Is $f_2(1950)$ the tensor glueball?

Francesco Giacosa, Shahriyar Jafarzade, Milena Piotrowska, Arthur Vereijken

UJK, Kielce

June 5th 2023

HADRON 2023

2 Tensor glueball in a chiral model

The QCD lagrangian contains gluon self-interaction due to its non-abelian SU(3) symmetry

$$egin{aligned} \mathcal{L}_{QCD} &= ar{\psi}_i (i \gamma^\mu (D_\mu)_{ij} - m_i \delta_{ij}) \psi_j - rac{1}{4} G^a_{\mu
u} G^a_a \ G^a_{\mu
u} &= \partial_\mu A^a_
u - \partial_
u A_{a\mu} + g f^{abc} A^b_\mu A^c_
u \end{aligned}$$

This begs the question: is there a bound state made of only gluons, a particle that does not contain any matter?

Lattice QCD spectrum

n J ^{PC}	M[MeV]		n J ^{PC}	M[MeV]			
	Chen et.al.	Meyer	A & T		Chen et.al.	Meyer	A & T
1 0++	1710(50)(80)	1475(30)(65)	1653(26)	11	3830(40)(190)	3240(330)(150)	4030(70)
20++		2755(30)(120)	2842(40)	12	4010(45)(200)	3660(130)(170)	3920(90)
30++		3370(100)(150)		22		3740(200)(170)	
40 ⁺⁺		3990(210)(180)		13	4200(45)(200)	4330(260)(200)	
12++	2390(30)(120)	2150(30)(100)	2376(32)	10+-	4780(60)(230)		
22++		2880(100)(130)	3300(50)	11+-	2980(30)(140)	2670(65)(120)	2944(42)
13++	3670(50)(180)	3385(90)(150)	3740(70)	21 ⁺⁻			3800(60)
14++		3640(90)(160)	3690(80)	12+-	4230(50)(200)		4240(80)
16++		4360(260)(200)		13+-	3600(40)(170)	3270(90)(150)	3530(80)
10^{-+}	2560(35)(120)	2250(60)(100)	2561(40)	23+-		3630(140)(160)	
20^{-+}		3370(150)(150)	3540(80)	14+-			4380(80)
12 ⁻⁺	3040(40)(150)	2780(50)(130)	3070(60)	15+-		4110(170)(190)	
2 2 ⁻⁺		3480(140)(160)	3970(70)				
15^{-+}		3942(160)(180)					
11 ⁻⁺			4120(80)				
21 ⁻⁺			4160(80)				
31 ⁻⁺			4200(90)				

Glueball width

Glueballs are expected to have relatively small decay widths, from large N_c scaling:

$$egin{aligned} & \mathcal{A}_{gg
ightarrow ar{q}q + ar{q}q} \propto \mathcal{N}_{\mathcal{C}}^{-1} \ & \mathcal{A}_{ar{q}q
ightarrow ar{q}q + ar{q}q} \propto \mathcal{N}_{\mathcal{C}}^{-rac{1}{2}} \end{aligned}$$

All processes glueball \rightarrow hadrons are also suppressed because of the OZI rule

Numerous experiments are working on data related to glueballs

- BESIII
- LHCb
- GlueX
- Compass
- Clas 12
- PANDA

Experimentally J/ψ decays are one of the best places to search for glueballs.

Linear Sigma Model

The most important symmetry breaking patterns for the eLSM are:

• Breaking of dilatation symmetry by dilaton field *G* (scalar glueball), leading to gluon condensate

$$\mathcal{L}_{dil} = rac{1}{2} (\partial_\mu G)^2 - rac{1}{4} rac{m_G^2}{\Lambda_G^2} \left[G^4 \log(rac{G}{\Lambda_G}) - rac{G^4}{4}
ight]$$

- Spontaneous chiral symmetry breaking; QCD Lagrangian is (almost) invariant under chiral transformations, but the vacuum is not. This leads to a chiral condensate and pions as massless scalars
- The condensates lead to shifts e.g. $G \rightarrow G + G_0, \Phi \rightarrow \Phi + \Phi_0$ which leads to mass terms similarly to the Higgs mechanism.
- Explicit chiral symmetry breaking gives pions a small mass compared to the other mesons

The LSM was previously extended for tensor and axial tensor mesons and its decay products of vectors, axial vectors, etc.

$$egin{split} \mathcal{L}_{\mathsf{eLSM}} &= \mathcal{L}_{\mathsf{dil}} \!+\! \mathsf{Tr} \Big[\Big(D_\mu \Phi \Big)^\dagger \Big(D_\mu \Phi \Big) \Big] - m_0^2 \Big(rac{G}{G_0} \Big)^2 \mathsf{Tr} \Big[\Phi^\dagger \Phi \Big] \ &- rac{1}{4} \mathsf{Tr} \Big[\Big(\mathcal{L}_{\mu
u}^2 + \mathcal{R}_{\mu
u}^2 \Big) \Big] + \cdots \,, \end{split}$$

Gave us decent results for tensor mesons:

Decay process (in model)	eLSM (MeV)	PDG-2020 (MeV)
$a_2(1320) \longrightarrow \rho(770) \pi$	71.0 ± 2.6	$\textbf{73.61} \pm \textbf{3.35} \leftrightarrow (\textbf{70.1} \pm \textbf{2.7})\%$
$K_2^*(1430) \longrightarrow ar{K}^*(892) \pi$	$\textbf{27.9} \pm \textbf{1.0}$	$\textbf{26.92} \pm \textbf{2.14} \leftrightarrow (\textbf{24.7} \pm \textbf{1.6})\%$
$K_2^*(1430) \longrightarrow ho(770) K$	10.3 ± 0.4	$9.48\pm0.97 \leftrightarrow (8.7\pm0.8)\%$
$K_2^*(1430) \longrightarrow \omega(782) \overline{K}$	$\textbf{3.5}\pm\textbf{0.1}$	$3.16\pm0.88\leftrightarrow(2.9\pm0.8)\%$
$f_2'(1525) \longrightarrow \overline{K}^*(892) K + c.c.$	19.89 ± 0.73	

Compared to the work on tensor mesons, we need to replace the tensors to realize flavour blindness:

$$T_{\mu
u} \longrightarrow G_{2,\mu
u} \cdot \mathbf{1}$$

The lagrangian leading to tensor glueball decays involves solely leftand right-handed chiral fields:

$$\mathcal{L} = \lambda \mathbf{G}_{\mu\nu} \Big(\mathsf{Tr} \Big[\{ \mathbf{L}^{\mu}, \mathbf{L}^{\nu} \} \Big] + \mathsf{Tr} \Big[\{ \mathbf{R}^{\mu}, \mathbf{R}^{\nu} \} \Big] \Big)$$

Left- and right-handed fields are in terms of the vector and axial vector nonets

$$L^\mu:=V^\mu+A^\mu_1$$
 , $R^\mu:=V^\mu-A^\mu_1$.

Tensor glueball decays

The Lagrangian leads to three kinematically allowed decay channels

• Decaying of the tensor glueball to the two pseudoscalar mesons have the following decay rate formula

$$\Gamma_{G_2 \longrightarrow P^{(1)}P^{(2)}} = rac{\kappa_{gpp,i} \lambda^2 |\vec{k}_{p^{(1)},p^{(2)}}|^5}{60 \pi m_{g_2}^2};$$

while for the vector and pseudoscalar mesons

$$\begin{split} \Gamma_{G_2 \to V^{(1)}V^{(2)}} &= \frac{\kappa_{g_{VV},i}\lambda^2 |\vec{k}_{V^{(1)},V^{(2)}}|}{120 \,\pi \, m_{g_2}^2} \Big(15 + \frac{5 |\vec{k}_{V^{(1)},V^{(2)}}|^2}{m_{V^{(1)}}^2} + \frac{5 |\vec{k}_{V^{(1)},V^{(2)}}|^2}{m_{V^{(2)}}^2} \\ &+ \frac{2 |\vec{k}_{V^{(1)},V^{(2)}}|^4}{m_{V^{(1)}}^2 m_{V^{(2)}}^2} \Big) ; \end{split}$$

and for the axial-vector and pseudoscalar mesons

$$\Gamma_{G_2 \longrightarrow A_1 P} = \frac{\kappa_{gap,i} \, \lambda^2 \, |\vec{k}_{a_1,p}|^3}{120 \, \pi \, m_{g_2}^2} \big(5 + \frac{2 \, |\vec{k}_{a_1,p}|^2}{m_{a_1}^2} \big)$$

Isoscalar-tensor resonances

Decay ratios

- Coupling constant is not known so we can only compute decay ratios
- Computation is done for a tensor glueball mass of 2210 MeV
- Vector channels are dominant, in particular ρρ and K*K*
- Serves as a qualitative baseline, we can input different masses when comparing to specific resonances

Decay Ratio	theory
$\frac{G_2(2210)\longrightarrow \overline{K} K}{G_2(2210)\longrightarrow \pi \pi}$	0.4
$\frac{G_2(2210) \longrightarrow \eta \eta}{G_2(2210) \longrightarrow \pi \pi}$	0.1
$\frac{G_2(2210) \longrightarrow \eta \eta'}{G_2(2210) \longrightarrow \pi \pi}$	0.004
$\frac{\overline{G_2(2210)} \longrightarrow \eta' \eta'}{\overline{G_2(2210)} \longrightarrow \pi \pi}$	0.006
$\frac{G_2(2210) \longrightarrow \rho(770) \rho(770)}{G_2(2210) \longrightarrow \pi \pi}$	55
$\frac{G_2(2210) \longrightarrow \overline{K^*(892)} \overline{K^*(892)}}{G_2(2210) \longrightarrow \pi \pi}$	46
$\frac{G_2(2210) \longrightarrow \omega(782) \omega(782)}{G_2(2210) \longrightarrow \pi \pi}$	18
$\frac{G_2(2210) \longrightarrow \phi(1020) \phi(1020)}{G_2(2210) \longrightarrow \pi \pi}$	6
$\frac{G_2(2210) \longrightarrow a_1(1260) \pi}{G_2(2210) \longrightarrow \pi \pi}$	0.24
$\frac{G_2(2210) \longrightarrow K_{1,A} K}{G_2(2210) \longrightarrow \pi \pi}$	0.08
$\frac{G_2(2\bar{2}10) \longrightarrow f_1(1285) \eta}{G_2(2210) \longrightarrow \pi \pi}$	0.02
$\frac{G_2(2\bar{2}\bar{1}0) \longrightarrow f_1(1420) \eta}{G_2(2210) \longrightarrow \pi \pi}$	0.01

Resonances Decay Ratios		PDG	Model Prediction
<i>f</i> ₂ (1910)	$ ho ho/\omega\omega$	2.6 ± 0.4	3.1
<i>f</i> ₂ (1910)	$f_2(1270)\eta/a_2(1320)\pi$	0.09 ± 0.05	0.07
f ₂ (1910)	$\eta\eta/\eta\eta'$	< 0.05	\sim 8
f ₂ (1910)	$\omega\omega/\eta\eta\prime$	$\textbf{2.6}\pm\textbf{0.6}$	\sim 200
<i>f</i> ₂ (1950)	$\eta\eta/\pi\pi$	0.14 ± 0.05	0.081
<i>f</i> ₂ (1950)	$K\overline{K}/\pi\pi$	\sim 0.8	0.32
<i>f</i> ₂ (1950)	$4\pi/\eta\eta$	> 200	> 700
f ₂ (2150)	$f_2(1270)\eta/a_2(1320)\pi$	0.79 ± 0.11	0.1
f ₂ (2150)	$K\overline{K}/\eta\eta$	1.28 ± 0.23	\sim 4
f ₂ (2150)	$\pi\pi/\eta\eta$	< 0.33	\sim 10

Table: Decay ratios for the decay channels with available data.

For $f_J(2220)$ PDG lists $\pi\pi/\bar{K}K$ ratio, but only $\eta\eta\prime$ is regarded as "seen".

- A rough guess on the tensor glueball width can be made.
- Consider $f_2 \equiv f_2(1270) \simeq \sqrt{1/2}(\bar{u}u + \bar{d}d)$ and $f'_2 \equiv f'_2(1525) \simeq \bar{s}s$, with $\Gamma_{f_2 \to \pi\pi} = 157.2$ MeV and $\Gamma_{f'_2 \to \pi\pi} = 0.71$ MeV.
- The amplitude for $f_2 \rightarrow \pi\pi$ requires the creation of a single $\bar{q}q$ pair from the vacuum and scales as $1/\sqrt{N_c}$, where N_c is the number of colors. On the other hand, the amplitude for $f'_2 \rightarrow \pi\pi$ scales as $1/N_c^{3/2}$ and goes schematically like

$$ar{s}s
ightarrow gg
ightarrow \sqrt{1/2}(ar{u}u+ar{d}d)$$

Consider a transition Hamiltonian

 $H_{int} = \lambda \left(\left| \bar{u} u \right\rangle \langle g g \right| + \left| \bar{d} d \right\rangle \langle g g \right| + \left| \bar{s} s \right\rangle \langle g g \right| + h.c. \right), \ \lambda \propto 1/\sqrt{N_c}.$

Then:
$$A_{f'_2 \to \pi\pi} \simeq \sqrt{2} \lambda^2 A_{f_2 \to \pi\pi}$$
, hence $\Gamma_{f'_2 \to \pi\pi} \simeq 2 \lambda^4 \Gamma_{f_2 \to \pi\pi}$

 Tensor glueball decay into ππ intuitively speaking, is at an 'intermediate stage', since it starts with a gg pair. One has:

$$egin{aligned} & A_{G_2
ightarrow \pi\pi} \simeq \sqrt{2} \lambda A_{f_2
ightarrow \pi\pi}, \ & \Gamma_{G_2
ightarrow \pi\pi} \simeq 2 \lambda^2 \Gamma_{f_2
ightarrow \pi\pi} \simeq \sqrt{2} \sqrt{\Gamma_{f_2
ightarrow \pi\pi}} \Gamma_{f_2'
ightarrow \pi\pi} \simeq 15 MeV. \end{aligned}$$

- We emphasize that this is a **rough estimate**, based on large *N_c* scaling.
- Similar results to some holographic models: very large decay widths in vector modes.

Glueball candidates

Resonances	Interpretation status
f ₂ (1910)	Agreement with some data,
	but large discrepancies in $\eta\eta\prime$ mode
f ₂ (1950)	$\eta\eta/\pi\pi$ agrees with data, no contradictions with data,
	but broad tensor glueball
	Best fit as predominantly glueball
<i>f</i> ₂ (2010)	Likely primarily strange-antistrange content
f ₂ (2150)	All available data contradicts theoretical prediction
$f_J(2220)$	Data on $\pi\pi/K\bar{K}$ disagrees with theory
	largest predicted decay channels are not seen
f ₂ (2300)	Likely primarily strange-antistrange content
f ₂ (2340)	Likely primarily strange-antistrange content
	would also imply a broad glueball

Table: Spin 2 resonances and their status as the tensor glueball.

- Glueballs are a yet undiscovered prediction of QCD and an active research topic of both theoretical models and experimental efforts
- We have adapted the eLSM for tensor mesons to describe the tensor glueball
- We obtain decay ratios; vector channels are dominant, in particular ρρ and K*K*
- The $f_2(1950)$ is clearly favored as a candidate by the eLSM.
- Sometimes data is limited, in particular, the analysis for the states $f_J(2220), f_2(2300)$, and $f_2(2340)$ would benefit from more experimental data.
- Preliminary estimate for the decay widths gives 15 MeV for the $\pi\pi$ channel, which implies a very broad glueball in the vector channels.

Thank you for your attention