

Measurement of the photoproduction cross section for $\gamma p \rightarrow \phi \pi^+\pi^- p$ and search for the Y(2175) at GlueX

Klaus Götzen and Frank Nerling GSI Darmstadt, HFHF & GU Frankfurt on behalf of the GlueX Collaboration

HADRON2023, June 5th - June 9th 2023, Genova

Outline

- Introduction & motivation
- The GlueX experiment at JLab
- Analysis of $\gamma p \rightarrow \phi \pi^+ \pi^- p$
 - Measurement of differential cross section
 - Search for Y(2175)
- Summary

GLUE

Recent hot topics

2

GLUE

σ(e⁺e⁻→π⁺π⁻J/ψ) (pb)

 $Z_{c}(3900)^{+/-} \rightarrow J/\psi \pi^{+/-}$

 $Y(4230) \rightarrow J/\psi \pi^+\pi^-$

~

 $\pi_1(1600) \rightarrow \eta' \pi$

 $\pi_1(1400) = \pi_1(1600) \rightarrow \eta\pi$

Simple Quark model

• Mesons: Color neutral $q\overline{q}$ systems

Conventional (qq)

QCD

Meson states beyond qq

 Alternative 4-quark configurations:

 Nolecule $(q\bar{q})(q\bar{q})$

 Nolecule $(q\bar{q})(q\bar{q})$

 Tetraquark $(q\bar{q}q\bar{q})$ Nolecule $(q\bar{q})(q\bar{q})$

 Glue-ball (gg) or (ggg) Di-quarkonium $(qq)(\bar{q}\bar{q})$

CEBAF at JLab

Frank Nerling

Search for Y(2175) in photoproduction at GlueX

GlueX in Hall D at CEBAF, JLab

- 12 GeV electron beam from CEBAF accelerator
- Coherent Bremsstrahlung on diamond radiator
- Linear polarization in peak at ~9 GeV: $P\gamma \sim 40\%$
- Energy tagged by scattered electrons
- Beam intensity: $1 5 \cdot 10^7$ γ/s in peak

GlueX in Hall D at CEBAF, JLab

First observed in ISR, BaBar

PDG: Larger spread in individual resonance parameter measurements, e.g. above

GLUER The Y(2175) – strange partner of Y(4230)

PDG: Larger spread in individual resonance parameter measurements, e.g. above

Prediction for photoproduction

- Investigation of reaction $\gamma p \rightarrow \varphi \eta p$ @ $E_{\gamma} = 8 \text{ GeV}$
- Assumption: $\Gamma(Y(2175) \rightarrow \varphi \eta) \approx 6.6 \text{ MeV}$ (quark model)
- Peak integral: $\sigma_{\phi\eta} \approx 885 \text{ pb}$ (with $\sigma_{max} \approx 7 \text{nb}$, $\Gamma = 83 \text{ MeV/c}^2$)

Study $\phi \pi \pi$ photoproduction

- Investigation of reaction $\gamma p \rightarrow \phi \eta p$ @ $E_{\gamma} = 8 \text{ GeV}$
- Assumption: $\Gamma(Y(2175) \rightarrow \varphi \eta) \approx 6.6 \text{ MeV}$ (quark model)
- Peak integral: $\sigma_{\phi\eta} \approx 885 \text{ pb}$ (with $\sigma_{max} \approx 7 \text{nb}$, $\Gamma = 83 \text{ MeV/c}^2$)
- $\Gamma(\Upsilon(2175) \rightarrow \varphi f_0(980) / \Gamma(\Upsilon(2175) \rightarrow \varphi \eta)) \approx 1.37$
 - \succ For Y(2175) →φf₀(980): σ_{φf0} ≈ 1212 pb

GLUE

Event selection

• Require $\chi^2_{4C+vtx} < 70$

III)

• Determine $\phi(1020)$ yield using a Voigtian fctn.

 $m(\pi^{+}p) > 1.35 \text{ GeV/c}^{2}$

Event selection (II): Kinematics

• Fit signal with function (V = Voigtian):

$$f(m) = V(m; m_0, \Gamma_0, \sigma_{\text{res}}) + |m - m_t|^p \cdot e^{-\lambda m} \quad \text{for } m > m_t,$$

• Fix ϕ -shape parameters to extract distributions slice-wise

GLUE Slice-wise fits & φ signal shape parameters

- Fit yields in 45 MeV slices in 4-body mass with fixed signal shape
- Signal shape parameters m and σ_{res} determined from data (coarse scan)

"Slice-wise ϕ fits", data

• Single slice fits data (here for 2018 Fall)

Differential cross section

• Determine mass-dependent cross section:

$$\frac{d\sigma}{dm}(m_i) = \frac{N_{\phi}(m_i)}{\varepsilon(m_i) \cdot F \cdot d_{\text{target}} \cdot \mathcal{B}(\phi(1020) \to K^+K^-)}$$

• Combine results by bin-wise via "weighted average" method:

$$\hat{x} \pm \delta \hat{x} = \frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}} \pm \left(\sum_{i} w_{i}^{2}\right)^{-1/2} \quad \text{with } w_{i} = 1/\delta x_{i}^{2}$$

Mass-dependent cross section result

3.2

3

Search for resonances in m($\phi\pi^+\pi^-$)

- Fit signal + background in combined spectrum
 - ► 1 Res.: $f(m) = V(m; m_1, \Gamma_1, \sigma_{res}) + T_4(m)$
 - ► 2 Res.: $f(m) = V_1(m; m_1, \Gamma_1, \sigma_{res}) + V_2(m; m_2, \Gamma_2, \sigma_{res}) + T_4(m)$
 - > V = Voigtian, T₄ = 4th order Chebyshev polynomial
- Use weighted mass resolution from MC (σ_{res} = 24.6 MeV/c²)
- Repeat for each systematic variation
- Systematic uncertainty: Difference to nominal result
- Additional systematics are:
 - > m($\phi \pi \pi$) fit range
 - > $m(\phi \pi \pi)$ fit model (degree of bkgd polynomial)
 - > $\phi(2170)$ mass m₀ (by +/- 1 σ)
 - > $\phi(2170)$ width Γ_0 (by +/- 1σ)

• And we take the (larger) difference as systematic uncertainty

GLUE Fixed Y(2175) parameters – fit a₁)

R1: Fixed PDG parameters Y(2175) $m_{\phi(2170)} = 2162 \pm 7 \text{ MeV}/c^2$ $\Gamma_{\phi(2170)} = 100^{+31}_{-21} \text{ MeV}/c^2$

 $\sigma_{\phi(2170)} = 174 \pm 69 \,(\text{stat.}) \pm 218 \,(\text{sys.}) \text{ pb}$ $\sigma_{\phi(2170)} < 499 \text{ pb} \,(\text{CL90}) \quad [Z = 1.6\sigma \,(2.1\sigma)]$

R1: Fixed PDG parameters Y(2175) $m_{\phi(2170)} = 2162 \pm 7 \text{ MeV}/c^2$ $\Gamma_{\phi(2170)} = 100^{+31}_{-21} \text{ MeV}/c^2$

R2: Possible structure at m ~ 1.8 GeV $\sigma_{X(1800)} < 615 \text{ pb} (\text{CL90})$

 $\sigma_{\phi(2170)} = 232 \pm 68 \,(\text{stat.}) \pm 91 \,(\text{sys.}) \text{ pb}$ $\sigma_{\phi(2170)} < 379 \text{ pb} \,(\text{CL90}) \ [Z = 1.5\sigma \,(1.8\sigma)]$

GLUE Fixed Y(2239) parameters – fit b₁)

 $\begin{aligned} \sigma_{Y(2239)} &= 641 \pm 82 \, (\text{stat.}) \pm 181 \, (\text{sys.}) \ \text{pb} \\ \sigma_{Y(2239)} &< 896 \ \text{pb} \, (\text{CL90}) \ \ [Z = 5.7 \sigma \ (6.0 \sigma)] \end{aligned}$

R1: Fixed parameters Y(2239)

$$m_{Y(2239)} = 2239.2 \pm 13.4 \text{ MeV}/c^2$$

 $\Gamma_{Y(2239)} = 139.8 \pm 24.0 \text{ MeV}/c^2$

R2: Possible structure at m ~ 1.8 GeV):

 $\sigma_{X(1800)} < 701 \text{ pb} (\text{CL90})$

 $\sigma_{Y(2239)} = 629 \pm 83 \text{ (stat.)} \pm 130 \text{ (sys.) pb}$ $\sigma_{Y(2239)} < 826 \text{ pb (CL90)} [Z = 4.7\sigma (5.1\sigma)]$

- Analysis of reaction $\gamma p \rightarrow K^+ K^- \pi^+ \pi^- p$
- Measurement of differential $\varphi \pi^+ \pi^-$ production cross section $\sigma(\gamma p \rightarrow \varphi \pi^+ \pi^- p)$
- Search for Y(2175) + other resonances gives

Case	Cross Section [pb]	UL [pb]	Z _{stat}	Z _{tot}
Fit a ₁ : Y(2175) fixed	$174 \pm 69 \pm 218$	499	2.1	1.6
Fit a ₂ : Y(2175) fixed	$232 \pm 68 \pm 91$	379	1.8	1.5
Fit b ₁ : Y(2239) fixed	641 ± 82 ± 181	896	6.0	5.7
Fit b ₂ : Y(2239) fixed	629 ± 83 ± 130	826	5.1	4.7

- Fit with Y(2175) PDG parameters \rightarrow no evidence (Z < 3 σ)
- Alternative fits with Y(2239) parameters (fixed) \rightarrow evidence/observation (Z > 3)
- Signal strength of Y(2239) in ball-park of predicted $\sigma \approx 1200 \text{ pb}$
- Find 2^{nd} structure at around m $\approx 1.8 \text{ GeV/c}^2$
 - > UL(CL90): $\sigma < 615$ pb (fit a_2) and $\sigma < 701$ pb (fit b_2)