

Constraining coupled channels dynamics using femtoscopic correlations with ALICE at the LHC

Ramona Lea for the ALICE Collaboration University of Brescia and INFN Pavia

ramona.lea@cern.ch

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023)

Motivation: inelastic channels in h-h interactions

• Coupled-channel dynamics widely present in hadron-hadron strong interactions

- Close in mass and same quantum numbers (e.g. B,S,Q)
- On-shell and off-shell processes from one channel to the other
- Can be at the origin of several phenomena
 - Molecular states as $\Lambda(1405) \rightarrow \text{interplay of } \bar{K}N-\Sigma\pi$
- Annihilation dynamics for B-B interactions
 - Multi-meson channels below threshold

08/06/2022

More details in Valentina Mantovani Sarti presentation

$$C_{\rm A-B}(k^*) = \int S_{1\to1}(\vec{r}^*) \left| \psi_{1\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* + \sum_j \omega_j^{\rm prod} \int S_j(\vec{r}^*) \left| \psi_{j\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

R. Lednický, et. al. Phys. At. Nucl. 61 (1998) J. Haidenbauer NPA 981 (2018) Y. Kamiya et al., PRL 124 (2020) 132501

08/06/2022

k*

$$C_{A-B}(k^*) = \int S_{1\to1}(\vec{r}^*) \left| \psi_{1\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* + \sum_j \omega_j^{\text{prod}} \int S_j(\vec{r}^*) \left| \psi_{j\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

R. Lednický, et. al. Phys. At. Nucl. 61 (1998) J. Haidenbauer NPA 981 (2018) Y. Kamiya et al., PRL 124 (2020) 132501

08/06/2022

$$C_{\rm A-B}(k^*) = \int S_{1\to1}(\vec{r}^*) \left| \psi_{1\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* + \sum_j \omega_j^{\rm prod} \int S_j(\vec{r}^*) \left| \psi_{j\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

R. Lednický, et. al. Phys. At. Nucl. 61 (1998) J. Haidenbauer NPA 981 (2018) Y. Kamiya et al., PRL 124 (2020) 132501

08/06/2022

The emitting source in small colliding systems

- Data-driven analysis on p-p and p-A pairs
 - Possible presence of collective effect $\rightarrow m_{\tau}$ scaling of the core radius
 - Contribution of strongly decaying resonances with cτ ~1 fm
- Common universal core source for mesons and baryons


```
More details in Dimitar
Mihaylov presentation
```

$$C_{\rm A-B}(k^*) = \int S_{1\to1}(\vec{r}^*) \left| \psi_{1\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* + \sum_j \omega_j^{\rm prod} \int S_j(\vec{r}^*) \left| \psi_{j\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

R. Lednický, et. al. Phys. At. Nucl. 61 (1998) J. Haidenbauer NPA 981 (2018) Y. Kamiya et al., PRL 124 (2020) 132501

08/06/2022

Y. Kamiya et al., PRL 124 (2020) 132501

08/06/2022

08/06/2022

- Conversion weights (ω_j^{prod}) \circ control coupled channels (CC) contribution
 - depend on primary yield and kinematics Ο
 - thermal models and transport models

$$C_{\rm A-B}(k^*) = \int S_{1\to1}(\vec{r}^*) \left| \psi_{1\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* + \sum_j \omega_j^{\rm prod} \int S_j(\vec{r}^*) \left| \psi_{j\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

R. Lednický, et. al. Phys. At. Nucl. 61 (1998) J. Haidenbauer NPA 981 (2018) Y. Kamiya et al., PRL 124 (2020) 132501

08/06/2022

J. Haidenbauer NPA 981 (2018) Y. Kamiya et al., PRL 124 (2020) 132501

08/06/2022

... from small to large systems

By changing the colliding system it is possible to probe interaction distances ranging from ~1 fm up to ~10 fm

08/06/2022

... from small to large systems

$$C_{\rm A-B}(k^*) = \int S_{1\to1}(\vec{r}^*) \left| \psi_{1\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* + \sum_j \omega_j^{\rm prod} \int S_j(\vec{r}^*) \left| \psi_{j\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

... from small to large systems

- System-size survey
 - For large radii contribution from CC gets negligible → elastic scattering

$$C_{\rm A-B}(k^*) = \int S_{1\to1}(\vec{r}^*) \left| \psi_{1\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* + \sum_j \omega_j^{\rm prod} \int S_j(\vec{r}^*) \left| \psi_{j\to1}(\vec{k}^*, \vec{r}^*) \right|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

08/06/2022

K⁻p interaction

K⁻p interaction

_ K[−]p interaction

deeply attractive

several resonances

- several **coupled channels** ($\bar{K}^{0}n, \pi^{+}\Sigma^{-}, \pi^{0}\Sigma^{0}, \pi^{-}\Sigma^{+}, \pi^{0}\Lambda$)
 - K̄N ↔πΣ dynamics: formation of the Λ(1405),
 ~27 MeV below K⁻p threshold
 - state-of-the-art chiral models (*χ*EFT) are in agreement above threshold
 - large discrepancies in the region below threshold
 - constraint at threshold by SIDDARTHA measurement of kaonic hydrogen 1s level shift and width
 - scattering length

Particle Data Group Phys.Rev. D98 (2018) no.3, 030001 SIDDHARTA Collaboration PLB704 (2011) 113

08/06/2022

K⁻p from small to large systems

$$C_{\rm K^-p}(k^*) = \int d^3 \vec{r} \, {}^*S_{\rm K^-p}(\vec{r}\,{}^*) \left| \psi_{\rm K^-p}(\vec{k}\,{}^*,\vec{r}\,{}^*) \right|^2 + \sum_j \omega_j \int d^3 \vec{r} \, {}^*S_j(\vec{r}\,{}^*) \left| \psi_j(\vec{k}\,{}^*,\vec{r}\,{}^*) \right|^2$$

Each coupled channel is accounted in the ω_i weights

- primary production yields fixed from thermal model (Thermal-FIST) [1]
- estimate amount of pairs in kinematic region sensitive to final state interactions
- distribute particles according to blast-wave model [2,3,4]
- normalize to expected yield of K⁻p

V. Vovchenko et al., PRC 100 no. 5 (2019)
 E. Schnedermann et al., PRC 48 (1993)
 ALICE Collaboration, PLB 728 (2014)
 ALICE Collaboration, PRC 101 no. 4 (2020)

08/06/2022

K⁻p from small to large systems $C_{\rm K^{-}p}(k^{*}) = \int d^{3}\vec{r}^{*}S_{\rm K^{-}p}(\vec{r}^{*}) \left|\psi_{\rm K^{-}p}(\vec{k}^{*},\vec{r}^{*})\right|^{2} + \sum \omega_{j} \int d^{3}\vec{r}^{*}S_{\rm K^{-}p}(\vec{r}^{*}) \left|\psi_{\rm K^{-}p}(\vec{r}^{*},\vec{r}^{*})\right|^{2} + \sum \omega_{j} \int d^{3}\vec{r}^{*}S_{\rm K^{-}p}(\vec{r}^{*}) \left|\psi_{\rm K^{-}p}(\vec{r}^{*})\right|^{2} + \sum \omega_{j} \int d^{3}\vec{r}^{*}S_{\rm K^{-}p}(\vec{r}) \left|\psi_{\rm K^{-}p}(\vec{r}^{*})\right|^{2} + \sum \omega_{j} \int d^{3}\vec{r}^{*}S_{\rm K^{-}p}(\vec{r}) \left|\psi_{\rm K^{-}p}(\vec{r})\right|^{2} + \sum \omega_{j} \int d^{3}\vec{r}^{*}S_{\rm K^{-}p}(\vec{r}) \left|\psi_{\rm K^{-}p}(\vec{r})\right|^{2} + \sum \omega_{j} \int d^{3}\vec{r}^{*}S_{\rm K^{-}p}(\vec{r}) \left|\psi_{\rm K^{-}p$ $d^{3}\vec{r}^{*}S_{j}(\vec{r}^{*})\left|\psi_{j}(\vec{k}^{*},\vec{r}^{*})\right|$ 4.0 (x) ALICE Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 60-70% 3.5 $r_{\rm core} = (1.53 \pm 0.05 \pm 0.24) \, {\rm fm}$ 3.0 $r_{\text{eff}}^{\overline{\text{K}}^{0}n} = (1.77 \pm 0.06 \pm 0.24) \text{ fm}$ C 83 (2023) 340 $r_{\text{eff}}^{\Sigma\pi}$ = (2.00 ± 0.07 ± 0.27) fm 2.5 ♦ K p ⊕ K p 2.0 Coulomb+Strong, $\omega_i^{\text{prod,fixed}}$ Eur. Phys. J. 1.5 $0.7 < S_{T} \leq 1$ 1.0 eu, $\alpha^{\text{prod, fixed}}$ uprod,fixed $n_{\sigma_{stat}}$ $\chi^2/NDF = 2.04$ 50 100 150 200 250 0 k^* (MeV/c)

08/06/2022

K⁻p from small to large systems $C_{\mathrm{K}^{-}\mathrm{p}}(k^{*}) = \int d^{3}\vec{r}^{*}S_{\mathrm{K}^{-}\mathrm{p}}(\vec{r}^{*}) \left|\psi_{\mathrm{K}^{-}\mathrm{p}}(\vec{k}^{*},\vec{r}^{*})\right|^{2} + \sum \omega_{j} \int d^{3}\vec{r}^{*}S_{j}$

State-of-the-art Kyoto Model is not able to describe the data from small to large source size

08/06/2022

K⁻p from small to large systems

$$C_{\mathrm{K}^{-}p}(k^{*}) = \int d^{3}\vec{r}^{*}S_{\mathrm{K}^{-}p}(\vec{r}^{*}) \left| \psi_{\mathrm{K}^{-}p}(\vec{k}^{*},\vec{r}^{*}) \right|^{2} + \sum_{j} \omega_{j}^{prod} \alpha_{j} \int d^{3}\vec{r}^{*}S_{j}(\vec{r}^{*}) \left| \psi_{j}(\vec{k}^{*},\vec{r}^{*}) \right|^{2}$$

A correction factor α_i is introduced to quantify the model-to-data deviation

08/06/2022

K⁻p from small to large systems

- Unique constraint and direct access to $K^-p \leftrightarrow \overline{K}^0n$ and $K^-p \leftrightarrow \pi\Sigma$ dynamics
- $\alpha_{\bar{\kappa}^{0}-n}$ deviates from unity:
 - $K^-p \leftrightarrow \bar{K}^0$ n currently implemented in Kyoto 0 χ EFT is too weak
 - fine tuning of Kyoto χ EFT is needed and Ο data from hadron-hadron collisions have to be taken into account

The baryon-antibaryon interaction

The baryon-antibaryon interaction

ALICE

- B-B interaction at low energies dominated by annihilation processes
 - B– \overline{B} ↔nπ, nK, πK, …
- pp
 - Low-energy scattering experiments available only down to $p_{lab} \approx 200 \text{ MeV}/c$
 - At threshold level shifts and widths of $p-\bar{p}$ atoms
 - Existence of baryonia states?
- $p-\bar{\Lambda}$ and $\Lambda-\bar{\Lambda}$:
 - experimental informations very scarce
 - only available data $p\bar{p} \rightarrow \Lambda \bar{\Lambda}$

E. Klempt et al. Phys. Rept. 413 (2005) E. Klempt et al. Phys. Rept. 368 (2002) D. Zhou and R.G. E. Timmermans PRC86 (2012) J. Haidenbauer et al. JHEP 1707 (2017)

The baryon-antibaryon interaction

- B-B interaction at low energies dominated by annihilation processes
 - B– \overline{B} ↔nπ, nK, πK, ...
- pp
 - Low-energy scattering experiments available only down to p_{lab} ≈ 200 MeV/c
 - At threshold level shifts and widths of $p-\bar{p}$ atoms
 - Existence of baryonia states?
- $p-\bar{\Lambda}$ and $\Lambda-\bar{\Lambda}$:
 - experimental informations very scarce
 - only available data $p\bar{p} \rightarrow \Lambda \bar{\Lambda}$
- Two-particle momentum correlation measured by ALICE for $p-\bar{p}, p-\bar{\Lambda}$ and $\Lambda-\bar{\Lambda}$
 - spin-averaged scattering parameters in agreement for all B−B̄ pairs → the annihilation part for all B−B̄ pairs is similar at the same relative momentum

Phys. Lett. B 802 (2020) 135223

08/06/2022

- No exact wave functions available → single-channel Lednický-Lyuboshits formula
- Assuming the scattering parameters obtained in Pb–Pb
 - nice agreement with $\Lambda \overline{\Lambda}$ data
 - inelastic part present but not dominant

- No exact wave functions available → single-channel Lednický-Lyuboshits formula
- Assuming the scattering parameters obtained in Pb–Pb
 - nice agreement with $\Lambda \overline{\Lambda}$ data
 - inelastic part present but not dominant
 - \circ underestimate of p- $\overline{\Lambda}$ data
 - large coupling to multi-meson annihilation channels

- Elastic part $\Re(f_0)$ and fixed from Pb–Pb data, free inelastic $\Im(f_0)$ and d_0
 - Extracted values for $\Lambda \overline{\Lambda}$ are compatible with Pb–Pb scattering parameters

08/06/2022

- Elastic part $\Re(f_0)$ and fixed from Pb–Pb data, free inelastic $\Im(f_0)$ and d_0
 - Extracted values for $\Lambda \overline{\Lambda}$ are compatible with Pb–Pb scattering parameters
 - to reproduce $p-\bar{\Lambda}$ data $\Im(f_0)$ has to be increased by a factor ~ 5.3
 - Larger presence of multi-meson annihilation channels in p-Ā
 - no bound state?

- Estimate based on kinematics (EPOS) and SU(3) flavor symmetry for 2-meson channels (ππ
 , πK
 - Similar amount of $p-\bar{\Lambda}$ and $\Lambda-\bar{\Lambda}$ pairs at low $k^*(\sim 6.4\%)$
 - $\circ \quad \mbox{coupling strength from meson-baryon SU(3)} \\ \mbox{lagrangian for } p-\bar{\Lambda} \sim 3 \mbox{ times larger than } \Lambda-\bar{\Lambda} \\$

$$\frac{g_{2M\to p-\overline{\Lambda}} \times N_{2M\to p-\overline{\Lambda}}}{g_{2M\to \Lambda-\overline{\Lambda}} \times N_{2M\to \Lambda-\overline{\Lambda}}} \approx 6.3$$

Conclusions and outlook

- Momentum correlation technique applied to data collected at the LHC in different collision systems
 - high-precision data at low momenta
 - sensitivity to inelastic channels as a function of the source size
- KN and KN interaction: New constraints for low-energy QCD chiral models
 - First experimental access to coupled channels dynamics ($K^-p \leftrightarrow \bar{K}^0n$, $K^-p \leftrightarrow \pi\Sigma$, $K^-p \leftrightarrow \pi\Lambda$)
 - Data-model tension in description of K⁻p interaction:
 - $K^-p \leftrightarrow \bar{K}^0$ n currently implemented in state-of-the-art Kyoto χ EFT is too weak
- Baryon-antibaryon in pp collisions
 - \circ $\Lambda \overline{\Lambda}$: annihilation not dominant and room for baryonia
 - $p-\bar{\Lambda}$: large presence of annihilation channels \rightarrow no formation of bound states?
 - Need for theoretical input on $p-\bar{\Lambda}$ and $\Lambda-\bar{\Lambda}$ interactions

Conclusions and outlook

- Momentum correlation technique applied to data collected at the LHC in different collision systems
 - $\circ \quad \text{high-precision data at low momenta}$
 - sensitivity to inelastic channels as a function of the source size
- KN and KN interaction: New constraints for low-energy QCD chiral models
 - First experimental access to coupled channels dynamics ($K^-p \leftrightarrow \bar{K}^0n$, $K^-p \leftrightarrow \pi\Sigma$, $K^-p \leftrightarrow \pi\Lambda$)
 - Data-model tension in description of K⁻p interaction:
 - $K^-p \leftrightarrow \bar{K}^0$ n currently implemented in state-of-the-art Kyoto χ EFT is too weak
- Baryon-antibaryon in pp collisions
 - \circ $\Lambda \overline{\Lambda}$: annihilation not dominant and room for bar
 - $p-\bar{\Lambda}$: large presence of annihilation channels → no
 - Need for theoretical input on $p-\overline{\Lambda}$ and $\Lambda-\overline{\Lambda}$ interac

More details on two(three) particles interactions:

- Valentina Mantovani Sarti
- Dimitar Mihaylov
- Wioleta Rzęsa
- <u>Laura Šerkšnytė</u>
- <u>Marcel Lesch</u>

08/06/2022

K⁺p interaction

K⁺p interaction

- Repulsive (due to Coulomb and strong interactions)
- No coupled channels
- No resonances
 - well known [1]

[1] K. Aoki and D. Jido, PTEP 2019 no. 1, (2019) 013D01 (arXiv:1806.00925 [nucl-th])

08/06/2022

K⁻p interaction and Λ (1405)

- Nature of $\Lambda(1405)$: dynamically generated resonance
 - Models based on below-threshold extrapolations
 - positions of pole are model dependent (relative contributions not measured experimentally)
 - state-of-the-art chiral models (χEFT) are in agreement above threshold
 - large discrepancies in the region below threshold
 - constraint at threshold by SIDDARTHA measurement [1] of kaonic hydrogen 1s level shift and width
 - scattering length

08/06/2022

KN and $\overline{K}N$ interactions : the game changer

Two-particle momentum correlation measured with ALICE at the LHC

KN and $\overline{K}N$ interactions : the game changer

Two-particle momentum correlation measured with ALICE at the LHC

- KN and $\overline{K}N$ interaction
 - ALICE Collaboration PRL 124 (2020) 9, 092301
 - ALICE Collaboration PLB 822 (2021) 136708
 - ALICE Collaboration arXiv: 2205.15176

• and other interactions:

- pp, pA, AA: ALICE Collaboration PRC 99(2019)
- ΛΛ: ALICE Collaboration PLB 797 (2019) 134822
- o pE: ALICE Collaboration PRL 123 (2019) 134822
- pΣ^o:ALICE Collaboration PLB 805 (2020) 135419
- o pΩ: ALICE Collaboration Nature 588 (2020) 232-238
- o p**q**: ALICE Collaboration PRL 127 (2021) 172301
- B-**B**:ALICE Collaboration PLB B 829 (2022) 137060
- pΛ: ALICE Collaboration arXiv:2104.04427
- pD: ALICE Collaboration arXiv:2201.05352
- $\Lambda \Xi$: ALICE Collaboration arXiv:2204.10258
- ppp and pp Λ : ALICE Collaboration arXiv:2206.03344

ALICE

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (d*E*/d*x*), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade).

K⁻p in large systems

- K⁺p used to extract source size
 - Gaussian source
 - Lednický-Lyuboshitz (LL) fit to extract r_{eff}

PLB 822 (2021) 136708

K⁻p in large systems

- K⁺p used to extract source size
 - Gaussian source
 - Lednický-Lyuboshitz (LL) fit to extract r_{eff}
- Large system: no coupled channels (as in Kyoto model)
- Use Lednický-Lyuboshitz (LL) fit to extract $\Re f_0$ and $\Im f_0$

PLB 822 (2021) 136708

K⁻p in large systems

- K⁺p used to extract source size
 - Gaussian source
 - Lednický-Lyuboshitz (LL) fit to extract r_{eff}
- Large system: no coupled channels (as in Kyoto model)
- Use Lednický-Lyuboshitz (LL) fit to extract $\Re f_0$ and $\Im f_0$
- $\Re f_0$ and $\Im f_0$ in agreement with available data and calculations
 - Alternative to exotic atoms and scattering experiments!

ALI-PUB-500325

PLB 822 (2021) 136708

08/06/2022

Kp emitting source

The data are well reproduced by the assumed K^+p interaction and different r_{core} are extracted

Fit: CATS D. L. Mihaylov et al., EPJ C78 (2018) 5, 394

08/06/2022

Accessing KN and $\overline{K}N$ interaction with K^o

K⁰, –p system is a combination of strong eigenstates

$$|K_s^0 p\rangle = \frac{1}{\sqrt{2}} \left[|K^0 p\rangle - |\bar{K}^0 p\rangle \right] \implies C_{K_s^0 p} = \frac{1}{2} \left[C_{K^0 p} + C_{\bar{K}^0 p} \right]$$

- Weak strong repulsion
- 1 CC below threshold: K⁺n
 - predicted to be a weak coupling
- Calculations from **A**oki-**J**ido χ EFT model for KN[1]

[1] K. Aoki and D. Jido, PTEP 2019, 013D01 (2019), 1806.00925.

08/06/2022

Accessing KN and $\overline{K}N$ interaction with K°

K⁰_s –p system is a combination of strong eigenstates

$$|K_s^0 p\rangle = \frac{1}{\sqrt{2}} \left[|K^0 p\rangle - \left| \bar{K}^0 p \right\rangle \right] \implies C_{K_s^0 p} = \frac{1}{2} \left[C_{K^0 p} + C_{\bar{K}^0 p} \right]$$

- Moderate attraction
- 3 CC below threshold: $\pi^0 \Sigma^+$, $\pi^+ \Sigma^0$, $\pi^+ \Lambda$
 - large $\pi\Sigma$ coupling (as in K⁻-p)
- Calculations from Kyoto χEFT model for KN used for K⁻p [1,2]

[1] K. Miyahara, et al., PRC98, 025201 (2018), arXiv: 1804.08269
[2] Y.Kamiya, et al., PRL124 (2020) 132501

08/06/2022

K^o_s-p interaction

ALI-PREL-487651

[1] ALICE Collaboration, PRL 124, 092301 (2020) [2] Y.Kamiya, et al., PRL 124 132501 (2020)

- Gaussian source function with r=1.18±0.12 fm [1]
- $K^{o}p(\bar{p})$ and $\bar{K}^{o}(\bar{p}) \psi$ with CC provided by Kyoto χ EFT
- Conversions weights $\omega = 1$ for K°p, K+n, and $\pi^+\Lambda$; $\omega_{\Sigma\pi} = 2.95$ [2]
- Model describes data within 2σ between 0 and 300 MeV/c
 - State-of-the-art theory well describes the experimental data
 - Small caveat: source not (yet) studied in details

08/06/2022

Contributions to the experimental correlation function

• Fit of the $C(k^*) = C_{data}(k^*)/C_{baseline}(k^*)$ to obtain the parameters of the strong interaction between K_{s}^{0} and $p(\bar{p})$ is performed with the function:

$$\sum_{i,j} \lambda_{ij} \left(C_{ij}(k^*) - 1 \right) = \lambda_{\tilde{K}} \left(C_{\tilde{K}}(k^*) - 1 \right) + \lambda_{\tilde{p}(\tilde{p})} \left(C_{\tilde{p}(\tilde{p})}(k^*) - 1 \right)$$

K°_s–p correlation function fit with Lednický-Lyuboshitz

Scattering amplitude:

$$f(k^*) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right)^{-1}$$

- f_0 scattering length, d_0 effective range of interaction
 - \circ $\Re f_0, \Im f_0$ estimated parameters
- $\Re f_0 > 0$: attractive interaction
- ℑf₀ ≠0 : presence of annihilation processes

08/06/2022

Resonances used for $\pi\Sigma(\Lambda)$ source (π)

- ALICE
- For modeling the source every resonance with a cτ > 8 fm is taken out and the yields properly renormalized. These resonance are used to determine the decay-kinematics with EPOS.

Primordial fraction	Resonance fractions			
	ст < 1 fm	1 < <i>c1</i> < 2 fm	2 < c 7 < 5 fm	<i>ct</i> > 5 fm
28 %	15 %	35 %	10 %	12 %

$$< m(\pi) > = 1124 \text{ MeV}/c^2$$

Resonance	ρο	ρ^{\star}	ω	K(892)**	
Yield (in %)	9.01	8.71	7.67	2.29	

Only resonances which contribute more then 2% to total yield are shown

Resonances used for $\pi\Sigma(\Lambda)$ source ($\Sigma\Lambda$)

 For modeling the source every resonance with a cτ > 8 fm is taken out and the yields properly renormalized. These resonance are used to determine the decay-kinematics with EPOS.

Primordial fraction	Resonance fractions			
	<i>ct</i> < 1 fm	1 <i>< c1</i> < 2 fm	2 < c 7 < 5 fm	c t > 5 fm
26 %	0 %	5 %	5 %	64 %

$$< m(\Sigma) > = 1463 \text{ MeV/c}^2$$

 $< c\tau(\Sigma) > = 4.7 \text{ fm}$

Resonance	Σο	Σ*0	Σ**	Σ*-
Yield (in %)	27	12	12	12

Only resonances which contribute more then 2% to total yield are shown

Kaon-proton interaction - Large systems

Lednický-Lyuboshitz model

$$C(\mathbf{k}^*) = \frac{\int S(\mathbf{r}^*, \mathbf{k}^*) |\psi(\mathbf{r}^*, \mathbf{k}^*)|^2}{\int S(\mathbf{r}^*, \mathbf{k}^*)} \mathrm{d}^4 r^*$$

$$|\psi(r^*,k^*)| = \sqrt{A_C(\eta)} \left[\exp(-ik^*r^*)F(-i\eta,1,i\xi) + f_c(k^*)\frac{G}{r^*} \right]$$

$$f_{c}(k^{*}) = \left(\frac{1}{f_{0}} + \frac{d_{0} \cdot k^{*2}}{2} - \frac{-2h(k^{*}a_{c})}{s_{c}} - ik^{*}A_{c}(k^{*})\right)^{-1}$$

- Numerically solvable (strong+Coulomb)
- **3 parameters:** $\Re f_0$, $\Im f_0$ and source r define the correlation function.
- d₀ = 0 (zero effective range approx.)

08/06/2022

Kaon-proton in Pb-Pb

- No K⁰n structure
- Simultaneous description (and fit) of the correlation functions for 6 centralities (0-50%) with two parameters and 6 radii
- Radii constrained from K⁺p

Modeling the correlation $p\overline{p}$ correlation

- Chiral Effective Field Theory at N³LO (with n-n̄: coupled-channel) wavefunctions with Coulomb
 - S and P waves, tuned to scattering data and protonium
- Approximate inclusion of annihilation channels (X→ p-p̄) using the Migdal-Watson approximation
 - \circ ~~ elastic WF rescaled by a coupling weight $\omega_{_{\rm PW}}$ to be fitted to data
 - Investigation on the shape of each PWs to reduce number of parameters
 - ${}^{1}S_{0}$ for S states
 - ${}^{3}P_{0}^{\circ}$ and ${}^{1}P_{1}^{\circ}$ for P states
- Calculations performed with CATS framework

Results on pp: modelling the correlation

ALICE

- No cusp of n-n̄: opening at k*~ 50 MeV/c → in agreement with charge-exchange cross-sections
- rise of CF at low k*
 - no agreement with Coulomb only
 - χEFT calculations with no explicit CC terms do not reproduce the data at low k*
 - evidence of annihilation channels feeding into p-p
 pairs
- Annihilation channels X→ p-p̄
 - better agreement with the data is obtained
 - \circ Dominant coupling weights in ${}^{3}P_{0}$ and ${}^{1}S_{0}$
 - $\omega_{_{3P0}} = 40.04 \pm 4.06 \text{ (stat)} \pm 4.24 \text{ (syst)}$
 - $\omega_{1S0} = 1.19 \pm 0.10 \text{ (stat)} \pm 0.19 \text{ (syst)}$

Phys. Lett. B 829 (2022) 137060

08/06/2022

Fit procedure in $B-\overline{B}$ femtoscopy

- Residual contributions included through λ parameters (DCA/CPA Template Fits)
- Non-femtoscopic background:
 - Mini-jet background ⇒ Shape fixed by Ancestors Template
 - Large k* kinematics effects \Rightarrow Pol1/Pol2 (prefit in k* [400-2500] MeV/c and kept fixed in the final fit)

$$C_{tot}(k^*) = N_D \cdot C_{model}(k^*) \cdot C_{BCKG}(k^*)$$

- Total correlation function:
 - Free parameters: weights w_c , Norm N_p
 - Coupled-channel modeling affects ONLY C_{model}

$$C_{BCKG}(k^*) = [w_C C_C(k^*) + (1-w_C) C_{NC}(k^*) + (a+bk^*+c(k^*)^2)]$$

08/06/2022