Molecular $P^{\Lambda}_{\psi s}$ Pentaquarks: EFT & Phenomenological Considerations

Manuel Pavon Valderrama

Beihang University

Hadrons 2023, Genoa, Italy, June 2023

With FZ Peng, MJ Yan, ZY Yang, M Sánchez

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contents

- Exotic hadrons, including hadronic molecules
- Pentaquarks
 - Molecular interpretation
 - ▶ Relation between the P[∧]_{ψs}(4338) and P[∧]_{ψs}(4459) or, easier to pronounce: P_{cs}(4338) and P_{cs}(4459)

- EFT predictions & loose ends
- Phenomenology
- Summary and Conclusions

FZ Peng, MJ Yan, M Sánchez, MPV; EPJC 81 (2021) 7, 666

- MJ Yan, FZ Peng, M Sánchez, MPV; EPJC 82 (2022) 6, 574
- MJ Yan, FZ Peng, M Sánchez, MPV; PRD 107 (2023) 7, 074025
- ZY Yang, FZ Peng, MJ Yan, M Sánchez, MPV; arXiv:2211.08211

FZ Peng, MJ Yan, M Sánchez, MPV; arXiv:2211.09154

Exotic hadrons

Exotic hadrons

Standard hadrons come in two varieties

But there are more types of possible hadrons...

Exotic hadrons: the X(3872)

Exotic hadrons became extremely popular thanks to a discovery by the Belle collaboration in $B^{\pm} \rightarrow K^{\pm} J/\Psi \pi \pi$ (03):

Looks molecular, but no wide consensus about its nature yet!

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Phillip Tetlock: Expert political judgement, how good it is? (2005)

・ロト・日本・モト・モート ヨー うへで

Phillip Tetlock: Expert political judgement, how good it is? (2005) (hint: as good as dart-throwing chimps... except for the foxes)

Phillip Tetlock: Expert political judgement, how good it is? (2005) (hint: as good as dart-throwing chimps... except for the foxes)

Phillip Tetlock: Expert political judgement, how good it is? (2005) (hint: as good as dart-throwing chimps... except for the foxes)

Hedgehog: knows one big idea (intellectual economy) Resistance to update priors Convergence Fav word: Moreover

Fox: knows many little ideas (intellectual scavenger) Bayesian operators Zigzagging Fav word: However

Phillip Tetlock: Expert political judgement, how good it is? (2005) (hint: as good as dart-throwing chimps... except for the foxes)

- Hedgehog: knows one big idea (intellectual economy) Resistance to update priors Convergence Fav word: Moreover
- Fox: knows many little ideas (intellectual scavenger) Bayesian operators Zigzagging Fav word: However

They form a "thought ecosystem".

Yet, hadron physics is also messy: better lean to the fox side.

Exotic hadrons

For X(3872): contradictory/ambiguous information to be balanced (i) Close to $D^*\bar{D}$ threshold: large coupling with it Tornqvist hep-ph/0308277; Voloshin PLB 579, 316; Braaten, Kusunoki PRD 69, 074005 (ii) $X \rightarrow \psi(nS)\gamma$, n = 1, 2: $c\bar{c}$ core Guo et al. PLB 742 (2015) 394-398 (iii) $X \rightarrow J/\psi 2\pi$ and $X \rightarrow J/\psi 3\pi$ pattern easier to explain in molecular picture Gamermann, Oset PRD 80 (2009) 014003 ...but compact state can also have this branching ratio Swanson PLB 588 (2004) 189-195

(iv) X(4014) by Belle (predicted mol partner, but poor statistics)

Often forgotten fact: the wave function is not an observable

Pentaquarks

Pentaquarks: the discoveries of the LHCb

The most famous and the most recent, as found in the respective LHCb manuscripts

(日)、

э

Pentaquarks: a new era (again)

This is the dawn of a new era...

(ロ)、

Pentaquarks: a new era (again)

This is the dawn of a new era...

The shale gas shallow bound state revolution & the second pentaquark party in 20 years!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Pentaquarks: a new era (again)

This is the dawn of a new era...

The shale gas shallow bound state revolution & the second pentaquark party in 20 years!

But never forget the massive hangover after the first party

Pentaquarks: don't worry

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A@

Pentaquarks: don't worry

Unlike regular fracking, pentafracking is still legal in Europe ;)

э

Pentaquarks: current candidates

The pre- and post-pandemic pentaquark candidates as molecules:

Candidate	Molecule	JP
$P_{\psi}^{N}(4312)$	$\Sigma_c \bar{D}$	$\frac{1}{2}^{-}$
$P_{\psi}^{N}(4440)$	$\Sigma_c \bar{D}^*$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}?$
$P_{\psi}^{N}(4457)$	$\Sigma_c \bar{D}^*, \Lambda_{c1} \bar{D}$	$\frac{3}{2}^{-}, \frac{1}{2}^{-}, \frac{1}{2}^{+}?$
$P_{\psi s}^{\Lambda}(4338)$	$\Xi_c \bar{D}$	$\frac{1}{2}^{-}$
$P^{\Lambda}_{\psi s}(4459)$	$\Xi_c \bar{D}^*$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}?$

Caveat: they are nor necessarily molecules (or even states) Also a $P_{\psi}^{N}(4337)$, but difficult to interpret as a molecule

MJ Yan, FZ Peng, M Sánchez, MPV, EPJC 82, 6, 574; Nakamura, Hosaka, Yamaguchi, PRD 104, 9, L091503

Two $P_{\psi}^{\Lambda}(c\bar{c}sqq)$ molecular pentaquark candidates:

$$\begin{split} M_1 &= 4338.2 \pm 0.7 \, \mathrm{MeV} \,, \quad \Gamma_1 = 7.0 \pm 1.2 \, \mathrm{MeV} \,, \\ M_2 &= 4458.8 \pm 2.9^{+4.7}_{-1.1} \, \mathrm{MeV} \,, \quad \Gamma_2 = 17.3 \pm 6.5^{+8.0}_{-5.7} \, \mathrm{MeV} \,, \end{split}$$

Most straightforward molecular explanations:

$$P^{\Lambda}_{\psi s1} \sim \bar{D} \Xi_c \quad , \quad P^{\Lambda}_{\psi s2} \sim \bar{D}^* \Xi_c$$

with binding energies $B_1 = -2.5$ (resonance), $B_2 = 18.8$.

What are the implications of HQSS for these two pentaquarks?

Molecule	J ^P	Without HQSS	With HQSS
$\bar{D}\Xi_c$	$\frac{1}{2}^{-}$	$V = c_1$	$V = d_a$
$\bar{D}\Xi_c^*$	$\frac{1}{2}^{-},\frac{3}{2}^{-}$	$V = c_2$	$V = d_a$

If we use the $P_{\psi s}^{\Lambda}(4459)$ as input, this will predict $B_1 = 16.9 \ (M_1 = 4319.4)$ for the $P_{\psi s}^{\Lambda}(4338)$. But:

(i) Exp. error: $B_1 = 16.9^{+2.9}_{-4.7}$ ($M_1 = 4319.4^{+4.7}_{-2.9}$) (underestimation?) (ii) EFT truncation error: $B = 16.9^{+9.3}_{-8.5}$ ($M_1 = 4319.4^{+8.5}_{-9.3}$) (iii) HQSS error: $B_1 = 16.9^{+18.5}_{-13.3}$ ($M_1 = 4319.4^{+13.3}_{-18.5}$) Together: $B_1 = 17^{+21}_{-16}$ ($M = 4319^{+16}_{-21}$) vs $B_1 = -2.5 \pm 0.7$ ($M = 4338.2 \pm 0.7$)

Yet, there are more factors in play:

(iv) Breit-Wigner param not ideal for near-threshold poles: the $P_{\psi s}^{\Lambda}(4338)$ might be below threshold (bound/virtual) Albaladejo, Guo, Hidalgo-Duque, Nieves PLB755 (2016) 337-342; JPAC Coll. PRL 123 (2019) 9, 092001 (v) Nearby $\bar{D} \Xi_c^*$ CC dynamics for the $P_{\psi s}^{\Lambda}(4459)$ (if $J^P = \frac{3}{2}^-$):

$$V(\bar{D}^* \Xi_c - \bar{D} \Xi_c^*) = egin{pmatrix} d_a & e_a \ e_a & c_a \end{pmatrix}$$

This further reduces B_1 by a few MeV.

- (vi) The $P^{\Lambda}_{\psi s}(4459)$ might be two peaks / plus poorer statistics check the LHCb paper on the $P^{\Lambda}_{\psi s}(4459)$
- (vii) The $P_{\psi s}^{\Lambda}(4338)$ might be the $P_{\psi s}^{\Sigma^0}(4338)$

From our previous prediction in EPJC 82 (2022) 6, 574

$P_{\psi s}^{\Lambda}$ as meson-baryon molecules: EFT description

We will consider contact EFT with $\bar{D}_s^{(*)} \Lambda_c - \bar{D}^{(*)} \Xi_c$ dynamics

$$V_{\mathcal{C}}(P_{\psi s}^{\Lambda}) = \begin{pmatrix} \frac{1}{2}(d_{a} + \tilde{d}_{a}) & \frac{1}{\sqrt{2}}(d_{a} - \tilde{d}_{a}) \\ \frac{1}{\sqrt{2}}(d_{a} - \tilde{d}_{a}) & d_{a} \end{pmatrix}$$

Creates a width for $P_{\psi s}^{\Lambda}$ proportional to $\left(d_{a}-\tilde{d}_{a}\right)^{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$P^{\Lambda}_{\psi s}$ as meson-baryon molecules: predictions

Predictions for the spectrum (from mass and width): Set B_1 : $P_{cs}(4338)$ as input; Set B_2 : $P_{cs}(4459)$ as input

System	Potential	Set B_1	Set B_2	Туре
$\bar{D}\Lambda_c$	<i>d</i> _a	$(4111.3)^{V}$	$(4153.7)^{V}$	P_{ψ}^{N}
$\bar{D}^*\Lambda_c$	<i>Ĩ</i> a	$(4256.7)^{V}$	4295.0	P_ψ^N
$\bar{D}_s \Lambda_c$	$\left(\begin{array}{c} \frac{1}{2}(d_a + \tilde{d}_a) & \frac{1}{\sqrt{2}}(d_a - \tilde{d}_a) \end{array} \right)$	4254.8	4230.5	$P^{\Lambda}_{\psi s}$
$\bar{D}\Xi_c$	$\left(\frac{1}{\sqrt{2}} (d_a - \tilde{d}_a) d_a \right)$	Input	4316.7	$P_{\psi s}^{\Lambda}$
$\bar{D}_s^* \Lambda_c$	$\left(\begin{array}{c} \frac{1}{2}(d_a + \tilde{d}_a) & \frac{1}{\sqrt{2}}(d_a - \tilde{d}_a) \end{array} \right)$	4398.4	4375.2	$P^{\Lambda}_{\psi s}$
$\bar{D}^* \Xi_c$	$\left(\frac{1}{\sqrt{2}} (d_a - \tilde{d}_a) d_a \right)$	4479.2	Input	$P_{\psi s}^{\Lambda}$
$\bar{D}\Xi_c$	<i>d</i> _a	$(4297.4)^{V}$	4336.3	$P_{\psi s}^{\Sigma}$
$\bar{D}^* \Xi_c$	<i>Ĩ</i> a	(4442.7) ^V	4477.5	$P_{\psi s}^{\Sigma}$
$\bar{D}_s \Xi_c$	<i>d</i> _a	$(4401.4)^{V}$	4437.3	$P_{\psi ss}^{\Xi}$
$\bar{D}_s^* \Xi_c$	\widetilde{d}_{a}	(4548.3) ^V	4580.9	$P_{\psi ss}^{\Xi}$

$P^{\Lambda}_{\psi s}$ as meson-baryon molecules

We consistently predict a $P_{\psi s}^{\Lambda}(4255)$. But how solid is this? No clear consensus:

(i) LHCb manuscript: constraints on fit fractions (i.a) $P_{\psi s}^{\Lambda}(4338)$, $f = 0.125 \pm 0.007 \pm 0.019$ (i.b) $P_{\psi s}^{\Lambda}(4255)$, f < 0.087 at 90% C.L.

Fit fraction of X in $A \rightarrow BCD$ $(X = P_{\psi s}^{\Lambda}, A = \Lambda_b, B = J/\psi, C = \Lambda, D = \bar{p})$

$$f(X|BC) = \frac{\Gamma(A \to XD \to BCD)}{\Gamma(A \to BCD)} \approx \frac{\mathcal{B}(A \to XD) \,\mathcal{B}(X \to BC)}{\mathcal{B}(A \to BCD)}$$

Problem: $\mathcal{B}(P_{\psi s}^{\Lambda}(4255) \rightarrow J/\Psi\Lambda) > \mathcal{B}(P_{\psi s}^{\Lambda}(4338) \rightarrow J/\Psi\Lambda)$ Solutions: production of $P_{\psi s}^{\Lambda}(4255)$ smaller (likely from couplings), $P_{\psi s}^{\Lambda}(4255)$ virtual, $P_{\psi s}^{\Lambda}(4338)$ virtual Reminder: fit fractions also problematic for P_{ψ}^{N} pentaquarks (P_{ψ}^{Λ} ?) Sakai, Jing, Guo, PRD 100 (2019) 7, 074007; Burns, Swanson, EPJA 58 (2022) 4, 68; FZ Peng, MJ Yan, M Sánchez, MPV arXiv: 2211.09154

We consistently predict a $P_{\psi s}^{\Lambda}(4255)$. But how solid is this? No clear consensus (cont'd): (ii) Analyses of the $J/\psi\Lambda$ spectrum: (ii.a) Burns & Swanson: $P_{\psi s}^{\Lambda}(4338)$ triangle singularity, no trace of a $P_{\psi s}^{\Lambda}(4255)$ Fit w/ condition $\tilde{d}_a > 0$: can't reproduce narrow $P_{\psi s}^{\Lambda}$ by design (results in $d_a - \tilde{d}_a$ too large for narrow state) (ii.b) Nakamura & Wu: $P_{\psi s}^{\Lambda}(4255)$ virtual Possible from small changes in our couplings

Both are possible solutions.

Or it might require better data ($P_{\psi s}^{\Lambda}(4255)$ ultra narrow).

And do not forget the Breit-Wigner issue!

What about phenomenological models? Our model:

(i) Saturation model w/ scalar and vector meson exchanges. (ii) Calibrate model to reproduce $P_{\psi}^{N}(4312)$

First piece, saturation:

The σ , ρ , ω contributions collapse into a contact

Reason: $\sqrt{2\mu B} \ll m_{\rho}, m_{\omega}, m_{\sigma} \Rightarrow$ can't resolve interaction details

Saturation, how we do it:

(a) Scalar meson: the usual way

$$V_{S} = -\frac{g^{2}}{m_{S}^{2} + \vec{q}^{2}} \Rightarrow C_{S} \propto -\frac{g^{2}}{m_{S}^{2}}$$

(b) Vector meson (isospin and G-parity factors implicit) (b.1) Electric part: $C_V^{E0} \propto \frac{g_V^2}{m_V^2}$ (the usual way) (b.2) Magnetic part (spin-spin implicit): we remove the Dirac-delta

$$V_V^{M1} = -\frac{f_V^2}{6M^2} \frac{\vec{q}^2}{m_V^2 + \vec{q}^2} = -\frac{f_V^2}{6M^2} \left[1 - \frac{m_V^2}{m_V^2 + \vec{q}^2} \right] \Rightarrow C_V^{M1} \propto \frac{f_V^2}{6M^2}$$

Reason: the Dirac-delta gives saturation at a shorter distance scale (hadron size instead of vector meson range)

Saturation, a few comments:

(i) Why a σ ?: vector meson alone not always qualitatively correct Example: the two-nucleon system

$$C_V^{E0}({}^1S_0) \propto + 10 rac{g_v^2}{m_V^2} ~,~ C_V^{E0}({}^3S_1) \propto + 6 rac{g_v^2}{m_V^2} ~,$$

ρ and *ω* imply both repulsive, but not what we observe in NN Reminder: ∃ suspected molecular state in NN (the deuteron)
(ii) Combining mesons with different range: RG equation

$$rac{d}{d\Lambda}\langle\Psi|V_C|\Psi
angle=0 \Rightarrow C^{
m sat}(\Lambda\sim m_V)\propto (rac{m_V}{m_S})^{lpha} C_S(m_S)+C_V(m_V)$$

(iii) Regularize, determine proportionality constant from a given molecular candidate and then predict spectrum

Results: $P_{\psi}^{N}(4312)$ as input, $\Lambda = 1 \, {\rm GeV}$, Gaussian regulator

System	$I(J^P)$	$B_{ m mol}$	$M_{ m mol}$	Candidate	$M_{ m candidate}$
$\Lambda_c \bar{D}$	$\frac{1}{2}(\frac{1}{2}^{-})$	$(0.1)^{V}$	$(4153.4)^{V}$	-	-
$\Lambda_c \bar{D}^*$	$\frac{\overline{1}}{2}$ $(\overline{\frac{1}{2}}^{-})$	$(0.0)^{V}$	$(4295.0)^{V}$	-	-
$\Lambda_c \bar{D}_s$	$0(\frac{1}{2}^{-})$	2.4	4252.4	-	-
$\Lambda_c \bar{D}_s^*$	$0(\bar{\frac{1}{2}}^{-})$	3.4	4395.2	-	-
$\Xi_c \bar{D}$	$0(\frac{1}{2}^{-})$	8.9	4327.4	$P^{\Lambda}_{\psi s}(4338)$	4338.2
$\Xi_c \bar{D}^*$	$0(\frac{1}{2}^{-})$	11.0	4466.7	$P_{\psi s}^{\Lambda}(4459)$	4458.9
$\Xi_c \bar{D}$	$1(\frac{1}{2}^{-})$	$(0.0)^{V}$	$(4336.3)^{V}$	-	-
$\Xi_c \bar{D}^*$	$1(\bar{\frac{1}{2}}^{-})$	0.1	4477.6	-	-
$\Xi_c \bar{D}_s$	$\frac{1}{2} (\overline{\frac{1}{2}}^{-})$	1.2	4436.3	-	-
$\Xi_c \bar{D}_s^*$	$\frac{1}{2}(\bar{\frac{1}{2}}^{-})$	2.0	4579.2	-	-

Comparison of RG-saturation with EFTs B_1 and B_2 Set B_1 : $P_{cs}(4338)$ as input; Set B_2 : $P_{cs}(4459)$ as input

System	RG-Saturation	Set B_1	Set B_2	Туре
$\bar{D}\Lambda_c$	$(4153.4)^V$	$(4111.3)^V$	$(4153.7)^V$	P_{ψ}^{N}
$\bar{D}^*\Lambda_c$	$(4295.0)^{V}$	$(4256.7)^{V}$	4295.0	P_ψ^N
$\bar{D}_s \Lambda_c$	4252.4	4254.8	4230.5	$P^{\Lambda}_{\psi s}$
$\bar{D}_s^*\Lambda_c$	4395.2	4398.4	4375.2	$P_{\psi s}^{ar{\lambda}}$
$\bar{D}\Xi_c$	4327.4	Input	4316.7	$P^{\Lambda}_{\psi s}$
$\bar{D}^* \Xi_c$	4466.7	4479.2	Input	$P_{\psi s}^{ar{\lambda}}$
$\bar{D}\Xi_c$	$(4336.3)^V$	$(4297.4)^{V}$	4336.3	$P_{\psi s}^{\Sigma}$
$\bar{D}^* \Xi_c$	4477.6	$(4442.7)^{V}$	4477.5	$P_{\psi s}^{\Sigma}$
$\bar{D}_s \Xi_c$	4436.3	$(4401.4)^{V}$	4437.3	$P_{\psi ss}^{\Xi}$
$\bar{D}_s^* \Xi_c$	4579.2	$(4548.3)^{V}$	4580.9	$P_{\psi ss}^{\pm}$

Conclusions (list)

- ▶ P^A_{ψs}(4338), P^A_{ψs}(4449) are easy to explain and relate as baryon-meson molecular candidates
- But nature of P^Λ_{ψs}(4338) obviously still under debate: it was discovered ten months ago... meson-baryon state, triangle singularity, compact pentaquark?
- Predictions of a few partners, most notably $P_{\psi s}^{\Lambda}(4255)$
 - Not found in experiment, but there are constraints
 - Found in one analysis of $J/\psi \Lambda$ (Nakamura & Wu)
 - Not found in other analysis of $J/\psi \Lambda$ (Burns & Swanson)

- If it exists & is molecular: should be really narrow!
- Phenomenological model also predicts it.

The End

Thanks For Your Attention!

Extra Slides

Exotic hadrons: what is a molecule?

Chemistry textbook molecules (a.k.a. actual molecules):

Hadronic molecules: definitely not two clearly separated heavy quarks sharing a pair (or a few pairs) of light-quarks

But the name is catchy! \Rightarrow We adopted it ;)

Here: $|\text{molecule}\rangle = (1 - \delta)|H_1H_2\rangle + \delta|\text{other things}\rangle, \delta \text{ smallish}$

And... we obviate the evident lack of rigor with this, as usual. (After all, we are physicists...)

Exotic hadrons: molecular or not? (the deuteron)

The deuteron D-wave probability (P_D) :

(a) Deuteron wave function:

$$|d\rangle = \cos \theta_D |^3 S_1 \rangle + \sin \theta_D |^3 D_1 \rangle$$

(b) Deuteron magnetic moment: μ_{exp} = 0.86 μ_N, but μ(³S₁) = 0.88 μ_N ⇒ ∃ non S-wave component
(c) D-wave probability P_D ~ (3 - 5)%, but with assumptions:
(c.1) No relativistic corrections included Gilman, Gross JPG 28, R37
(c.2) No two-body currents included D.R. Phillips, JPG 34, 365

Yet, within EFT, P_D still makes sense at lower orders.

Exotic hadrons: molecular or not? (the $T_{cc}^+(3875)$)

- The T_{cc}^+ decay width into $DD\pi$ and $DD\gamma$:
- (a) T_{cc}^+ wave function:

$$|T_{cc}\rangle = \cos\theta_C |D^*D\rangle + \sin\theta_C |cc\bar{u}\bar{d}\rangle$$

(b) T⁺_{cc} width: Γ_{exp} = 48 ± 2⁺⁰₋₁₂ KeV, but if Γ^{mol}_{th} > Γ_{exp} ⇒ ∃ non molecular component (provided Γ^{tetra}_{th} ≪ Γ^{mol}_{th})
(c) Same caveats as in the deuteron (also ∃ T_{cc}'s D-wave)
What do we have? Well...

$$\label{eq:GammaLO} \begin{split} \Gamma^{\rm LO}_{\rm th} &= 49 \pm 3 \pm 16 \, {\rm KeV} \quad , \quad \Gamma^{\rm NLO(*)}_{\rm th} = 58^{+5}_{-3} \pm 5 \, {\rm KeV} \\ \text{And this is with } \Lambda &\to \infty \text{ (otherwise } \Gamma^{\rm LO}_{\rm th} > \Gamma_{\rm th} \text{ already.)} \\ \text{If } \mathcal{T}_{cc} \text{ not highly molecular } \Rightarrow \text{ no } \mathcal{T}^*_{cc} \ (D^*D^*) \text{ partner} \\ \text{From arguments analogous to those in Cincicclust at LEPJC76, 576} \end{split}$$

Exotic hadrons: molecular or not? (the $P_{\psi s}^{\Lambda}(4338)$)

The $P_{\psi s}^{\Lambda}(4338)$ slightly above threshold: not describable with your usual single channel, energy- and momentum-independent contact.

How molecular is it then? Use $X_{
m mol} = \sqrt{rac{1}{1+2|rac{r_0}{a_0}|}}$ Matuschek et al. EPJA 57, 101

(a) Energy-dependent: $V_C = d_a + 2 d_{2a} k^2 \Rightarrow X_{mol} = 0.33$ (b) Momentum-dependent:

$$V_C = d_a + d_{2a} \left(p^2 + p'^2
ight) \Rightarrow X_{
m mol} = 0.95$$

(c) Coupled-channel:

$$V_{C} = \begin{pmatrix} \frac{1}{2}(d_{a} + \tilde{d}_{a}) & \frac{1}{\sqrt{2}}(d_{a} - \tilde{d}_{a}) \\ \frac{1}{\sqrt{2}}(d_{a} - \tilde{d}_{a}) & d_{a} \end{pmatrix} \Rightarrow X_{\text{mol}} = 0.77$$

(a) and (b) on-shell equivalent, but different X_{mol} \Rightarrow non-observability of the wave function Isospin breaking: $P^{\Lambda}_{\psi s}$ or $P^{\Sigma^0}_{\psi s}$?

 $P_{cs}(4338)$ close to $D^- \Xi_c^+$ and $\bar{D}^0 \Xi_c^0 \Rightarrow$ Isospin breaking Potential in the $\bar{D}^0 \Xi_c^0$ and $D^- \Xi_c^+$ basis:

$$V_{C}(\bar{D}^{0}\Xi_{c}^{0}-D^{-}\Xi_{c}^{+})=\begin{pmatrix} \frac{1}{2}(d_{a}+\tilde{d}_{a}) & -\frac{1}{2}(d_{a}-\tilde{d}_{a})\\ -\frac{1}{2}(d_{a}-\tilde{d}_{a}) & \frac{1}{2}(d_{a}+\tilde{d}_{a}) \end{pmatrix},$$

Notice the dependence in $(d_a - \tilde{d}_a)!$

Ratio of the decay widths for a $P_{\psi s}$:

$$\frac{\Gamma(P_{\psi s} \to J/\psi \Lambda)}{\Gamma(P_{\psi s} \to J/\psi \Sigma^0)} = \frac{1}{3} \frac{p_\Lambda}{p_\Sigma} \left| \frac{\Psi_c(0) - \Psi_n(0)}{\Psi_c(0) + \Psi_n(0)} \right|^2$$

For $P_{\psi s} = P_{\psi s}^{\Sigma^0}$ from $(0.5 - 5.0)\% \Rightarrow$ small (i.e. we probably observed a $P_{\psi s}^{\Lambda}$)

Isospin breaking: $P_{\psi s}^{\Lambda}$ or $P_{\psi s}^{\Sigma^0}$? Wigner symmetry scenario

But if $d_a \approx \tilde{d}_a \Rightarrow$ decoupling of $\bar{D}^0 \Xi_c^0$ and $D^- \Xi_c^+$ d.o.f.

$$V_C(\bar{D}^0 \Xi_c^0 - D^- \Xi_c^+) = \begin{pmatrix} \frac{1}{2} (d_a + \tilde{d}_a) & -\frac{1}{2} (d_a - \tilde{d}_a) \\ -\frac{1}{2} (d_a - \tilde{d}_a) & \frac{1}{2} (d_a + \tilde{d}_a) \end{pmatrix} \approx \begin{pmatrix} d_a & 0 \\ 0 & d_a \end{pmatrix}$$

Reminiscent of Wigner SU(4) symmetry in NN!

Ratio of the decay widths for a $P_{\psi s}$ is now:

$$\frac{\Gamma(P_{\psi s} \to J/\psi \Lambda)}{\Gamma(P_{\psi s} \to J/\psi \Sigma^{0})} = \frac{1}{3} \frac{p_{\Lambda}}{p_{\Sigma}} \left| \frac{\Psi_{c}(0) - \Psi_{n}(0)}{\Psi_{c}(0) + \Psi_{n}(0)} \right|^{2} \approx \frac{1}{3} \frac{p_{\Lambda}}{p_{\Sigma}} = 0.53$$

If close to this scenario $\Rightarrow P_{cs}(4338)$ might be either $P_{\psi s}^{\Lambda}$ or $P_{\psi s}^{\Sigma^0}$!

・ロト ・団ト ・ヨト ・ヨー うへぐ