

Frank Nerling HFHF, Campus Frankfurt, GSI Darmstadt & GU Frankfurt on behalf of the PANDA collaboration

HADRON2023, June 5th - June 9th 2023, Genova

Outline

Introduction & Motivation

- PANDA physics programme
- Advantage of anti-protons

• Energy scans of very narrow resonances

- The X(3872) experimentally, line shape
- Comprehensive performance study
- Summary & outlook

HF Perspectives of resonance line shape measurements at PANDA

Frank Nerling HFHF, Campus Frankfurt, GSI Darmstadt & GU Frankfurt on behalf of the PANDA collaboration

HADRON2023, June 5th - June 9th 2023, Genova

Outline

Introduction & Motivation

- PANDA physics programme
- Advantage of anti-protons

• Energy scans of very narrow resonances

- The X(3872) experimentally, line shape
- Comprehensive performance study
- Summary & outlook

Hadron Spectroscopy

Strange partner of the famous, unexpected, manifestly exotic Z_c(3900)?

Charmonium spectrum (cc̄)

- Before 2003:
 - Good agreement between theory and experiment, particularly beneath open charm thresholds

c

C

- After 2003:
 - Severe mismatch between predicted and observed spectrum

Potential model:

$$\begin{split} V_0^{c\overline{c}} &= -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}\\ V_{\text{spin-dep.}} &= \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]\\ &+ \text{ relativistic corrections!} \end{split}$$

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Charmonium spectrum (cc̄)

Charmonium spectrum (cc̄)

Analogy to deuteron:

<u>Danda</u>

HFHF

- First observed by Belle in 2003
 - $\succ X(3872) \rightarrow J/\psi \pi^+ \pi^-$
 - very narrow state with J^{PC} = 1⁺⁺
- Belle & BaBar report signal in > $X(3872) \rightarrow D^0 \bar{D}^{*0}$
- Mass $m[X(3872)] m[D^{*0}] m[D^0]$ = (-0.07 ± 0.12) MeV/c² (LHCb 2020)
- Width measurement:
 - ≻ Γ_{X(3872)} < 1.2 MeV (2011, Belle)</p>
 - ➤ Γ_{X(3872)} = 1.39 MeV (2020, LHCb)

For clarification: => Precision measurement with sub-MeV resolution needed!

Analogy to deuteron:

<u>Dan</u>da

HFHF

- First observed by Belle in 2003
 - $\succ X(3872) \rightarrow J/\psi \pi^+ \pi^-$
 - very narrow state with J^{PC} = 1⁺⁺
- Belle & BaBar report signal in > $X(3872) \rightarrow D^0 \bar{D}^{*0}$
- Mass $m[X(3872)] m[D^{*0}] m[D^0]$ = (-0.07 ± 0.12) MeV/c² (LHCb 2020)
- Width measurement:
 - ≻ Γ_{X(3872)} < 1.2 MeV (2011, Belle)</p>
 - ➤ Γ_{X(3872)} = 1.39 MeV (2020, LHCb)

For clarification: => Precision measurement with sub-MeV resolution needed!

Analogy to deuteron:

panda

HFHF

- Width measurement:
 - ≻ Γ_{X(3872)} < 1.2 MeV (2011, Belle)</p>
 - ➤ Γ_{X(3872)} = 1.39 MeV (2020, LHCb)

For clarification: => Precision measurement with sub-MeV resolution needed!

shape measurements with PANDA, pg. 9

Analogy to deuteron:

panda

HFHF

• Width measurement:

≻ Γ_{X(3872)} < 1.2 MeV (2011, Belle)</p>

➤ Γ_{X(3872)} = 1.39 MeV (2020, LHCb)

For clarification: => Precision measurement with sub-MeV resolution needed!

shape measurements with PANDA, pg. 10

p momentum [GeV/c] Anti-Proton ANnihilation in DArmstadt 0 2 4 6 8 10 12 15 Meson spectroscopy $\begin{array}{ll} & \Lambda_c \overline{\Lambda}_c & \Omega_c \overline{\Omega}_c \\ & \Sigma_c \overline{\Sigma}_c \\ & \Xi_c \overline{\Xi}_c \end{array}$ $\overline{\Omega \Omega}$ DD ۸<u>V</u> $D_s\overline{D}_s$ Light mesons Open charm qqqq ccqq Charmonium \geq Exotic states: nng,ssg **Hybrids** ccq glue-balls, hybrids, Hybrids+Recoil nng,ssg ccg molecules / multi-quarks (Anti-) Baryon production Glueball ggg,gg Nucleon structure Glueball+Recoil ggg Charm in nuclei light qq cc Strangeness physics $\pi,\rho,\omega,f_2,K,K^*$ J/ψ , η_c , χ_{cJ} > Hypernuclei, S = -2 nuclear system 3 2 4 5 6 1 mass [GeV/ c^2]

High Resolution (HR) mode:

- Luminosity up to 2 x 10³¹ cm⁻² s⁻¹
- Δp/p = 2 x 10⁻⁵

High Luminosity (HL) mode:

- Luminosity up to 2 x 10³² cm⁻² s⁻¹
- Δp/p = 1 x 10⁻⁴

High Resolution (HR) mode:

- Luminosity up to 2 x 10³¹ cm⁻² s⁻¹
- Δp/p = 2 x 10⁻⁵

High Luminosity (HL) mode:

- Luminosity up to 2 x 10³² cm⁻² s⁻¹
- $\Delta p/p = 1 \times 10^{-4}$

- Access to all fermion-antifermion quantum numbers (not in e^+e^-)
- Access to states of high spin J

HFHF

Some Advantages of Anti-Protons

Some Advantages of Anti-Protons

- Access to all fermion-antifermion quantum numbers (not in e⁺e⁻)
- Access to states of high spin J
- Precise mass resolution in formation reactions

E760/835@Fermilab \approx 240 keV PANDA@FAIR \approx 50 keV

 Ablikim et al., Phys. Rev. D71 (2005) 092002:
 Ar

 BES (IHEP): 3510.3 ± 0.2 MeV/c²
 E8

(2005) 092002: Andreotti et al., Nucl. Phys. B717 (2005) 34: EV/c^2 E835 (Fermilab): 3510.641 \pm 0.074 MeV/c²

Perspectives for line shape measurements with PANDA, pg. 17

Analogy to deuteron:

panda

HFHF

• Width measurement:

≻ Γ_{X(3872)} < 1.2 MeV (2011, Belle)</p>

➤ Γ_{X(3872)} = 1.39 MeV (2020, LHCb)

For clarification: => Precision measurement with sub-MeV resolution needed!

shape measurements with PANDA, pg. 18

Perfomance Study for energy resonance scans of narrow resonances, like the X(3872)

Reminder: Sub-MeV resolution needed to clarify nature

HFHF Scan Procedure Principle (Example)

[PANDA, Eur. Phys. J. A 55 (2019) 42]

Frank Nerling

FRANKFU

HFHF Scan Procedure Principle (Example)

Frank Nerling

Perspectives for line shape measurements with PANDA, pg. 21

08.06.2023

Distinction of Lineshapes (40 x 2d)

JOHANN WOLFGANG COETHI UNIVERSITÄT FRANKFURT AM MAIN

Frank Nerling

pan da

HFHF

Perspectives for line shape measurements with PANDA, pg. 22

08.06.2023

LHCb measurement of $\chi_1(3872)$

[Phys.Rev.D 102 (2020) 9, 092005] [https://arxiv.org/abs/2005.13419]

Study of the lineshape of the $\chi_{c1}(3872)$ state

CERN-EP-2020-086 LHCb-PAPER-2020-008 May 27, 2020

Abstract

A study of the lineshape of the $\chi_{c1}(3872)$ state is made using a data sample corresponding to an integrated luminosity of $3 \,\mathrm{fb}^{-1}$ collected in pp collisions at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate $\chi_{c1}(3872)$ mesons from *b*-hadron decays are selected in the $J/\psi\pi^+\pi^-$ decay mode. Describing the lineshape with a Breit–Wigner function, the mass splitting between the $\chi_{c1}(3872)$ and $\psi(2S)$ states, Δm , and the width of the $\chi_{c1}(3872)$ state, $\Gamma_{\rm BW}$, are determined to be

$$\Delta m = 185.588 \pm 0.067 \pm 0.068 \,\mathrm{MeV},$$

$$\Gamma_{\mathrm{BW}} = 1.39 \pm 0.24 \pm 0.10 \,\mathrm{MeV},$$

where the first uncertainty is statistical and the second systematic. Using a Flattéinspired lineshape, two poles for the $\chi_{c1}(3872)$ state in the complex energy plane are found. The dominant pole is compatible with a quasi-bound $D^0 \overline{D}^{*0}$ state but a quasi-virtual state is still allowed at the level of 2 standard deviations.

LHCb lineshapes (incl. resolution)

7.3 Comparison between Breit–Wigner and Flatté lineshapes

Figure 4 shows the comparison between the Breit–Wigner and the Flatté lineshapes. While in both cases the signal peaks at the same mass, the Flatté model results in a significantly narrower lineshape. However, after folding with the resolution function and adding the background, the observable distributions are indistinguishable.

LHCb lineshapes (incl. resolution)

7.3 Comparison between Breit–Wigner and Flatté lineshapes

Figure 4 shows the comparison between the Breit–Wigner and the Flatté lineshapes. While in both cases the signal peaks at the same mass, the Flatté model results in a significantly narrower lineshape. However, after folding with the resolution function and adding the background, the observable distributions are indistinguishable.

• Due to detector resolution both models cannot be distinguished at LHCb

➤ 1.39 MeV (BW) vs. 0.22 MeV (Flatté) => factor of ~5

Frank Nerling

Perspectives for line shape measurements with PANDA, pg. 25

LHCb lineshapes (incl. resolution)

- Due to the excellent beam resolution O(50-100 keV) at PANDA
 - Models are well distinguishable
 => Let's quantify
- Due to detector resolution both models cannot be distinguished at LHCb
 > 1.39 MeV (BW) vs. 0.22 MeV (Flatté) => factor of ~5

Frank Nerling

Perspectives for line shape measurements with PANDA, pg. 26

Eur. Phys. J. A (2019) **55**: 42 DOI 10.1140/epja/i2019-12718-2

Regular Article – Experimental Physics

Branching

Cross

The European Physical Journal A

Precision resonance energy scans with the PANDA experiment at FAIR Sensitivity study for width and line shape measurements of the X(3872)

• Addendum:

Investigate separation power $\rightarrow E_f$ (Flatté) vs. Γ (BW)

- Key parameters from \rightarrow EPJ A 55 (2019) 42
- Total beam time $\rightarrow 40 \times 2d = 80 d$
- Generate many (toy) spectra for Flatté & BW model
- Fit both line shapes to each generated distribution
- Determine fit probabilities $P_F \& P_{BW}$ and fractions of incorrect assignments $\rightarrow P_{mis}$

-uminosities sections Fractions	Parameter	Value
	$BR(J/\psi \to e^+ e^-)$	5.97 %
	$BR(J/\psi\to\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -})$	5.96 %
	$BR(\rho^0 \to \pi^+ \pi^-)$	100%
	$BR(X\to J/\psi\;\rho^0)$	5% (UL: 6.6%)
	$\sigma_{\text{peak}}(p\overline{p} \rightarrow X)$	[20,30,50,75,100,150] nb
	$\sigma(pp \rightarrow J/\psi \pi^{+}\pi^{-} \text{ non-res})$	1.2 nb [theory]
	$\sigma(p\overline{p} \rightarrow inelastic) @ 3.872 GeV$	46 mb [CERN-HERA-84-01 (1984)]
	L _{HL} (3.872 GeV)	13683 (nb·d) ⁻¹
	L _{HR} (3.872 GeV)	1368 (nb·d)⁻¹
	L _{P1} (3.872 GeV)	1170 (nb·d)⁻¹
Resolutions	ΔE_{abs} (energy prec. w/ calibration)	168 keV (dp/p = 10 ⁻⁴)
	ΔE_{rel} (relative energy positioning)	1.7 keV (dp/p = 10 ⁻⁶)
	ΔE _{mom} (HL)	168 keV (dp/p = 10 ⁻⁴)
	ΔE_{mom} (HR)	34 keV (dp/p = 2·10 ⁻⁵)
ino (ΔE_{mom} (P1)	84 keV (dp/p = 5·10 ⁻⁵)

Frank Nerling

Scan Procedure Principle (Example)

- Example: Breit-Wigner, Γ = 300 keV (P1 mode)
- Compute true line shape (BW or Flatté)
- Generate poisson random number N_{poisson} for each E_{cm} and fill into graph
- Fit line shapes to extract fit probabilities P_{BW} and P_{F}

Parameter dependent performance

Performance across Flatté energy E_f range (LHCb: E_f = -7.2 MeV),

Performance as Mis-ID of Flatté as BW

- Mis-identification probability P_{mis} vs. E_f
- For three beam modes (HL, HR, P1)
- P_{mis} = 50% => "indistinguishable"

Distinguish between models:		
HL Mode : ≥ 98% correct		
HR Mode : ≥ 95% correct		
P1 Mode : ≥ 90% correct		

[K.Götzen, F.Nerling, for the PANDA Collab., QWG2021]

panda

HFHF

Parameter dependent performance

How much better are we than than "indistinguishable"? Idea: Consider so-called odds := correct identifications per wrong one

panda

HFHF

Perspectives for line shape measurements with PANDA, pg. 30

Summary & Conclusions

- Feasibility study for resonance energy scans at PANDA
 - Lineshape and width measurements for X(3872)
 - Achievable performance quantified
- Determined sensitivity for BW width measurement
 - Sensitivity $\Gamma/\Delta\Gamma > 5$ at $\Gamma \gtrsim 50 \dots 120$ keV
 - HR mode performs better for smaller widths
- Determined sensitivity for molecular line-shape measurement
 - Possible to distinguish bound/virtual state
 - > $P_{HR,HL}$ > 90% for |E_f E_{f,th}| ≥ 700 keV
 - > Sub-MeV resolution on $|E_f E_{f,th}|$ already for Phase-1 (P1)
 - HL mode performs better over investigated

Summary & Conclusions

- Feasibility study for resonance energy scans at PANDA
 - Lineshape and width measurements for X(3872)
 - Achievable performance quantified
- Determined sensitivity for BW width measurement
 - Sensitivity $\Gamma/\Delta\Gamma > 5$ at $\Gamma \gtrsim 50 \dots 120$ keV
 - HR mode performs better for smaller widths
- Determined sensitivity for molecular line-shape measurement
 - Possible to distinguish bound/virtual state
 - ▶ $P_{HR,HL}$ > 90% for $|E_f E_{f,th}| \ge 700 \text{ keV}$
 - > Sub-MeV resolution on $|E_f E_{f,th}|$ already for Phase-1 (P1)
 - HL mode performs better over investigated
- Comparison to recent LHCb result
 - Simulation of X(3872) line shape measurement at PANDA extended
 Different models can be well distinguished
 - Correct assignment of fit model over full range between ≥90% (P1) and ≥98% (HL) depending on beam mode
 - At least ~10x higher odds to identify correct model than LHCb

[PANDA, Eur. Phys. J. A 55 (2019) 42]

[K.Götzen, F.Nerling, for the PANDA Collab., QWG2021]

Summary & Conclusions

- Feasibility study for resonance energy scans at PANDA
 - Lineshape and width measurements for X(3872)
 - Achievable performance quantified
- Determined sensitivity for BW width measurement
 - Sensitivity $\Gamma/\Delta\Gamma > 5$ at $\Gamma \ge 50 \dots 120$ keV
 - HR mode performs better for smaller widths
- P_{HR,HL} > 000
 P_{HR,HL} > 000
 PANDA unique in combining potential for
 Sub-Me Determined sensitivity for molecular line-share

 - discovery and precision measurements! High already for Phase-1 (P1)
 - HL mode up better over investigated
- Comparison to recent LHCb result
 - Simulation of X(3872) line shape measurement at PANDA extended => Different models can be well distinguished
 - Correct assignment of fit model over full range between \geq 90% (P1) and \geq 98% (HL) depending on beam mode
 - At least ~10x higher odds to identify correct model than LHCb

[PANDA, Eur. Phys. J. A 55 (2019) 42]

[K.Götzen, F.Nerling, for the PANDA Collab., QWG2021]

nt