extrapolation 13.6% 10.9%
Detector material < 1% < 1% 4.0% 2.0%

Total 8.2% 6.0% 31.9% 16.6%
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FIG. 2. 3
ΛH (a) and 4

ΛH (b) measured lifetime, compared to
previous measurements [3–5,7–11,42–48], theoretical calcula-
tions [49–54], and τΛ [41]. Horizontal lines represent statistical
uncertainties, while boxes represent systematic uncertainties. The
experimental average lifetimes and the corresponding uncertainty
of 3

ΛH and 4
ΛH are also shown as vertical blue shaded bands.
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Two Puzzles from HypHI Phase 0
3

Indication of nnΛ206 T.R. Saito et al. / Nuclear Physics A 954 (2016) 199–212

Fig. 4. Invariant mass distributions of d+π− final state candidate in panels (a1) (a2), and of t+π− in panels (b1) (b2). 
Panels (a1) and (b1) are for −10 cm < Z < 30 cm, and (a2) and (b2) are for −2 cm < Z < 30 cm. Observed distributions 
are represented by the filled-in circles. The hashed orange region represents one standard deviation of the fitted model 
centred at the solid blue line of the total best fit. The black and coloured dotted-lines respectively show the separate 
contributions of the signal and the background. The open triangle represents the data corresponding to invariant mass 
distribution of the mixed event analysis. The figures are taken from [4]. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

−10 cm < Z < 30 cm includes vertices from the production target while the other condition ex-
cludes the target region. The deduced invariant mass distributions are represented by the filled-in 
circles. The mass values were calibrated by using the data for the reconstructed invariant mass 
peak positions of ", 3

"H and 4
"H. Fitting of the distributions of signal-plus-background from the 

data were performed in the similar fashion to 3
"H and 4

"H. By hypothesis testing via profiled like-
lihood ratio tests, the significance values of observed peaks of d+π− for −10 cm < Z < 30 cm
and −2 cm < Z < 30 cm were determined to be respectively 5.3 and 3.7 σ , and for t+π− they 
are 5.0 and 5.2 σ , respectively. Vertex distributions of the d+π− and t+π− were analysed to de-
duce the lifetime values of the initial states decaying those final states by using a similar manner 
for 3

"H and 4
"H. As shown in Fig. 5, resultant lifetime values with the d+π− and t+π− final 

states are respectively 181+30
−24 ps and 190+47

−35 ps.
As discussed in [4], we studied systematic uncertainties and possibility to produce peaks in 

the d+π− and t+π− invariant mass distributions by mis-reconstructing the other possible decay 
channels. It was concluded that the other channels could not create peaks like those observed 
in the d+π− and t+π− final states. Therefore, a possible interpretation for the observed t+π−

and d+π− final states might be the two- and three-body decays of an unknown bound state of 
two neutrons associated with ", 3

"n, via 3
"n→t+π− and 3

"n→t∗+π−→d+n+π−, respectively. 
With this interpretation, the production mechanism of 3

"n might be the Fermi break-up of excited 
heavier hyperfragments [43]. On the other hand, the direct coalescence of a "-hyperon and a 
di-neutron state is unlikely, because the di-neutron state is known to be unbound.

Short lifetime of 3ΛH

C. Rappold et al., PRC 88 (2013) 041001 

length, β and γ are particle velocity divided by the speed of
light and Lorentz factor, respectively. The raw signal
counts, Nraw, for each L=βγ interval are corrected for the
TPC acceptance, tracking, and particle identification effi-
ciency, using an embedding technique in which the TPC
response to Monte Carlo (MC) hypernuclei and their decay
daughters is simulated in the STAR detector described in
GEANT3 [40]. Simulated signals are embedded into the real
data and processed through the same reconstruction
algorithm as in real data. The simulated hypernuclei, used
for determining the efficiency correction, need to be
reweighted in 2D phase space (pT-y) such that the MC
hypernuclei are distributed in a realistic manner. This can
be constrained by comparing the reconstructed kinematic
distributions ðpT; yÞ between simulation and real data. The
corrected hypernuclei yield as a function of L=βγ is fitted
with an exponential function (see Supplemental Material
[35]) and the decay lifetime is determined as the negative
inverse of the slope divided by the speed of light.
We consider four major sources of systematic uncer-

tainties in the lifetime result: imperfect description of
topological variables in the simulations, imperfect knowl-
edge of the true kinematic distribution of the hypernuclei,
the TPC tracking efficiency, and the signal extraction
technique. Their contributions are estimated by varying
the topological cuts, the MC hypernuclei pT-y distribu-
tions, the TPC track quality selection cuts, and the back-
ground subtraction method. The possible contamination of
the signal due to multibody decays of A > 3 hypernuclei is
estimated using MC simulations and found to be negligible
(< 0.1%) within our reconstructed hypernuclei mass win-
dow. The systematic uncertainties due to different sources
are tabulated in Table I. They are assumed to be uncorre-
lated with each other and added in quadrature in the total
systematic uncertainty. As a cross-check, we conducted the
measurement of Λ lifetime from the same data and the
result is consistent with the Particle Data Group value [41]
(see Supplemental Material [35]).
The lifetime results measured at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 3.0 GeV andffiffiffiffiffiffiffiffi
sNN

p ¼ 7.2 GeV are found to agree well with each other.

The combined results are 221þ 15ðstatÞ þ 19ðsystÞ for 3ΛH
and 218þ 6ðstatÞ þ 13ðsystÞ for 4

ΛH. As shown in Fig. 2,
they are consistent with previous measurements from
ALICE [7,8], STAR [10,11], HypHI [9], and early experi-
ments using imaging techniques [3–5,10,42–48]. Using all
the available experimental data, the average lifetimes
of 3

ΛH and 4
ΛH are 200% 13 ps and 208% 12 ps, respec-

tively, corresponding to ð76% 5Þ% and ð79% 5Þ% of τΛ.
All data from ALICE, STAR, and HypHI lie within
1.5σ of the global averages. These precise data clearly
indicate that the 3

ΛH and 4
ΛH lifetimes are considerably

lower than τΛ.
Early theoretical calculations of the 3

ΛH lifetime typically
give values within 15% of τΛ [50–52]. This can be explained
by the loose binding ofΛ in the 3

ΛH.A recent calculation [49]
using a pionless effective field theory approach with Λd
degrees of freedom gives a 3

ΛH lifetime of ≈98%τΛ.
Meanwhile, it is shown in recent studies that incorporating
attractive pion final state interactions, which has been
previously disregarded, decreases the 3

ΛH lifetime by
∼15% [19,53]. This leads to a prediction of the 3

ΛH lifetime
to be ð81% 2Þ% of τΛ, consistent with the world average.
For 4

ΛH, a recent estimation [54] based on the empirical
isospin rule [55] agrees with the data within 1σ. The isospin
rule is based on the experimental ratio ΓðΛ → nþ π0Þ=
ΓðΛ → pþ π−Þ ≈ 0.5, which leads to the prediction
τð4ΛHÞ=τð4ΛHeÞ ¼ ð74% 4Þ% [54]. Combining the average
value reported here and the previous 4

ΛHe lifetime meas-
urement [56,57], the measured ratio τð4ΛHÞ=τð4ΛHeÞ is
ð83% 6Þ%, consistent with the expectation.

TABLE I. Summary of systematic uncertainties for the lifetime
and top 10% most central dN=dy (jyj < 0.5) measurements usingffiffiffiffiffiffiffiffi
sNN

p ¼ 3.0 GeV data.

Lifetime dN=dy

Source 3
ΛH

4
ΛH

3
ΛH

4
ΛH

Analysis cuts 5.5% 5.1% 15.1% 6.9%
Input MC 3.1% 1.8% 8.8% 3.8%
Tracking efficiency 5.0% 2.4% 14.1% 5.2%
Signal extraction 1.5% 0.7% 14.3% 7.7%
Extrapolation 13.6% 10.9%
Detector material < 1% < 1% 4.0% 2.0%

Total 8.2% 6.0% 31.9% 16.6%
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FIG. 2. 3
ΛH (a) and 4

ΛH (b) measured lifetime, compared to
previous measurements [3–5,7–11,42–48], theoretical calcula-
tions [49–54], and τΛ [41]. Horizontal lines represent statistical
uncertainties, while boxes represent systematic uncertainties. The
experimental average lifetimes and the corresponding uncertainty
of 3

ΛH and 4
ΛH are also shown as vertical blue shaded bands.
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New and more precise measurement is necessary !
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WASA-FRS HypHI
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WASA-FRS Experiment at GSI (HypHI, η’-nuclei) 
✤ FRS : momentum resolution : Δp/p = 10-4


✤ WASA ← used at COSY in Jülich


✤ Beam : 6Li / 12C with 1.96 A GeV

✤ Target : 12C (diamond) 9.87 g/cm2 


✤ Objective (HypHI)

- Λ3H → π- + 3He

- Λ4H → π- + 4He

- nnΛ → π- + d + n

(Wide Angle Shower Apparatus)

(FRagment Separator)

  to other 
  experimental areas

extracted beam 
from SIS-18 20 m0 10  to other 

  experimental areas

F4 area
- dispersive focal plane
- multi-wire drift chambers
- plastic scintillators
- aerogel and acrylite Čerenkov counters 

F2 area
- achromatic focal plane
- plastic scintillators
- aerogel Čerenkov counter

Target area
- target ladder
- beam monitors

40m200

FRS

Beam
3Heπ-

c.f. 3ΛH → π- + 3He
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(Wide Angle Shower Apparatus)

Solenoid

CsI

WASA detector

(FRagment Separator)

FRS

Beam
3Heπ-

c.f. 3ΛH → π- + 3He

c.f. 3ΛH → π- + 3He

3ΛH

π-

3HeBeam

WASA detectors

FRS (FRagment Separator) 
Momentum resolution : Δp/p = 10-4
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Data taking 
Jan. - Mar. 2022
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WASA Setup
5Existing Newly developed

WASA Solenoid

CsI


MDC

PSB / PSFE / PSBE / T0

Fiber Trackers


Cryogenics

Readout electronics

Beam

Magnetic field : 1 T (at center)
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Y.K. Tanaka, V. Serdyuk, J.L.Rodiguez Sanchez, K. Itahashi, S.Y. Matsumoto, S. Minami, T. R. Saito

2

Re-commissioning of MDC (mini-drift chamber)

 Re-assembling MDC at GSI (2018 July-November)

- Check individual channels

- Repair cables and connectors 

- Dead channels ~ 4% 

- readout with vuprom v.6

MDC
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  to other 
  experimental areas

extracted beam 
from SIS-18 20 m0 10  to other 

  experimental areas
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- S2 DFTs & S4 MWDC

- Momentum : 5 × 10-4 (σ)
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- TOF, dE

 

50 52 54 56 58 60 62 64 66 68 70

 TOF S3-S4 [ns]
0

500

1000

1500

2000

2500

3000

3500

4000

 S
4 

Sc
in

till
at

or
 Q

DC
 [c

h]

0

100

200

300

400

500

600

700

He4

d

  

50 52 54 56 58 60 62 64 66 68 70

 TOF S3-S4 [ns]
0

500

1000

1500

2000

2500

3000

3500

4000

 S
4 

Sc
in

till
at

or
 Q

DC
 [c

h]

0

200

400

600

800

1000

1200

1400

1600

He3

 

Pre
liminar

y

Pre
liminar

y



/12

FRS Analysis
6

  to other 
  experimental areas

extracted beam 
from SIS-18 20 m0 10  to other 

  experimental areas

F4 area
- dispersive focal plane
- multi-wire drift chambers
- plastic scintillators
- aerogel and acrylite Čerenkov counters 

F2 area
- achromatic focal plane
- plastic scintillators
- aerogel Čerenkov counter

Target area
- target ladder
- beam monitors

20m100

Momentum and Angle reconstruction 
- S2 DFTs & S4 MWDC

- Momentum : 5 × 10-4 (σ)

- Angular  : ~0.8 mrad (σ)

Fragments PID 
- identified in S3 - S4 

- Plastic scintillators

- TOF, dE

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 (recon - set) [%]δ Residual of 

0

5000

10000

15000

20000

25000

   

σ : 5 × 10-4Pre
liminar

y



/12

WASA PID
7

Charged particles going to the WASA central detectors are reconstructed
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Charged particles going to the WASA central detectors are reconstructed
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Special Article - New Tools and Techniques

Development of machine learning analyses with graph neural
network for the WASA-FRS experiment
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Abstract The WASA-FRS experiment aims to reveal the
nature of light ! hypernuclei with heavy-ion beams. The life-
times of hypernuclei are measured precisely from their decay
lengths and kinematics. To reconstruct a π− track emitted
from hypernuclear decay, track finding is an important issue.
In this study, a machine learning analysis method with a graph
neural network (GNN), which is a powerful tool for deducing
the connection between data nodes, was developed to obtain
track associations from numerous combinations of hit infor-
mation provided in detectors based on a Monte Carlo simu-
lation. An efficiency of 98% was achieved for tracking π−

mesons using the developed GNN model. The GNN model
can also estimate the charge and momentum of the particles
of interest. More than 99.9% of the negative charged parti-
cles were correctly identified with a momentum accuracy of
6.3%.

1 Introduction

1.1 Nuclear physics and hypernuclei

Understanding baryon–baryon interactions is one of the main
goals of physics research. A nucleon, proton or neutron, is a
type of baryon, and a nucleus is formed by binding nucleons
with nuclear force. Many efforts have been made to under-

a e-mail: hiroyuki.ekawa@riken.jp (corresponding author)

stand it for the middle- and long-range interactions based
on a variety of nuclear experiments. To reveal the unknown
features of the nuclear force, such as short-range interac-
tion, considering a more detailed structure inside the baryons
is essential. All baryons consist of three quarks, and nucle-
ons such as neutrons and protons consist of up and down
quarks. By introducing other types of quarks into ordinary
nuclear systems, one can study the nuclear force in a more
general picture. In particular, because the mass of the strange
quark is close to that of the up and down quarks, interactions
among these three quarks are described under flavoured-
SU(3) symmetry. Therefore, a hyperon, which is a type of
baryon that contains strange quark(s), plays an important role
in investigating baryon–baryon interactions. As the lifetime
of hyperon is short (∼10−10 s), using them as projectiles or
targets is difficult. Therefore, hyperon–nucleon interactions
have been studied via hypernuclei, which contain at least
one hyperon among the nucleons. From systematic measure-
ments of hypernuclei, their characteristics have been clari-
fied.

Among them, the simplest and lightest ! hypernucleus,
the hypertriton (3

!H) with a proton, neutron, and ! hyperon,
is regarded as a benchmark of hypernuclear physics. Owing
to its small ! binding energy (B! = 0.13 MeV) [1,2], a
hypertriton is considered to be a weakly bound state between
deuteron and !. Consequently, the lifetime of the hypertriton
is considered close to that of the free ! (τ! = 263 ps) [3].
However, the HypHI phase 0 experiment [4–7] measured the
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is straightforward to generalize CNNs on graphs. As shown in Fig. 1, it is
hard to define localized convolutional filters and pooling operators,
which hinders the transformation of CNN from Euclidean domain to
non-Euclidean domain. Extending deep neural models to non-Euclidean
domains, which is generally referred to as geometric deep learning, has
been an emerging research area (Bronstein et al., 2017). Under this
umbrella term, deep learning on graphs receives enormous attention.

The other motivation comes from graph representation learning (Cui
et al., 2018a; Hamilton et al., 2017b; Zhang et al., 2018a; Cai et al., 2018;
Goyal and Ferrara, 2018), which learns to represent graph nodes, edges
or subgraphs by low-dimensional vectors. In the field of graph analysis,
traditional machine learning approaches usually rely on hand engineered
features and are limited by its inflexibility and high cost. Following the
idea of representation learning and the success of word embedding
(Mikolov et al., 2013), DeepWalk (Perozzi et al., 2014), regarded as the
first graph embedding method based on representation learning, applies
SkipGram model (Mikolov et al., 2013) on the generated random walks.
Similar approaches such as node2vec (Grover and Leskovec, 2016), LINE
(Tang et al., 2015) and TADW (Yang et al., 2015) also achieved break-
throughs. However, these methods suffer from two severe drawbacks
(Hamilton et al., 2017b). First, no parameters are shared between nodes
in the encoder, which leads to computationally inefficiency, since it
means the number of parameters grows linearly with the number of
nodes. Second, the direct embedding methods lack the ability of gener-
alization, which means they cannot deal with dynamic graphs or
generalize to new graphs.

Based on CNNs and graph embedding, variants of graph neural net-
works (GNNs) are proposed to collectively aggregate information from
graph structure. Thus they can model input and/or output consisting of
elements and their dependency.

There exists several comprehensive reviews on graph neural net-
works. Bronstein et al. (2017) provide a thorough review of geometric
deep learning, which presents its problems, difficulties, solutions, ap-
plications and future directions. Zhang et al. (2019a) propose another
comprehensive overview of graph convolutional networks. However,
they mainly focus on convolution operators defined on graphs while we
investigate other computation modules in GNNs such as skip connections
and pooling operators.

Papers by Zhang et al. (2018b), Wu et al. (2019a), Chami et al. (2020)
are the most up-to-date survey papers on GNNs and they mainly focus on
models of GNN. Wu et al. (2019a) categorize GNNs into four groups:
recurrent graph neural networks, convolutional graph neural networks,
graph autoencoders, and spatial-temporal graph neural networks. Zhang
et al. (2018b) give a systematic overview of different graph deep learning
methods and Chami et al. (2020) propose a Graph Encoder Decoder
Model to unify network embedding and graph neural network models.
Our paper provides a different taxonomy with them and we mainly focus
on classic GNN models. Besides, we summarize variants of GNNs for

different graph types and also provide a detailed summary of GNNs’
applications in different domains.

There have also been several surveys focusing on some specific graph
learning fields. Sun et al. (2018) and Chen et al. (2020a) give detailed
overviews for adversarial learning methods on graphs, including graph
data attack and defense. Lee et al. (2018a) provide a review over graph
attention models. The paper proposed by Yang et al. (2020) focuses on
heterogeneous graph representation learning, where nodes or edges are
of multiple types. Huang et al. (2020) review over existing GNN models
for dynamic graphs. Peng et al. (2020) summarize graph embeddings
methods for combinatorial optimization. We conclude GNNs for het-
erogeneous graphs, dynamic graphs and combinatorial optimization in
Section 4.2, Section 4.3, and Section 8.1.6 respectively.

In this paper, we provide a thorough review of different graph neural
network models as well as a systematic taxonomy of the applications. To
summarize, our contributions are:

! We provide a detailed review over existing graph neural network
models. We present a general design pipeline and discuss the variants
of each module. We also introduce researches on theoretical and
empirical analyses of GNN models.

! We systematically categorize the applications and divide the appli-
cations into structural scenarios and non-structural scenarios. We
present several major applications and their corresponding methods
for each scenario.

! We propose four open problems for future research. We provide a
thorough analysis of each problem and propose future research
directions.

The rest of this survey is organized as follows. In Section 2, we present
a general GNN design pipeline. Following the pipeline, we discuss each
step in detail to review GNN model variants. The details are included in
Section 3 to Section 6. In Section 7, we revisit research works over
theoretical and empirical analyses of GNNs. In Section 8, we introduce
several major applications of graph neural networks applied to structural
scenarios, non-structural scenarios and other scenarios. In Section 9, we
propose four open problems of graph neural networks as well as several
future research directions. And finally, we conclude the survey in Section
10.

2. General design pipeline of GNNs

In this paper, we introducemodels of GNNs in a designer view.We first
present the general design pipeline for designing a GNN model in this
section. Then we give details of each step such as selecting computational
modules, considering graph type and scale, and designing loss function in
Section 3, 4, and 5, respectively. And finally, we use an example to illus-
trate the design process of GNN for a specific task in Section 6.

Fig. 1. Left: image in Euclidean space. Right: graph in non-Euclidean space.
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6. A design example of GNN

In this section, we give an existing GNN model to illustrated the
design process. Taking the task of heterogeneous graph pretraining as an
example, we use GPT-GNN (Hu et al., 2020b) as the model to illustrate
the design process.

1. Find graph structure. The paper focuses on applications on the aca-
demic knowledge graph and the recommendation system. In the ac-
ademic knowledge graph, the graph structure is explicit. In
recommendation systems, users, items and reviews can be regarded as
nodes and the interactions among them can be regarded as edges, so
the graph structure is also easy to construct.

2. Specify graph type and scale. The tasks focus on heterogeneous graphs,
so that types of nodes and edges should be considered and incorpo-
rated in the final model. As the academic graph and the recommen-
dation graph contain millions of nodes, so that the model should
further consider the efficiency problem. In conclusion, the model
should focus on large-scale heterogeneous graphs.

3. Design loss function. As downstream tasks in (Hu et al., 2020b) are all
node-level tasks (e.g. Paper-Field prediction in the academic graph),
so that the model should learn node representations in the pretraining
step. In the pretraining step, no labeled data is available, so that a

self-supervised graph generation task is designed to learn node em-
beddings. In the finetuning step, the model is finetuned based on the
training data of each task, so that the supervised loss of each task is
applied.

4. Build model using computational modules. Finally the model is built
with computational modules. For the propagation module, the au-
thors use a convolution operator HGT (Hu et al., 2020a) that we
mentioned before. HGT incorporates the types of nodes and edges
into the propagation step of the model and the skip connection is also
added in the architecture. For the sampling module, a specially
designed sampling method HGSampling (Hu et al., 2020a) is applied,
which is a heterogeneous version of LADIES (Zou et al., 2019). As the
model focuses on learning node representations, the pooling module
is not needed. The HGT layer are stacked multiple layers to learn
better node embeddings.

7. Analyses of GNNs

7.1. Theoretical aspect

In this section, we summarize the papers about the theoretic foun-
dations and explanations of graph neural networks from various
perspectives.

Fig. 6. Application scenarios. (Icons made by Freepik from Flaticon)
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Table 2 Edge conditions

Detector Layer conditions φ difference

MFT–MFT Different layer –

MFT–MDC Between MFT 1–6 and MDC 1–12 –

MDC–MDC Different layer Less than 90◦

MDC–PSB – Less than 90◦

MDC–PSFE – Less than 180◦

Fig. 2 An example of the graph data obtained by the MC simulation.
The circles and lines represent nodes and edges, respectively. Node
positions are expressed by detector layer and hit position. Layers 1–6
show MFT hits (6 layers) and layers 7–23 show MDC hits (17 layers).
PSB and PSFE hits are expressed by layers 24 and 25, respectively. Hit
positions are shown by the relative position in full range of each detector
layer, e.g. MFT has a range of [ -8.3 mm, 8.3 mm ] and others have [
-π , π ]. a All edges that include the connection between non-associated
nodes are shown. b Ground truth. The large circles show the shared
nodes. Each individual particle track is shown in different colors. The
blue track shows a π−

is impossible, a node label is prepared to identify whether
the node is shared. This label was used to clusterize the hit
association (Sect. 4.1.2).

To express the association of detector hits caused by the
same particle, a simple method is to connect all associated
nodes with edges from all possible node pairs. Subsequently,
all combinations of the two nodes should be prepared as edges
to be examined to determine whether they are valid. How-
ever, the number of pairs is too large to be examined when
the number of hits is large. Therefore, edges were prepared
to connect essential parts of the associations of track hits
for the five types of connections (MFT-MFT, MFT-MDC,
MDC-MDC, MDC-PSB and MDC-PSFE) by considering
the number of combinations. These conditions are summa-
rized in Table 2. As the number of MDC hit layers is required
to be more than six to reconstruct the target π− track with
sufficient accuracy, the π− track should have an MDC hit
in the 1st to 11th layers. Therefore, the edges between MFT
and MDC are not prepared on the 13–17th layers of MDC to
reduce the number of edges. Figure 2 shows an example of
the obtained graph data.

Edge features were then implemented as edge types and
layer differences. The edge type represents the five types of
connections between the detector hits, as expressed above.
The layer difference is implemented for the connection
between the same detector, that is, MFT-MFT and MDC-
MDC. One million data samples were produced from the
MC simulation and divided into “Training”, “Validation”,
and “Test” for each purpose.

3.3.2 GNN model about node clustering

As discussed above, hit associations can be represented by
classifying edges as “ON” or “OFF”. The ON edge shows
a proper hit association, and the OFF edge shows an unre-
lated connection. The task of the developed GNN model is to
classify ON/OFF for edges and shared/non-shared for nodes.
From these classifications, nodes can be clustered into proper
hit associations along particle tracks through detectors. This
model has an “edge layer” and a “node layer” to carry out
classifications from both the node and edge features. Both
layers are based on a multilayer perceptron (MLP), which is
a basic structure of the neural network. The MLP introduces
a hidden layer and an activation function to classify non-
linearly separable data. In the present work, a layer of MLP
contains batch normalization, a linear layer, and an activa-
tion function PReLU [24]. The batch normalization is used
to prevent the divergence of the learning and the PReLU
is adopted to perform the learning efficiently. These three
layers create a set in the developed network. The number
of sets of MLP layers and the number of channels in the
hidden layers are regarded as hyperparameters, which char-
acterize the model and is not tuned by the learning process.
By inputting graph features, the edge and node layers update
the features of each node and edge by collecting the features
of the connected edges and nodes. This process, which is
called message passing [25], allow the model to learn the
relation between associated hits. Both features are reduced
to two channels with fully connected linear layers through
the dropout layers at the end. Binary classification was per-
formed for the two channels with the Softmax function [26]
for nodes and edges. The Softmax function, which gives out-
put scores from 0 to 1 for each label by keeping the sum of
them as 1, is commonly used for classification tasks. Conse-
quently, this model has several hyperparameters to determine
the configurations as follows:

– Number of the sets of the MLP layers (node and edge)
– Number of channels of hidden layers (node and edge)
– Number of message passing
– Dropout rate
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losses of charge and momentum estimations, two hyperpa-
rameters, r1 and r2, were used to tune these ratios as follows:

Losstotal = Losscharge × r1 + Lossmom × (1 − r1) × r2

+ Lossax × (1 − r1) × (1 − r2)/2

+ Lossay × (1 − r1) × (1 − r2)/2
(2)

Here, the losses of the angle regressions for the X and Y direc-
tions are treated equally because they should have the same
accuracy in our detector system. The losses of the charge
classification and momentum regression are obtained using
the CrossEntropyLoss and MSELoss functions, respectively.
The variables were optimized by Adabelief. In this optimiza-
tion, the hyperparameters were tuned to minimize the follow-
ing metric:

RMS(!p/p) × RMS(!dx/dz)

× RMS(!dy/dz)/(AUCROC(charge))
10 (3)

where RMS denotes the root mean square of the distribu-
tion for each value and AUCROC(charge) represents the area
under the receiver operating characteristic curve of the charge
classification. As the deviation of AUCROC(charge) is much
smaller than that of the others, it is multiplied ten times to
increase its importance. Subsequently, the number of epochs
was determined using the following criteria:

1. Proceed training up to 200 epochs
2. Find the best epoch
3. Resume training with 1/100 learning rate at the best epoch
4. Find the best epoch again

The best epoch was chosen to minimize the total loss of
the validation dataset.

4 Result

4.1 Node clustering

4.1.1 Training

The results of hyperparameters tuning by Optuna are shown
in Table 3. The loss and performance curves of the training
process with tuned hyperparameters are shown in Fig. 3. As
the best epoch was found at 31st epoch in the initial learning
rate, training was resumed with a 1/100 learning rate. The
best epoch was then observed at the 38th epoch, at which the
validation loss get the minimum value. The model at the best
epoch was used to evaluate clustering performance.

Table 3 Hyperparameters in the node clustering

Parameter Range Result

Batch size 16–40 25

Message passing 2–8 7

Node layer 3–5 4

Edge layer 3–6 5

Node hidden layer ch 30–300 180

Edge hidden layer ch 30–500 480

Leaning rate 10−5–10−2 4 × 10−4

Epsilon 10−12–10−9 6.1 × 10−11

Weight decay 10−5–10−2 1.8 × 10−3

Dropout ratio 0.3–0.5 0.4

Loss ratio 0.001–0.3 0.15

Fig. 3 Loss and performance curves of training in node clustering.
The learning rate was decreased by 1/100 at 32nd epoch. a Training
loss (black) and validation loss (red). The best epoch was observed at
the 38th epoch. b Average precision of node classification (black) and
that of edge classification (red)

4.1.2 Clustering

We employed the clustering algorithm described in Refs.
[29] and modified it for our data structure, wherein some
of the nodes are shared in multiple groups. Clustering was
performed based on the obtained scores for node and edge
classifications as follows:

1. Set shared nodes for nodes with the score > 0.5
2. Connect the highest score edge which connect a not-

shared node
3. Calculate partition loss
4. If the partition loss decreased, the connected edge is ON

and processes 2–4 were iterated until the highest score
decreased to 0.5. The shared nodes are determined using the
node score. When the score was greater than 0.5, the node
was assigned to the shared node. The partition loss is defined
as follows:

Losspart=−
∑

(i, j)∈E
δgi ,g j ln sei j+(1−δgi ,g j ) ln(1−sei j ) (4)
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Fig. 4 Example of the clustering procedure. The large node shows the
shared node, which has the node score of larger than 0.5. The colors of
nodes represent the identification of the group. In the initial state, all
nodes belong to different groups. By connecting the edge with the high-

est score, some nodes are merged into the same group and the partition
loss become smaller. In this example, the partition loss changes from
14.70 to 2.25

where E represents all edges and (i, j) indicates a pair of
node IDs that are connected by an edge. Parameters sei j and
gi show the score of edge (i, j) and the group ID which node i
belongs to, respectively. The symbol δ denotes the Kronecker
delta. The partition is based on a disjoint-set data structure
[30]. Non-shared nodes can belong to only one group. When
non-shared nodes are connected, both groups are merged
into one group. However, when shared and non-shared nodes
are connected, the shared node joins a group of non-shared
nodes. Owing to these features, connections between shared
nodes are considered after the previous procedure, as follows:

1. Connect the highest score edge which connect two shared
nodes

2. Calculate partition loss
3. If the partition loss decreased, the connected edge is ON

Processes 1–3 were iterated until the highest score decreased
to 0.5. Subsequently, all nodes are clustered into track associ-
ations. When a charged particle passes through the detectors
up to PSB or PSFE, only one detector hit is recorded in the
detector layer. Therefore, if the same layer nodes belong to
the same group by connecting an edge, the edge is assigned
OFF. An example of the clustering procedure is presented in
Fig. 4.

4.1.3 Performance

The distributions of the scores for edge and node classifica-
tions for the “Test” dataset are shown in Fig. 5. The precision
recall curve is defined by the relation between “recall” and
“precision” by changing the threshold in the score distribu-
tion. The recall is ratio of data which are correctly identified
as label 1, that is, “ON” for Edge and “Shared” for Node, to

Fig. 5 Performance of node clustering. a Score distribution of the edge
classification. Edge ON has label 1 (red), and OFF has label 0 (black).
b Score distribution of the node classification. Shared node has label
1 (red), and non-shared node has label 0 (black). c Precision recall
curve of the edge classification. d Precision recall curve of the node
classification

all data with label 1. The precision is ratio of data which are
correctly identified as label 1 to all data which are identified
as label 1. When the model can identify all data correctly, the
average precision becomes 1. The average precisions for both
classifications were 0.99977 for the edge and 0.97375 for the
node. When a score threshold of 0.5 for score is applied for
each classification, the efficiencies are 99.78% and 98.52%,
respectively, for edges and nodes. The misdetection (false-
positive) ratios were 0.54% (edge) and 1.6% (node). Subse-
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all data with label 1. The precision is ratio of data which are
correctly identified as label 1 to all data which are identified
as label 1. When the model can identify all data correctly, the
average precision becomes 1. The average precisions for both
classifications were 0.99977 for the edge and 0.97375 for the
node. When a score threshold of 0.5 for score is applied for
each classification, the efficiencies are 99.78% and 98.52%,
respectively, for edges and nodes. The misdetection (false-
positive) ratios were 0.54% (edge) and 1.6% (node). Subse-
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Node 98.52% 1.6%
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Table 6 Data size dependence
of node clustering

Data size Clustering efficiency for π− Clustering efficiency for others Training time [h/epoch]

100k 96.3% 95.1% 0.6

300k 97.4% 96.2% 2.0

1M 98.1% 97.1% 7.5

Table 7 Data size dependence
of charge and momentum
estimation

Data size Eff. False-positive "p
p " dx

dz [mrad] " dy
dz [mrad] Training time[h/epoch]

500k 99.70% 0.07% 9.9% 6.1 6.0 0.2

1M 99.82% 0.04% 8.5% 5.3 5.3 0.4

2M 99.92% 0.03% 6.8% 4.1 4.1 0.8

4M 99.95% 0.04% 6.3% 3.7 3.7 1.5

be applied the current GNN model. We will also confirm the
validity of the developed model for real data.

6 Conclusions

The WASA-FRS experiment aims to study the nature of light
hypernuclei with the induced reaction of heavy-ion beams
in a fixed nuclear target. This method enables us to per-
form high-statistics and precise measurements of hypernu-
clear lifetimes. Track finding is one of the difficulties in the
analysis procedure owing to its high multiplicity. Therefore,
a GNN model with a machine learning technique was devel-
oped to perform track finding for data obtained by an MC
simulation. More than 98% of π− tracks derived from hyper-
nuclear decay were fully reconstructed. Moreover, another
GNN model to perform charge classification and momentum
regression tasks has been developed. More than 99.9% of the
negative particles were correctly identified with a momen-
tum accuracy of 6.3%. These results show sufficient perfor-
mance for further analysis with Kalman filter to reconstruct
the momenta of π− tracks. By updating the present work, we
can obtain other scientific features such as vertex position
and invariant mass. Our study demonstrates the possibility
of GNN to be applied to data analysis in nuclear physics.
As shown in the momentum regressions, this machine learn-
ing technique may exceed the traditional method. Machine
learning techniques with GNN will play an important role in
future nuclear experiments with heavy-ion beams.
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Fig. 7 Performance of charge and momentum estimation. a Score dis-
tribution of the charge classification. Negative charge has label 1 (red),
and positive charge has label 0 (black). b ROC curve of the charge
classification. c Distribution of !p/p in the momentum regression. d
Distribution of !(dx/dz) in the momentum regression. e Distribution
of !(dy/dz) in the momentum regression

hits from each MFT layer. Then straight tracks are obtained
by fitting each combination. To obtain a fitted track, four hits
are required at least. Therefore, π− tracks which have less
than four MFT hits can not be found in this method. Each hit
combination is examined with following criteria. If the num-
ber of hits is more than four and if calculated χ2/ndf is more
than 30, such a track candidate is discarded. Subsequently,
tracks remained as candidates are extrapolated to the posi-
tions of the PSB and the PSFE to examine whether or not an
associated hit exists. Since the momentum range of π− is 0.2
– 0.8 GeV/c and since the strength of the magnetic field is
1 T in our experiment, curvatures of particle tracks are small.
When the residual between an extrapolated track and a PSB
hit is less than 0.4 radian in the azimuthal angle and 150 mm
in the Z axis, the PSB hit is assigned as an associated hit.
For the PSFE, its association is examined by the residual of

Fig. 8 Flowchart of the track finding method without GNN

the azimuthal angle of 0.4 radian. If a track candidate has
an associated PSB or PSFE hit, such a candidate is quali-
fied. Next, MDC hits along track candidates are collected.
By extrapolating a track to each MDC cylindrical layer, the
azimuthal angle of the track in each MDC layer is estimated
and compared with that of hit wires. Here, angles of stereo
wires are taken into account by using the Z-coordinate of
the crossing point of the track. When the residual between a
track and an MDC hit is less than 0.4 radian, the MDC hit
is assigned as an associated hit. Since multiple tracks can
make MDC hits on close wires, a track candidate can have
multiple associated MDC hits in a layer. Therefore, we have
compared three different treatments about MDC hits.

1. Choose the closest MDC hit to the track candidate
2. Consider all combinations by using an associated hit in

each MDC layer
3. Consider all combinations by using one or zero associated

hits in each MDC layer

The method 1 has the simplest condition that has the min-
imum number of track candidate. The method 3 has the most
comprehensive condition but the number of track candidate
becomes large. A track candidate which has less than seven
MDC hits is discarded in the all methods. In these analyses,
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Summary and prospect

✤ WASA-FRS hypernuclear experiment aims to study light hypernuclei

- Lifetime of hypertriton and 4ΛH

- Existence of nnΛ


✤ Data taking has been successfully carried out in Jan. - Mar. 2022

✤ Analysis of WASA detectors and FRS are ongoing


- WASA : Tracking, PID

- FRS : Momentum and angle reconstruction


✤ GNN analyses have been developed by MC simulation

- Node clustering, Momentum and charge estimation


Prospect 
✤ GNN analyses will be applied to the WASA-FRS data soon

✤ Combined analysis with WASA and FRS
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