

EXOTIC MESONS FROM COMPASS TO A000

Bernhard Ketzer

University of Bonn

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) 06 June 2023

Exoti

Where are they?

How to identify them?

- Spin-exotic: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, \dots$
- Supernumerary states
- Flavor-exotic: $|Q|, |I_3|, |S|, |C| \ge 2$
- Comparison with theory: models, lattice

EXOTIC STATES

PARTIAL-WAVE ANALYSIS

PWA performed in two steps:

- 1. Partial-wave decomposition in small bins of m_X and t'
 - makes no assumptions on resonance content of partial wave
 - assumes that production and decay of X factorize
 - decay into multi-body final state is described by sequence of 2-body decays (isobars)
 - extended max. likelihood fit, takes into account acceptance of the apparatus
- 2. Resonance-model fit of spin-density matrix elements $\rho_{ij}(m_X, t') \coloneqq \mathcal{T}_i(m_X, t') \mathcal{T}_j^*(m_X, t')$
 - determine resonance parameters
 - use only subset of SDM

$$\mathcal{I}(\tau_n; m_X, t') = \left| \sum_{i}^{N_{\text{waves}}} \mathcal{T}_i(m_X, t') \Psi_i(\tau_n; m_X) \right|^2$$

.2

3π FINAL STATE – 1⁻⁺ PARTIAL WAVE

[M. Aghasyan et al. (COMPASS), Phys. Rev. D 98, 092003 (2018)]

3π FINAL STATE – 1⁻⁺ PARTIAL WAVE

Model bias due to fixed isobar parameterization?

⇒ Freed-isobar technique [F. Krinner et al., PRD 97 (2018) 114008]

- replace fixed $\pi^-\pi^+$ amplitudes for L = 0,1,2 by step-like functions in small bins of $m_{\pi\pi}$
 - \Rightarrow model-independent isobar amplitudes

[COMPASS, G.D. Alexeev et al., Phys. Rev. D 105, 012005 (2022)]

- \Rightarrow confirms decay of $\pi_1(1600)$ to $\rho\pi$
- \Rightarrow results consistent with those using fixed isobar parameterizations
- \Rightarrow reconciles apparent contradictions of previous analyses as analysis artefacts

HYBRIDS: LATTICE QCD

[J. Dudek et al., Hadron Spectrum Collaboration, Phys. Rev. D 88, 094505 (2013)]

HYBRID π_1 DECAYS

Lattice-QCD:

- hadronic decays of lightest exotic resonance
- SU(3) flavor symmetry
- $m_{\pi} \sim 700 \text{ MeV}$
- scattering amplitudes for 8 coupled channels
- analytical continuation to complex plane
- crude extrapolation to physical point

1550

 Γ_i / MeV

1500

600

[A.J. Woss, et al., PRD 103 (2021) 054502]

Model b ₁ 7	π f_1	$\pi_1\pi$	ρπ	ηπ	η'π	η (1295) π	Reference
Flux Tube, ³ P ₀ 17	70 6	50	5 - 20	0 - 10	0-10		[Isgur (1985), Close (1995)]
Flux Tube, IKP24m=1.6 GeV/c2	÷ 5	5	9			2	[Isgur (1985)]
Flux Tube, PSS59m=1.6 GeV/c2) 1	L4	8			1	[Page (1999)]
L-QCD 66 m=2.0 GeV/c ²	5 1	L5					[McNeil, Michael (2006)]

1600

Models:

• Partial widths in MeV

UNIVERSITÄT BONN

 $\Sigma_{\rm i}\Gamma_{\rm i}$

 $b_1\pi$

_ρπ _η'π

 $\overline{K}^*\overline{K}$

 $m_R/\,{
m MeV}\eta\pi$

1650

 $f_1(1285)\pi$

 $f_1(1420)\pi$

FINAL STATES STUDIED AT COMPASS

 $K^*\overline{K}$

ηπ

P. Haas, Tue 14:25

J. Beckers, Thu 14:00

<mark>S. Wallner, Thu 14:00</mark>

- $\pi^- p \rightarrow \pi^- \pi^- \pi^+ + p \checkmark$ • $\pi^- p \rightarrow \pi^- \pi^0 \pi^0 + p \checkmark$
- $\pi^- p \to \omega \pi^- \pi^0 + p \checkmark$ • $\pi^- p \to \pi^- \pi^- \pi^+ \eta + p \checkmark$ • $\pi^- p \to \pi^- \eta + p \checkmark$
- $\pi^- p \to \pi^- \eta' + p \checkmark$ • $\pi^- p \to \pi^- f_1(1285) + p \checkmark$

$$\pi^- p \to K^0_s K^0_s \pi^- + p \checkmark$$

•
$$\pi^- p \to K^- K_s^0 + p \checkmark$$

•
$$K^- p \to K^- \pi^- \pi^+ + p \checkmark$$

- $K^- p \to K^0_s \pi^- + p \checkmark$
- $K^- p \to \Lambda \overline{p} + p \checkmark$

•
$$\pi^- \gamma * \to \pi^- \pi^- \pi^+ \checkmark$$

• $\pi^- \gamma * \to \pi^- \pi^0 \pi^0 \checkmark$ $b_1 \pi$

•
$$\pi^- \gamma^* \to \pi^- \pi^0 \checkmark$$
 D. Ecker, Thu 17:20 $f_1(1285)\pi$
• $K^- \gamma^* \to K^- \pi^0 \checkmark$ D. Ecker, Thu 17:20 $f_1(1285)\pi$
 $\rho \pi$
 $\eta' \pi$
 $f_1(1420)\pi$

B. Ketzer

$\pi^{-}\pi^{+}\pi^{-}\gamma\gamma$ FINAL STATE

\Rightarrow access to $\eta \pi$, $\eta' \pi$, $f_1(1285)\pi$, depending on $\gamma \gamma$ invariant mass

- new data production: improved shower reconstruction from calorimeter
- include full data set for the first time
- about 2× more data than previously published for $\eta\pi$, $\eta'\pi$
- perform PWA in bins of t' and m_X

 $b_1\pi$

 $f_{1}(1285)\pi$ $\rho\pi$ $\eta'\pi$ $f_{1}(1420)\pi$ $K^{*}\overline{K}$ $\eta\pi$ $\eta\pi,\eta'\pi$ FINAL STATES

 $b_1\pi$

TWO EXOTIC π_1 MESONS?

Model based on S-matrix theory

- Analyticity
- Unitarity

 $b_1\pi$

[A. Rodas, BK, et al. (JPAC), Phys. Rev. Lett. 122, 042002 (2019)]

TWO EXOTIC π_1 MESONS?

 $b_1\pi$

 $f_1(1285)\pi$

 $\rho \pi \eta' \pi f_1(1420)\pi$

 $K^*\overline{K}$

 $\eta\pi$

 $\pi^- + p \to \eta^{(')} + \pi + p$

TWO EXOTIC π_1 MESONS?

- only a single pole needed to describe both peaks
- consistent with $\pi_1(1600)$

Poles	Mass (MeV)	Width (MeV)
$a_2(1320)$	$1306.0 \pm 0.8 \pm 1.3$	$114.4 \pm 1.6 \pm 0.0$
$a_2'(1700)$	$1722 \pm 15 \pm 67$	$247 \pm 17 \pm 63$
π_1	$1564 \pm 24 \pm 86$	$492\pm54\pm102$

first coupled-channel extraction of resonance pole of a hybrid candidate

Also compatible with $\bar{p}p$ and $\pi\pi$ scattering data [B. Kopf et al., Eur. Phys. J. C 12, 1056 (2021)]

[A. Rodas, BK, et al. (JPAC), Phys. Rev. Lett. 122, 042002 (2019)]

 $f_1 \pi$ FINAL STATE

t' dependence

 $f_1(1285)\pi$ $\rho\pi$ $\eta'\pi$ $f_1(1420)\pi$ $K^*\overline{K}$ $\eta\pi$

$b_1\pi$ FINAL STATE

 $\pi^{-}\pi^{+}\pi^{-}4\gamma$ final states \Rightarrow access to $b_{1}\pi \rightarrow \omega\pi\pi$

- new data production: improved shower reconstruction from calorimeter
- full COMPASS data set
- 720 k exclusive events of $\pi^-\pi^0\omega(782)$
 - \Rightarrow largest data sample world-wide: 5 × more data than BNL E852
 - \Rightarrow perform fit in 4 bins in $t' \times 57$ bins in m_X

 $b_1\pi$ $f_1(1285)\pi$ $\rho\pi$ $\eta'\pi$

 $f_1(1420)\pi$

 $K^*\overline{K}$

$b_1\pi$ FINAL STATE

UNIVERSITÄT BONN

- PWA: select about 70 waves from a pool of 893 waves (+ flat), depending on t' and m_X
- Clear signal in spin-exotic $1^{-+} b_1 \pi S$ and D-waves at 1.6 GeV/ c^2
- BNL E852: second state $\pi_1(2015)$

$b_1\pi$

$K_S^0 K_S^0 \pi$ FINAL STATE

- COMPASS full data set: 244k events
- All a_I , π_I states accessible
- Spin-exotic $\pi_1(1600)$ expected to decay to $K^*\overline{K}$
- Search for $a_1(1420)$ •
- K_S^0 identified by secondary vertex: $K_S^0 \rightarrow \pi^+\pi^-$
- Identification of $X \rightarrow K^+ K^- \pi$ limited at low masses due to RICH constraints

 K_S^0

Exotics fro

 \mathbb{P}

HYBRID π_1 MULTIPLET

So far:

- resonant nature of only one member of the 1⁻⁺ multiplet confirmed
- branching fractions to dominant decay channels will be extracted

Need to:

- observe other members
- including ones with strangeness
- BES III
- AMBER

https://arxiv.org/abs/2202.00621

https://arxiv.org/abs/2202.00623

- 25 kaon states listed by PDG (M < 3.1 GeV), 9 of those need confirmation
- many predicted quark-model states still missing
- most measurements performed more than 30 years ago

COMPASS:

- h^- beam has ~2.4% admixture of K^-
- tagged by CEDAR detectors
- final state $K^-\pi^-\pi^+$: 720 k events
 - \Rightarrow access to all kaon states: K_J, K_J^*
- limited by PID in RICH

=xotics from John Acc

• $J^P = 2^+$: clear $K_2^*(1430)$ signal in $K^*(892)\pi$ and $\rho K D$ -waves

- $J^P = 2^+$: clear $K_2^*(1430)$ signal in $K^*(892)\pi$ and $\rho K D$ -waves
- $J^P = 2^-$: complicated t'-dependence of intensities
 - $K_2(1820)$ dominant in $K_2^*(1430)\pi$ *S*-wave
 - $K_2(1770)$ dominant in f_2K *S*-wave
 - $K_2(2250)$ visible in both waves

- $J^P = 2^+$: clear $K_2^*(1430)$ signal in $K^*(892)\pi$ and $\rho K D$ waves
- $J^P = 2^-$: complicated t'-dependence of intensities
 - $K_2(1820)$ dominant in $K_2^*(1430)\pi$ S-wave
 - $K_2(1770)$ dominant in f_2K S-wave
 - $K_2(2250)$ visible in both waves
- $J^P = 0^-$:
 - K(1460) signal in $\rho K P$ -wave, but affected by leakage
 - \Rightarrow fix parameters to PDG
 - stable peak and clear phase motion at 1.7 GeV
 - \Rightarrow K(1630) signal, significance 8.3 σ

 $\Rightarrow m = (1687 \pm 10^{+2}_{-67}) \text{MeV}/c^2, \Gamma = (140 \pm 20^{+50}_{-50}) \text{MeV}/c^2$

- shoulder at 1.9 GeV, but no clear phase motion
 - \Rightarrow evidence for K(1830), phase motion compensated by resonances in reference waves

ntensity $[10^4 (\text{GeV}/c^2)^{-1}]$

SUMMARY OF KAON SPECTRUM

- 11 strange mesons found in COMPASS data \Rightarrow results to be published soon
- evidence for 3 excited *K* states
- quark model only predicts 2: *K*(1460), *K*(1830)?
- K(1630) supernumerary \Rightarrow candidate for exotic strange meson

Triangle singularity (?)

[COMPASS, M.G. Alexeev et al., PRL 127, 082501 (2021)]

SUMMARY OF KAON SPECTRUM

Goal for AMBER: $10 - 20 \times 10^6$ exclusive $K^- \pi^- \pi^+$ events

Talk by O. Denisov: Fri 14:00

Requirements:

- High intensity of K in secondary beam
 - ⇒ Beam studies ongoing (RF and conventional)
- High-efficiency / high-purity beam particle identification
- Final-state PID at higher momenta (depending on beam momentum)
- Full solid-angle coverage for photons / electrons
- \Rightarrow Monte-Carlo simulation campaign ongoing
- \Rightarrow Proposal to be submitted to SPSC in 2024
- \Rightarrow Additional ideas and collaborators welcome!

CONCLUSIONS AND OUTLOOK

- QCD in the strong coupling regime still far from being understood
- Pattern of exotic hadron states not yet clear
- COMPASS has unique data set on diffractive production of light mesons \Rightarrow gives access to all π_J , a_J states in wide mass range $\pi_1 a_1 \pi_1 a_2 \pi_2 a_3 a_4 \pi_4 a_6$

• AMBER:

- Phase I started: PbarX measurement ongoing
- will perform precision spectroscopy of K_J and K_J^* states in Phase II