\overline{D} meson and nucleon interaction: from exotic hadrons to charm nuclei

Y. Yamaguchi, S. Y., A. Hosaka, Phys. Rev. D106, 094001 (2022)

Shigehiro YASUI

 \in Sasaki Lab. \subset SKCM² \subset Hiroshima University

HADRON2023@Genova, 5-9 Jun. 2023

International Institute for <u>Sustainability with Knotted Chiral Meta Matter/SKCM²</u>

World Premier International Research Center Initiative/WPI at Hiroshima University

 Cross-pollinates mathematical knot theory and chirality knowledge across disciplines and scales

✓ Creation of designable artificial knotlike particles that exhibit highly unusual and technologically useful properties

Hadron & nuclear physics group

PI: Kenta SHIGAKI (HU, ALICE member)

PI: Chihiro SASAKI (HU, Uni. of Wroclaw)

coPI: Chiho NONAKA (HU)

coPI: Muneto NITTA (HU, Keio Uni.)

Contents

- 1. Introduction: Why \overline{D} meson and nucleon?
- 2. \overline{D} meson and nucleon potential
- 3. B meson and nucleon potential
- 4. Discussions
- 5. Summary

Contents

- **1.** Introduction: Why \overline{D} meson and nucleon?
- 2. \overline{D} meson and nucleon potential
- 3. *B* meson and nucleon potential
- 4. Discussions
- 5. Summary

1. Introduction

Motivation to study exotic hadrons (multiquarks)
 Color confinement (cf. Yang-Mills mass gap)
 Flavor multiplets (unconventional assignment)
 Multi-baryons (strange/charm/bottom nuclei)

M. Gell-Mann "Quarks"

Phys. Lett. (1964)

MeV

HiggsTan.com

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$.

 $(q q q q q q \bar{q})$, (q q q q q), $(q q \bar{q} q)$, $(q q \bar{q} q)$, (q q q), (q q q), (q q q), (q q), (

200 Me\

Cf. S. L. Olsen, T. Skwamicki, D. Ziemninska, Rev. Mod. Phys. 90, 015003 (2018)

- We focus on heavy quarks!

- ✓ Charm (c) quark & bottom (b) quark
- ✓ Mass hierarchy ($m_c, m_b \gg \Lambda_{\rm QCD}$
- ✓ Heavy quark spin symmetry

✓ Many exotics have been found in experiments!

 $X, Y, Z, P_c, T_{cc}, \dots$

1. Introduction

 $\overline{D} = (\overline{D}^0, D^-)$

 $(\overline{c}u,\overline{c}d)$

- \overline{D} meson and nucleon (pentaquark)
 - $\checkmark \bar{c}qqqq$ (q = u, d): no annihilation channel
 - ✓ (Anti-)charm nuclei? Cf. Review paper: Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)
 - \checkmark Extension to *B* meson and nucleon

D meson Nucleon

pentaquark (5 quark)

chiral + HQS symmetries: Cohen, Hohler, Lebed, PRD72, 074010 (2005) Yasui, Sudoh, PRD80, 034008 (2009) Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84, 014032 (2011), ibid. 85, 054003 (2012) etc.

q=u,d

1. Introduction No annihilation - \overline{D} meson and nucleon (pentaguark) 0/10 \rightarrow (relatively) simple $\checkmark \bar{c}qqqq$ (q = u, d): no annihilation channel gluon \overline{q} ✓ (Anti-)charm nuclei? Cf. Review paper: Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017) \checkmark Extension to *B* meson and nucleon $\overline{D} = (\overline{D}^0, D^-)$ $ar{D}^*NN$ (anti-)charm and bottom nuclei $\bar{D}^* + d$ $(\overline{c}u,\overline{c}d)$ DNN and BNN mass? Energy [MeV] (example of theory prediction) 111 i9.3 B^*NN B^*+d *doublet* structure (twin states) $BN(3/2^{-})+N$ q=u,d $P_{O}^{(*)}NN$ $6.8 - i0.2 1^{-1} BNN$ Ī́DNN 0 $P_{O}^{(*)} + d$ B+d $ar{D}N(1/2)$ +N-5.2 **Nucleon** neson $BN(1/2^{-1}$ (anti D meson) $P_Q N(1/2^-, 3/2^-) + N$ 26.2pentaquark (5 quark) $-\overline{38.5}$ 0⁻, 1⁻ chiral + HQS symmetries: $m_O \rightarrow \infty$ Cohen, Hohler, Lebed, PRD72, 074010 (2005) Yasui, Sudoh, PRD80, 034008 (2009) Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84, 014032 (2011), ibid. 85, 054003 (2012)

etc.

1. Introduction No annihilation - \overline{D} meson and nucleon (pentaguark) 0/10 \rightarrow (relatively) simple $\checkmark \bar{c}qqqq$ (q = u, d): no annihilation channel gluon \overline{q} ✓ (Anti-)charm nuclei? Cf. Review paper: Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017) \checkmark Extension to *B* meson and nucleon $\overline{D} = (\overline{D}^0, D^-)$ \bar{D}^*NN (anti-)charm and bottom nuclei $\bar{D}^* + d$ $(\overline{c}u,\overline{c}d)$ DNN and BNN mass? Energy [MeV] (example of theory prediction) 111 B^*NN B^*+d *doublet* structure (twin states) $BN(3/2^{-})+N$ q=u,d $P_{O}^{(*)}NN$ $\bar{D}NN$ 6.8 - i0.2 1^{-} BNN 0 $P_{O}^{(*)} + d$ B+d $\overline{D}N(1/2)$ Nucleon neson $BN(1/2^{-1}$ (anti D meson) $P_Q N(1/2^-, 3/2^-) + N$ 26.2 o pentaquark (5 quark) $-\overline{38.5}$ 0⁻, 1⁻ chiral + HQS symmetries: $m_O \rightarrow \infty$ Cohen, Hohler, Lebed, PRD72, 074010 (2005) Yasui, Sudoh, PRD80, 034008 (2009) Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84, 014032 (2011), ibid. 85, 054003 (2012) etc. Can (anti-)charm nuclei exist in our nature

HiggsTan.com

1. Introduction

- 2022: First experiment for $\overline{D}N$ interaction!

- ✓ ALICE at LHC Phys. Rev. D106, 052010 (2022) ← analysis by Kamiya, Hyodo, Ohnishi
- ✓ D^-p ($\overline{D}N$) correlation function from proton-proton collisions

✓ Attraction suggested? (Cf. KN is repulsive.)

We should explore \overline{D} meson and nucleon interaction *more seriously*!

Cf. Hyperon interaction: Ohnishi et al., Nucl. Phys. A954, 294 (2016)

1. Introduction My few contributions since 2009...

	5					
PHYSICAL REVIEW D 80,	034008 (2009)			PHYSICAL REV	/IEW D 84, 014032 (2011)	
Exotic nuclei with open hea	vy flavor mesons	Exotic b	aryons from	a heavy mes	son and a nucleon: Negat	ive parity states
Shigehiro Yasui ^{1,*} and Kaz	utaka Sudoh ^{2,†}	Yasuh	niro Yamaguchi	¹ Shunsuke Oh	koda, ¹ Shigehiro Yasui, ² and A	tsushi Hosaka ¹
	PHYSICAL REVIEW D 85	5,054003 (2	2012)			
Exotic baryons fro	om a heavy meson and	a nucleo	n: Positive p	arity states		
Yasuhiro Yamaguc	hi, ¹ Shunsuke Ohkoda, ¹ Shi	igehiro Yas	sui, ² and Atsush	i Hosaka ¹		
Physics Letters B 727					EW D 91, 034034 (2015)	
Contents lists availab	le at ScienceDirect		Heavy qu	ark symme	try in multihadron system	ms
Physics L	etters B	iro Yamagı	uchi ¹ Shunsuke	Ohkoda ¹ Atsu	ushi Hosaka, ^{1,2} Tetsuo Hyodo, ³	and Shigehiro Yası
LSEVIER www.elsevier.com				Grossi		PHYSICS
				ELSEVIER	Nuclear Physics A 927 (2014) 110-118	www.elsevier.com/locate/nuclph
pin degeneracy in multi-hadron systems		CrossMark				I. I
nigehiro Yasui ^{a,*} , Kazutaka Sudoh ^b , Yasuhiro Yamag Isushi Hosaka ^c , Tetsuo Hyodo ^{d,1}	uchi ^c , Shunsuke Ohkoda ^c ,					
DTED	Prog. Theor. Exp.	Phys 2017	093D02 (14 nages)		tic dibaryons with a heavy	antiquark
FILF	Tiog. Theor. Exp.).1093/ptep/ptx112	Yasuhiro	Yamaguchi ^{a,*} , Shigehiro Yasui ^b , A	Atsushi Hosaka ^{a,c}
				PHYSICA	L REVIEW C 87, 015202 (2013)	
				\bar{D} and B r	nesons in a nuclear medium	
Mesic nuclei with a l	ieavy antiquark	κ.			S. Yasui [*]	
Yasuhiro Yamaguchi ^{1,2,*} and Shigehin	ro Vasui ³	KEK T	heory Center, Institu	0	clear Studies, High Energy Accelerator Re	esearch Organization, 1-1
Tusumo Tumuguem and Shigem					Ibaraki 305-0801, Japan	
			1		K. Sudoh	
	PHYSICAL REVIEW C 89, 015	5201 (2014)		Progr	ess in Particle and Nuclear Physics 96 (2017) 88-153	
Probing gluon dynamics by chari	n and bottom mesons i	n nuclear		(Contents lists available at ScienceDirect	Progress and Nu-
	theory with 1/M corr		5-2.0	Progress	in Particle and Nuclear Phy	vsics
	S. Yasui ^{1,*} and K. Sud	loh ²		U	al homepage: www.elsevier.com/locate/ppnp	
	5. Tasul / allu K. Sud		ELSEVIEK	journa		
			Review			
				ons in nuclear		(() a
			Atsushi Hosaka Shigehiro Yasui	^{a,b} , Tetsuo Hyodo _{f,*}	o ^c , Kazutaka Sudoh ^d , Yasuhiro Yar	naguchi ^{c,e} ,

1. Introduction

$\overline{D}N$ (BN) potential; the latest version

PHYSICAL REVIEW D 106, 094001 (2022)

Open charm and bottom meson-nucleon potentials à la the nuclear force

Yasuhiro Yamaguchi^{®*}

Department of Physics, Nagoya University, Nagoya 464-8602, Japan and Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai 319-1195, Japan

Shigehiro Yasui^{®†}

Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan

Atsushi Hosaka[‡]

Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan; Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan and Theoretical Research Division, Nishina Center, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan

I talk on this.

- 1. Introduction: Why \overline{D} meson and nucleon?
- 2. \overline{D} meson and nucleon potential
- 3. B meson and nucleon potential
- 4. Discussions
- 5. Summary

1. Introduction: Why \overline{D} meson and nucleon?

2. \overline{D} meson and nucleon potential

- 3. *B* meson and nucleon potential
- 4. Discussions
- 5. Summary

2. \overline{D} meson and nucleon potential

- Structure of \overline{D} meson: Heavy quark spin symmetry (HQS) ✓ HQS: $Q \rightarrow SQ$ with $S \in SU(2)_{heavy quark spin}$ ✓ *D* and *D*^{*} mesons as HQS doublet $\overline{D} = (\overline{D}^0, D^-) = (\overline{c}u, \overline{c}d)$ u c t $\checkmark B$ and B^* mesons also $B = (B^+, B^0) = (\overline{b}u, \overline{b}d) \quad d \quad s \quad b$ * 770 MeV * 890 MeV 2010 MeV 5325 MeV $Q\bar{q}$ 45 MeV 140 MeV 390 MeV 630 MeV 5280 MeV 1870 MeV Qą Pseudoscalar and vector mesons (P and P^*) become degenerate in heavy quark limit. 500 MeV *P* and *P*^{*} should be considered **simultaneously**. HQS \overline{Q} 140 MeV Pseudoscalar Vector HiggsTan.com

- \overline{D} meson and nucleon potential ($P = \overline{D}, P^* = \overline{D}^*$)
 - ✓ $PN P^*N$ mixing (P and P^* are interchangeable.)
 - ✓ Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
 - ✓ OPEP (one-pion exchange potential) $\leftarrow \chi$ +HQS
 - ✓ Scalar (σ), vector (ρ , ω) exchanges

✓ Analogy to nucleon-nucleon (*NN*) pot. (Note: $1/\sqrt{2}$ factor for $P^{(*)}P^{(*)}m$)

 π exchange \rightarrow spin flipping (*P*, *P*^{*} mixing) like in a deuteron

- \overline{D} meson and nucleon potential ($P = \overline{D}, P^* = \overline{D}^*$)
 - ✓ $PN P^*N$ mixing (P and P^* are interchangeable.)
 - ✓ Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
 - ✓ OPEP (one-pion exchange potential) $\leftarrow \chi$ +HQS
 - ✓ Scalar (σ), vector (ρ , ω) exchanges

✓ Analogy to nucleon-nucleon (*NN*) pot. (Note: $1/\sqrt{2}$ factor for $P^{(*)}P^{(*)}m$)

 π exchange \rightarrow spin flipping (*P*, *P*^{*} mixing) like in a deuteron

- \overline{D} meson and nucleon potential ($P = \overline{D}, P^* = \overline{D}^*$)
 - ✓ $PN P^*N$ mixing (P and P^* are interchangeable.)
 - ✓ Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
 - ✓ OPEP (one-pion exchange potential) $\leftarrow \chi$ +HQS
 - ✓ Scalar (σ), vector (ρ , ω) exchanges

✓ Analogy to nucleon-nucleon (*NN*) pot. (Note: $1/\sqrt{2}$ factor for $P^{(*)}P^{(*)}m$)

 π exchange \rightarrow spin flipping (*P*, *P*^{*} mixing) like in a deuteron

- \overline{D} meson and nucleon potential ($P = \overline{D}, P^* = \overline{D}^*$)
 - ✓ $PN P^*N$ mixing (P and P^* are interchangeable.)
 - ✓ Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
 - ✓ OPEP (one-pion exchange potential) $\leftarrow \chi$ +HQS
 - ✓ Scalar (σ), vector (ρ , ω) exchanges

✓ Analogy to nucleon-nucleon (*NN*) pot. (Note: $1/\sqrt{2}$ factor for $P^{(*)}P^{(*)}m$)

- HQS doublet: q + N with j = 1 (total J = 1/2, 3/2 degenerate)

- \overline{D} meson and nucleon potential ($P = \overline{D}, P^* = \overline{D}^*$)
 - ✓ $PN P^*N$ mixing (P and P^* are interchangeable.)
 - ✓ Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
 - ✓ OPEP (one-pion exchange potential) $\leftarrow \chi$ +HQS
 - ✓ Scalar (σ), vector (ρ , ω) exchanges

✓ Analogy to nucleon-nucleon (*NN*) pot. (Note: $1/\sqrt{2}$ factor for $P^{(*)}P^{(*)}m$)

 $P/P^{,}$

χHQS

N

light spin *j*

Spin decomposition by light guarks and

gluons from heavy

quarks

- Generality: spin-structure (q: light quark, N: nucleon) \checkmark Recombination: $[\bar{Q}q]N = \bar{Q}[qN]$

✓ HQS multiplets: *which is realized in QCD?*

- HQS singlet: q + N with j = 0 (total J = 1/2 only)

Ν

- HQS doublet: q + N with j = 1 (total J = 1/2, 3/2 degenerate)
- We need to solve QCD in order to get the potential, but it's difficult.
 Ve still rely on model calculations.

- $P^{(*)}N$ potential ($P = \overline{D}, B$ meson; $P^* = \overline{D}^*, B^*$ meson, N nucleon) $\checkmark PN - P^*N$ channel mixing (multi-channel)

Ν

Ν

 $\pi, \sigma, \rho, \omega$

- $P^{(*)}N$ potential ($P = \overline{D}, B$ meson; $P^* = \overline{D}^*, B^*$ meson, N nucleon) $\checkmark PN - P^*N$ channel mixing (multi-channel)

Heavy Meson Effective Theory (HMET) Luke, Manohar, Wise, Casalbuoni, ...
 ✓ Hadronic effective theory based on χ+HQS symmetries for P and P*

$$\checkmark \text{ Effective field: } H_{\alpha} = \left(P_{\alpha}^{*\mu}\gamma_{\mu} + P_{\alpha}\gamma_{5}\right)\frac{1-\psi}{2} \quad H_{\alpha} \rightarrow SH_{\beta}U_{\beta\alpha}^{\dagger} \\ \text{HQS } \chi \text{ sym.}$$

$$\checkmark P^{(*)}P^{(*)}m \text{ vertices are uniquely determined } (m = \pi, \sigma, \rho, \omega)$$

$$\mathcal{L}_{\pi HH} = ig_{\pi} \text{tr} \left(H_{\alpha}\bar{H}_{\beta}\gamma_{\mu}\gamma_{5}A_{\beta\alpha}^{\mu}\right)$$

$$\mathcal{L}_{\sigma_{I}HH} = g_{\sigma_{I}} \text{tr} \left(H\sigma_{I}\bar{H}\right)$$

$$\mathcal{L}_{vHH} = -i\beta \text{tr} \left(H_{b}v^{\mu}(\rho_{\mu})_{ba}\bar{H}_{a}\right)$$

$$+ i\lambda \text{tr} \left(H_{b}\sigma^{\mu\nu}(F_{\mu\nu}(\rho))_{ba}\bar{H}_{a}\right)$$

$$Previous works:$$

$$\pi \text{ only: Yasui, Sudoh, PRD80, 034008 (m, \rho, \omega: Yamaguchi, Ohkoda, Yasui, Hostigned)}$$

π only: Yasui, Sudoh, PRD80, 034008 (2009) π, ρ, ω: Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84 014032 (2011), ibid. 054003 (2012)

 $\pi, \sigma, \rho, \omega$

- $P^{(*)}N$ potential ($P = \overline{D}, B$ meson; $P^* = \overline{D}^*, B^*$ meson, N nucleon) $\checkmark PN - P^*N$ channel mixing (multi-channel)

 $\pi, \sigma, \rho, \omega$

- Heavy Meson Effective Theory (HMET) Luke, Manohar, Wise, Casalbuoni, ... $\checkmark \text{ Hadronic effective theory based on } \chi + \text{HQS symmetries for } P \text{ and } P^*$ $\checkmark \text{ Effective field: } H_{\alpha} = \left(P_{\alpha}^{*\mu}\gamma_{\mu} + P_{\alpha}\gamma_{5}\right)\frac{1-\psi}{2} \quad H_{\alpha} \rightarrow SH_{\beta}U_{\beta\alpha}^{\dagger}$ $\dashv QS_{\chi \text{ sym.}}$ $\checkmark P^{(*)}P^{(*)}m \text{ vertices are uniquely determined } (m = \pi, \sigma, \rho, \omega)$ $\mathcal{L}_{\pi HH} = ig_{\pi}\text{tr}(H_{\alpha}\bar{H}_{\beta}\gamma_{\mu}\gamma_{5}A_{\beta\alpha}^{\mu})$ $\mathcal{L}_{\sigma_{I}HH} = g_{\sigma_{I}}\text{tr}(H\sigma_{I}\bar{H}) \leftarrow \sigma \text{ is new!}$ $\mathcal{L}_{vHH} = -i\beta\text{tr}(H_{b}v^{\mu}(\rho_{\mu})_{ba}\bar{H}_{a})$ $+ i\lambda\text{tr}(H_{b}\sigma^{\mu\nu}(F_{\mu\nu}(\rho))_{ba}\bar{H}_{a})$ $\frac{\sigma \text{ is important for } NN \text{ (}I = 0, 1 \text{ channels}\text{):}}{\sigma_{0} \text{ (weak coupling) for } NN \text{ with } I = 0}$ $\sigma_{1} \text{ (strong coupling) for } NN \text{ with } I = 1$ $\frac{Previous works:}{\pi \text{ only: Yasui, Sudoh, PRD80, 034008 (2009)}}$ $\pi, \rho, \omega: Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84 014032 (2011), ibid. 054003 (2012)$

- $P^{(*)}N$ state $(J^P = 1/2^-, I = 0 \text{ or } 1)$ Note: applicable to $J^P = 3/2^-$ (HQS partner)

✓ Particle basis: $PN({}^{2}S_{1/2})$, $P^*N({}^{2}S_{1/2})$, $P^*N({}^{4}D_{1/2})$ ← 3 channels ✓ HQS basis: $\bar{Q}_{S=1/2}[qN]_{j=0,1}$ (2013); PRD91, Official of the state of the stat

- $P^{(*)}N$ state $(J^P = 1/2^-, I = 0 \text{ or } 1)$ Note: applicable to $J^P = 3/2^-$ (HQS partner) \checkmark Particle basis: $PN({}^2S_{1/2}), P^*N({}^2S_{1/2}), P^*N({}^4D_{1/2}) \leftarrow 3$ channels \checkmark HQS basis: $\bar{Q}_{S=1/2}[qN]_{j=0,1}$ (Cf. Yasui, Sudoh, Yamaguchi, Ohkoda, Hosaka, Hyodo, PLB727, 185 (2013); PRD91, 034034 (2015)

- $P^{(*)}N(1/2^{-})$ Hamiltonian $H_{J^P} = K_{J^P} + V_{J^P}^{\pi} + V_{J^P}^{\sigma_I} + V_{J^P}^{\rho} + V_{J^P}^{\omega}$ \checkmark Kinetic term $K_{1/2^{-}} = \text{diag}(K_0, K_0^*, K_2^*)$ (S-wave, S-wave, D-wave) $\checkmark \pi, \sigma, \nu(=\rho, \omega)$ pot. term $(1/\sqrt{2} \text{ factor included})$

$$V_{1/2^{-}}^{\pi} = \begin{pmatrix} 0 & \sqrt{3} C_{\pi} & -\sqrt{6} T_{\pi} \\ \sqrt{3} C_{\pi} & -2 C_{\pi} & -\sqrt{2} T_{\pi} \\ -\sqrt{6} T_{\pi} & -\sqrt{2} T_{\pi} & C_{\pi} - 2 T_{\pi} \end{pmatrix} \quad V_{1/2^{-}}^{\sigma_{I}} = \begin{pmatrix} C_{\sigma_{I}} & 0 & 0 \\ 0 & C_{\sigma_{I}} & 0 \\ 0 & 0 & C_{\sigma_{I}} \end{pmatrix}$$
$$V_{1/2^{-}}^{v} = \begin{pmatrix} C_{v}' & 2\sqrt{3}C_{v} & \sqrt{6}T_{v} \\ 2\sqrt{3}C_{v} & C_{v}' - 4C_{v} & \sqrt{2}T_{v} \\ \sqrt{6}T_{v} & \sqrt{2}T_{v} & C_{v}' + 2C_{v} + 2T_{v} \end{pmatrix} \quad \text{including HQS singlet/double}$$

✓ Tensor force (T_{π}, T_{ν}) induces strong mixing among 3 channels

- $P^{(*)}N$ state $(J^P = 1/2^-, I = 0 \text{ or } 1)$ Note: applicable to $J^P = 3/2^-$ (HQS partner) \checkmark Particle basis: $PN({}^2S_{1/2}), P^*N({}^2S_{1/2}), P^*N({}^4D_{1/2}) \leftarrow 3$ channels \checkmark HQS basis: $\bar{Q}_{S=1/2}[qN]_{j=0,1}$ (Cf. Yasui, Sudoh, Yamaguchi, Ohkoda, Hosaka, Hyodo, PLB727, 185 (2013); PRD91, 034034 (2015)

- $P^{(*)}N(1/2^{-})$ Hamiltonian $H_{J^P} = K_{J^P} + V_{J^P}^{\pi} + V_{J^P}^{\sigma_I} + V_{J^P}^{\rho} + V_{J^P}^{\omega}$ \checkmark Kinetic term $K_{1/2^{-}} = \text{diag}(K_0, K_0^*, K_2^*)$ (S-wave, S-wave, D-wave) $\checkmark \pi, \sigma, \nu(=\rho, \omega)$ pot. term $(1/\sqrt{2} \text{ factor included})$

$$V_{1/2^{-}}^{\pi} = \begin{pmatrix} 0 & \sqrt{3}C_{\pi} & -\sqrt{6}T_{\pi} \\ \sqrt{3}C_{\pi} & -2C_{\pi} & -\sqrt{2}T_{\pi} \\ -\sqrt{6}T_{\pi} & -\sqrt{2}T_{\pi} & C_{\pi} - 2T_{\pi} \end{pmatrix} \quad V_{1/2^{-}}^{\sigma_{I}} = \begin{pmatrix} C_{\sigma_{I}} & 0 & 0 \\ 0 & C_{\sigma_{I}} & 0 \\ 0 & 0 & C_{\sigma_{I}} \end{pmatrix}$$
$$V_{1/2^{-}}^{v} = \begin{pmatrix} C_{v}' & 2\sqrt{3}C_{v} & \sqrt{6}T_{v} \\ 2\sqrt{3}C_{v} & C_{v}' - 4C_{v} & \sqrt{2}T_{v} \\ \sqrt{6}T_{v} & \sqrt{2}T_{v} & C_{v}' + 2C_{v} + 2T_{v} \end{pmatrix} \text{ including HQS singlet/doublet}$$

✓ Tensor force (T_{π}, T_{ν}) induces strong mixing among 3 channels ✓ Model parameters

- π pot. coupling $(D^* \rightarrow D\pi)$

- $v = \rho$, ω pot. couplings (universal couplings)
- σ pot. coupling ~ 1/3 of *NN* (# of light quarks in $P^{(*)}$ meson)
- Momentum cutoffs (size ratios of \overline{D} (*B*) and *N* from quark model)

2. \overline{D} meson and nucleon potential

- Results (\overline{D} and N)
✓ bound states $(I = 0, 1)$

	$\bar{D}N$	B.E. $[MeV]$	Mixing ratio [%]	<i>n,o,p,w</i>
			$\bar{D}N(^2S_{1/2})$ 96.1	
$I(J^P) =$	$0(1/2^{-})$	1.38	$\bar{D}^*N(^2S_{1/2})$ 1.94	Cf. Deuteron binding energy 2.2 MeV
		"shallow"	$\bar{D}^*N(^4D_{1/2})$ 1.93	
			$\bar{D}N(^2S_{1/2})$: 88.9	
$I(J^P) =$	$1(1/2^{-})$	5.99	$\bar{D}^*N(^2S_{1/2})$: 10.9	
		"deep"	$\bar{D}^*N(^4D_{1/2})$: 0.11	

2. \overline{D} meson and nucleon potential

- Results (\overline{D} and N) \checkmark bound states (I = 0, 1)

	$\bar{D}N$	B.E. $[MeV]$	Mixing ratio $[\%]$	<i>n,o,p,w</i>
			$\bar{D}N(^2S_{1/2})$ 96.1	
$I(J^P) =$	$0(1/2^{-})$	1.38	$\bar{D}^* N(^2 S_{1/2})$ 1.94	Cf. Deuteron binding energy 2.2 MeV
<i>"j</i> =	1″	"shallow"	$\bar{D}^* N(^4 D_{1/2}) \ 1.93$	
			$\bar{D}N(^2S_{1/2})$: 88.9	
$I(J^P) =$	$1(1/2^{-})$	5.99	$\bar{D}^*N(^2S_{1/2})$: 10.9	
"j =	0″	"deep"	$\bar{D}^* N({}^4D_{1/2})$: 0.11	

- I = 0: shallow bound state (consistent with previous works)
- I = 1: deeply bound state (new!)
- Both π and σ are important
- Note: σ pot. in I = 1 is very strong
- Internal spin: "j = 1" for I = 0 and "j = 0" for I = 1 (approximate)

"brown muck" (light component) heavy quark

✓ Scattering lengths

$\bar{D}N$	$a \; [{ m fm}]$		
$0(1/2^{-})$	$\bar{D}N(^2S_{1/2})$	5.21 $0.868 - i3.72 \times 10^{-2}$	
0(1/2)	$\bar{D}^* N(^2S_{1/2})$	$0.868 - i3.72 \times 10^{-2}$	
$1(1/9^{-})$	$\bar{D}N(^2S_{1/2})$	2.60 0.944 - i0.722	
1(1/2)	$\bar{D}^*N(^2S_{1/2})$	0.944 - i0.722	

- 1. Introduction: Why \overline{D} meson and nucleon?
- 2. \overline{D} meson and nucleon potential
- 3. *B* meson and nucleon potential
- 4. Discussions
- 5. Summary

- 1. Introduction: Why \overline{D} meson and nucleon?
- 2. \overline{D} meson and nucleon potential
- 3. *B* meson and nucleon potential
- 4. Discussions
- 5. Summary

3. *B* meson and nucleon potential

- Applicable for *B* meson and nucleon (more ideal in view of HQS)
- Results (*B* and *N*)

 $I(J^P) = 0(1/2^{-})$

✓ Bound states (I=0, 1)

BN

) []:	=0, 1)		Ţ			Ì)
	B.E. $[MeV]$	Mixing ratio	[%]	B/B*	π , σ, ρ, ω	N
		$BN(^2S_{1/2})$ 76.4	1	-	, , , ,,	
)	29.7	$B^*N(^2S_{1/2})$ 14.1	Cf. De	uteron bindir	ng energy 2.2 M	eV
	"deep"	$B^*N(^4D_{1/2})$ 9.46	5	_		
		0				

		$BN(^{2}S_{1/2})$	38.5
$I(J^P) = 1(1/2^-)$	66.0	$B^*N(^2S_{1/2})$	61.5
	"very deep"	$B^*N({}^4D_{1/2})$	1.82×10^{-2}

3. B meson and nucleon potential

- Applicable for *B* meson and nucleon (more ideal in view of HQS)
- Results (*B* and *N*)
 - ✓ Bound states (I=0, 1)

	`	, ,						/
	BN	B.E. $[MeV]$	Mixing ra	atio [%]		B/B^*	<i>π</i> , σ, ρ, ω	N
			$BN(^2S_{1/2})$	76.4				
$I(J^P) =$	$0(1/2^{-})$	29.7	$B^*N(^2S_{1/2})$	14.1	Cf. Deu	uteron bindi	ing energy 2.2 Me	/
"j =	1″	"deep"	$B^*N({}^4D_{1/2})$	9.46				
			$BN(^2S_{1/2})$	38.5				
$I(J^P) =$	$1(1/2^{-})$	66.0	$B^*N(^2S_{1/2})$	61.5				
"j =	0"	"very deep"	$B^*N(^4D_{1/2})$	$1.82 \times$	10^{-2}			

- I = 0: deeply bound state (consistent with previous works)
- I = 1: more deeply bound state (new!)
- Both π and σ are important
- Note: σ pot. in I = 1 is very strongly attractive
- Internal spin: "j = 1" for I = 0 and "j = 0" for I = 1 (approximate)

"brown muck" (light component) heavy quark

✓ Scattering lengths

BN	$a \; [{ m fm}]$		
$0(1/2^{-})$	$ \begin{array}{ c c c c c } BN(^{2}S_{1/2}) & 1.25 \\ B^{*}N(^{2}S_{1/2}) & 1.03 - i1.07 \times 10^{-2} \end{array} $		
	$B^*N(^2S_{1/2}) \ 1.03 - i1.07 \times 10^{-2}$		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$B^*N(^2S_{1/2}) \ 0.263 - i0.585$		

 \checkmark Why not to research *BN* correlation function from heavy-ion collisions?

- Very few theoretical works on BN interaction
- Should we explore B^0p (I = 0 and 1) channel?

- 1. Introduction: Why \overline{D} meson and nucleon?
- 2. \overline{D} meson and nucleon potential
- 3. *B* meson and nucleon potential
- 4. Discussions
- 5. Summary

- 1. Introduction: Why \overline{D} meson and nucleon?
- 2. \overline{D} meson and nucleon potential
- 3. B meson and nucleon potential
- 4. Discussions
- 5. Summary

4. Discussions

- Model dependence
 - \checkmark Ambiguity in σ potentials

- We assumed $P^{(*)}P^{(*)}\sigma$ strength coupling is "1/3" of that in $NN\sigma$
- \checkmark Estimate the uncertainty from σ couplings
 - Dependence in binding energies

4. Discussions

Cf. Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, Prog. Part. Nucl. Phys. 96, 88 (2017)

- Charm (bottom) nuclei?
 - **Diversity of matter** ✓ Can charm (bottom) nuclei exist as stable states?
 - \checkmark What about D mesons in nuclear medium?
 - Stability: binding energy?

TABLE I. List of the mass shifts of the \overline{D} meson in nuclear medium in previous works: quark meson coupling (QMC) model, QCD sum rule, coupled channel analysis, and chiral effective model.

Flavor nuclei:

Analysis	Ref.	Mass shift of \overline{D} (MeV)	Density ρ (fm ⁻³)
QMC model(QMC: quark-meson coupling)[18]		-62 attractive	0.15
QCD sum rule	[19]	-48 ± 8 attractive	0.17
-	[23]	+45 (averaged mass shift of D and \overline{D}) repulsive	0.15
	[28]	-46 ± 7 (averaged mass shift of D and \overline{D}) attractive	0.17
	[30]	-72 (averaged mass shift of D and \overline{D}) attractive	0.17
	[31]	+38 repulsive	0.17
Coupled channel analysis	[21]	+18 repulsive	0.17
	[22]	+(11-20) repulsive	0.16
	[26]	+35 repulsive	0.17
	[15]	$\simeq -(20-27)$ attractive	0.17
Chiral effective model	[20]	$\simeq -(30-180)$ attractive	0.15
	[25]	-27.2 attractive	0.15
	[16]	-35.1 attractive	0.17
	[37]	+97 (parity doublet model), +120 (skyrmion crystal) repulsiv	0.16
	Our result*	+74 repulsive	0.095

*D. Suenaga, S. Yasui., M. Harada, Phys. Rev. C96, 015204 (2017) [See this paper for the reference numbers.]

Possible open question: can we study (anti-)charm nuclei through DN interaction?

5. Summary Y. Yamaguchi, S

Y. Yamaguchi, S. Y., A. Hosaka, Phys. Rev. D106, 094001 (2022)

- \overline{D} (B) meson and nucleon potential is important for exotic hadrons and nuclei.
- We considered π , σ , ρ , ω exchanges based on chiral and HQS symmetries
- Bound states of \overline{D} meson and nucleon with $I(J^P) = 0(1/2^-), 1(1/2^-)$
- Deeply bound states of *B* meson and nucleon with same $I(J^P)$
- Future studies: theories and experiments (LHC, Belle, J-PARC, etc.) √ Heavy ion collisions (LHC) ExHIC: PRL106 212001 (2011); PRC84, 064910 (2011), PPNP95, 279 (2017)
 - ✓ Fixed target experiments (J-PARC) Yamagata-Sekihara, Garcia-Recio, Nieves, Salcedo, Tolos, PLB754, 26 (2016)
 - ✓ More states in the other $I(J^P)$?
 - ✓ More states in bottom?
 - ✓ Lattice QCD?
 - ✓ $D_s^- N$? $\overline{D}\Lambda$? (from u, d to u, d, s)
 - ✓ Multi-baryons : $P^{(*)}NN$, $P^{(*)}\alpha$?? ^{Yamaguchi, Yasui, Hosaka,} NPA927, 110 (2014)
 - ✓ (Anti-)charm, bottom nuclei???

Y. Yamaguchi Nagoya U.

A. Hosaka RCNP, Osaka U.

Can (anti-)charm nuclei exist in our nature?

Thanks!

Appendix

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Reference system: nucleon-nucleon (NN)
 - ✓ Similarity between NN and qN
 - \checkmark π, σ, ρ, ω exchange

 $\checkmark\sigma$ is important to consider both I=0 and I=1 in NN

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Reference system: nucleon-nucleon (NN)
 - ✓ Similarity between NN and qN
 - \checkmark π, σ, ρ, ω exchange

 $\checkmark\sigma$ is important to consider both I=0 and I=1 in NN

- CD-Bonn is a realistic NN potential
 - \checkmark Reproducing the fundamental properties of NN force
 - ✓ Simple model: one-meson exchange (π , σ , ρ , ω , ...)
 - ✓ However still complicated (because heavier mesons included)

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Reference system: nucleon-nucleon (NN)
 - \checkmark Similarity between NN and qN
 - \checkmark π, σ, ρ, ω exchange

 $\checkmark\sigma$ is important to consider both I=0 and I=1 in NN

- CD-Bonn is a realistic NN potential
 - \checkmark Reproducing the fundamental properties of NN force
 - \checkmark Simple model: one-meson exchange (π, σ, ρ, ω, ...)
 - ✓ However still complicated (because heavier mesons included)
- We consider the simpler version of CD-Bonn ("modified CD-Bonn")
 - \checkmark We consider only mesons with lower masses
 - \checkmark Coupling constants as the same as in CD-Bonn
 - \checkmark Price to be paid: rescaling of the momentum cutoffs

esons Masses $[MeV]$ $g^2/4\pi$ f/g π 138.04 13.6 ρ 769.68 0.84 6.1 ω 781.94 20 0.0 σ_0 350 0.51673 σ_1 452 3.96451	exchang	ed mesons (same	as CD-Boi	nn)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mesons	Masses [MeV]	$g^2/4\pi$	f/g
ω 781.94 20 0.0 σ_0 350 0.51673 -				
σ_0 350 0.51673 -	ho	769.68	0.84	6.1
° 450 2.00451	ω	781.94	20	0.0
σ_1 452 3.96451 —	σ_0	350	0.51673	
	σ_1	452	3.96451	

Masses and coupling constants of

Scattering lengths, effective ranges, binding energy of a deuteron in modified CD-Bonn

channel	$\kappa_I \ (I=0 \text{ and } I=1)$	$a \; [\mathrm{fm}]$	$r_{\rm e} ~[{\rm fm}]$	$B_{\rm d} [{\rm MeV}]$				
$^{3}S_{1} (I=0)$	0.8044226	5.296	1.562	2.225*				
$^{1}S_{0} (I=1)$	0.7729982	23.740^{*}	2.337					
Reduction scale factor in momentum cutoffs								
Consistent with experiment values $a(^{3}S_{1})=5.419\pm0.007$ fm, $r_{e}(^{3}S_{1})=1.753\pm0.008$ fm, $B_{d}=2.225$ MeV $a(^{1}S_{0})=23.740\pm0.020$ fm, $r_{e}(^{1}S_{0})=2.77\pm0.05$ fm								

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Interaction Lagrangian

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Interaction Lagrangian

- NN potential

$$\begin{split} V_{\pi}(r) &= \left(\frac{g_{\pi NN}}{2m_{N}}\right)^{2} \frac{1}{3} \left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} C_{\pi}(r) + S_{12}(\hat{r}) T_{\pi}(r)\right) \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \overset{\text{top}}{=} \\ V_{\sigma_{I}}(r) &= -\left(\frac{g_{\sigma_{I}}}{2m_{N}}\right)^{2} \left(\left(\frac{2m_{N}}{m_{\sigma_{I}}}\right)^{2} - 1\right) C_{\sigma_{I}}(r) & \overset{\text{for}}{=} \\ V_{v}(r) &= g_{vNN}^{2} \left(\frac{1}{m_{v}^{2}} + \frac{1 + f_{v}/g_{vNN}}{2m_{N}^{2}}\right) C_{v}(r) & \overset{\text{for}}{=} \\ &+ g_{vNN}^{2} \left(\frac{1 + f_{v}/g_{vNN}}{2m_{N}}\right)^{2} \frac{1}{3} \left(2\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} C_{v}(r) - S_{12}(\hat{r}) T_{v}(r)\right) & \overset{\text{for}}{=} \\ \end{split}$$

B. Open problems in T_{cc}

T_{cc}: doubly charmed tetraquark

T_{cc} is genuinely exøtic hadron (four quark at least)!

Important questions:

- 1. strong *ud* diquark attraction ?
- 2. $D(c\bar{u})D^*(c\bar{d})$ molecule ?
- 3. Are there other $T_{cc} \stackrel{2}{}_{\delta m_{BW}} keV c^{-2}$ 4. Are there T_{bb} (double bottom) ? etc.

 $\sigma_{_{\rm BW}}$

B. Open problems in T_{cc}

Faustov et al. (2021)

Recent lattice QCD study on T_{bb} Meinel, Pflaumer, Wagner, Phys. Rev. D106, 034507 (2022)

Why don't we study T_{bb} in future experiments?

Wang (2017)

- D. Light spin structure
- Heavy-quark spin structures (I=0)
 - ✓ Light spin-complex [qN]_j (HQ limit)
 - j=0: PN(²S_{1/2}):P*N(²S_{1/2}) = 1:3
 - j=1: PN(²S_{1/2}):P*N(²S_{1/2}) = 3:1 (←relatively similar to this)
 - Calculated mxing ratios
 - Anti-DN(${}^{2}S_{1/2}$):anti-D*N(${}^{2}S_{1/2}$) = 96:2
 - $BN(^2S_{1/2})$: $B^*N(^2S_{1/2}) = 76:14$

[qN]_i in P^(*)N

- ✓ Calculated $P^{(*)}N$ includes mostly the spin-complex $[qN]_j$ with j=1
- ✓ $[qN]_{j=1}$ is analogue of a deuteron
 - Duality between P(*)N and NN?

- D. Light spin structure
- Heavy-quark spin structures (I=0)
 - ✓ Light spin-complex [qN]_j (HQ limit)
 - j=0: PN(²S_{1/2}):P*N(²S_{1/2}) = 1:3
 - j=1: PN(²S_{1/2}):P*N(²S_{1/2}) = 3:1 (←relatively similar to this)
 - ✓ Calculated mxing ratios
 - Anti-DN(${}^{2}S_{1/2}$):anti-D*N(${}^{2}S_{1/2}$) = 96:2
 - $BN(^2S_{1/2})$: $B^*N(^2S_{1/2}) = 76:14$

- ✓ Calculated $P^{(*)}N$ includes mostly the spin-complex $[qN]_j$ with j=1
- \checkmark [qN]_{j=1} is analogue of a deuteron
 - Duality between P(*)N and NN?
- Heavy-quark spin structures (I=1)
 - ✓ Calculated mxing ratios
 - Anti-DN(${}^{2}S_{1/2}$):anti-D*N(${}^{2}S_{1/2}$) = 90:11 (\rightarrow **j=1**)
 - BN(${}^{2}S_{1/2}$):B*N(${}^{2}S_{1/2}$) = 39:62 (→ **j=0**)
 - ✓ The spin-complex [qN]_j j=0 is favored in I=1 in HQ limit?
 - This question should be related to *the origin of* σ *potential*

- Motivation to study exotic hadrons (multiquarks)
 - ✓ Color confinement (Yang-Mills mass gap)
 - ✓ Flavor multiplets (unconventional)
 - ✓ Multi-baryons (ex. strange/charm nuclei)

M. Gell-Mann "Quarks"

State	M (MeV)	Γ (MeV)	J^{PC}	Process (decay mode)	Experiment	
X(3872)	3871.69 ± 0.17	< 1.2	1++	$B \to K(J/\psi \pi^+ \pi^-)$	Belle (Choi et al., 2003, 2011), BABAR (Aubert et al., 2005c),	 Firstly discovered tetraquark
				$p\bar{p} \rightarrow (J/\psi \pi^+ \pi^-) + \cdots$	LHCb (Aaij <i>et al.</i> , 2013a, 2015d) CDF (Acosta <i>et al.</i> , 2004; Abulencia <i>et al.</i> , 2006; Aaltonen <i>et al.</i> , 2009b),	
				$B \to K (J/\psi \pi^+ \pi^- \pi^0)$	D0 (Abazov <i>et al.</i> , 2004) Belle (Abe <i>et al.</i> , 2005), <i>BABAR</i> (del Amo Sanchez <i>et al.</i> , 2010a)	300
				$B \to K(D^0 \bar{D}^0 \pi^0)$	Belle (Gokhroo <i>et al.</i> , 2006; Aushev <i>et al.</i> , 2010b), <i>BABAR</i> (Aubert <i>et al.</i> , 2008c)	
				$B \to K(J/\psi \gamma)$	BABAR (del Amo Sanchez <i>et al.</i> , 2010a), Belle (Bhardwaj <i>et al.</i> , 2011),	
				$B \to K(\psi' \gamma)$	LHCb (Aaij <i>et al.</i> , 2012a) <i>BABAR</i> (Aubert <i>et al.</i> , 2009b), Belle (Bhardwaj <i>et al.</i> , 2011), LHCb (Aaij <i>et al.</i> , 2014a)	
				$p p \rightarrow (J/\psi \pi^+ \pi^-) + \cdots$	LHCb (Aaij <i>et al.</i> , 2014a), CMS (Chatrchyan <i>et al.</i> , 2013a), ATLAS (Aaboud <i>et al.</i> , 2017)	
				$e^+e^- \to \gamma (J/\psi \pi^+\pi^-)$	BESIII (Ablikim <i>et al.</i> , 2014d)	100 - X(3872)
X(3915)	3918.4 ± 1.9	20 ± 5	0++	$B \to K(J/\psi\omega)$	Belle (Choi et al., 2005), BABAR (Aubert et al., 2008b; del Amo Sanchez et al., 2010a)	
				$e^+e^- \to e^+e^-(J/\psi\omega)$	Belle (Uehara et al., 2010), BABAR (Lees et al., 2012c)	
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$0^{-+}(?)$	$\begin{array}{l} e^+e^- \rightarrow J/\psi(D^*\bar{D}) \\ e^+e^- \rightarrow J/\psi(\cdots) \end{array}$	Belle (Pakhlov <i>et al.</i> , 2008) Belle (Abe <i>et al.</i> , 2007)	0.40 0.80 1.20
<i>X</i> (4140)	$4146.5_{-5.3}^{+6.4}$	83^{+27}_{-25}	1^{++}	$B \to K(J/\psi\phi)$	CDF (Aaltonen <i>et al.</i> , 2009a), CMS (Chatrchyan <i>et al.</i> , 2014)	$M(\pi^{+}\pi^{-}i^{+}i^{-}) - M(i^{+}i) $ (GeV)
				$p\bar{p} ightarrow (J/\psi\phi) + \cdots$	2014), D0 (Abazov <i>et al.</i> , 2014), LHCb (Aaij <i>et al.</i> , 2017a, 2017d) D0 (Abazov <i>et al.</i> , 2015)	S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003)
X(4160)	4156_{-25}^{+29}	139^{+113}_{-65}	$0^{-+}(?)$	$e^+e^- \to J/\psi(D^*\bar{D}^*)$	Belle (Pakhlov et al., 2008)	•
<i>Y</i> (4260)	See <i>Y</i> (4220) entry	1	$e^+e^- \to \gamma (J/\psi \pi^+\pi^-)$	 BABAR (Aubert <i>et al.</i>, 2005a; Lees <i>et al.</i>, 2012b), CLEO (He <i>et al.</i>, 2006), Belle (Yuan <i>et al.</i>, 2007; Liu <i>et al.</i>, 2013) 	← Hybrid mesons (gluon excitation)
Y(4220)	4222 ± 3	48 ± 7	1	$\begin{array}{l} e^+e^- \rightarrow (J/\psi\pi^+\pi^-)\\ e^+e^- \rightarrow (h_c\pi^+\pi^-)\\ e^+e^- \rightarrow (\chi_{c0}\omega)\\ e^+e^- \rightarrow (J/\psi\eta)\\ e^+e^- \rightarrow (\gamma X(3872))\\ e^+e^- \rightarrow (\pi^-Z_c^+(3900))\\ e^+e^- \rightarrow (\pi^-Z_c^+(4020)) \end{array}$	BESIII (Ablikim et al., 2017c) BESIII (Ablikim et al., 2017a) BESIII (Ablikim et al., 2015g) BESIII (Ablikim et al., 2015c) BESIII (Ablikim et al., 2014d) BESIII (Ablikim et al., 2013a), Belle (Liu et al., 2013) BESIII (Ablikim et al., 2013b)	Ē
X(4274)	4273^{+19}_{-9}	56^{+14}_{-16}	1^{++}	$B \to K(J/\psi \phi)$	CDF (Aaltonen <i>et al.</i> , 2017), CMS (Chatrchyan <i>et al.</i> , 2014), LHCb (Aaij <i>et al.</i> , 2017a, 2017d)	C Hybrid
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$(0/2)^{++}$	$e^+e^- \to e^+e^-(J/\psi\phi)$	Belle (Shen et al., 2010)	
Y(4360)	4341 ± 8	102 ± 9	1	$e^+e^- \to \gamma(\psi'\pi^+\pi^-)$	BABAR (Aubert <i>et al.</i> , 2007; Lees <i>et al.</i> , 2014), Belle (Wang <i>et al.</i> , 2007, 2015)	
				$e^+e^- \to (J/\psi\pi^+\pi^-)$	BESIII (Ablikim <i>et al.</i> , 2017c)	Y(4260)
Y(4390)	4392 ± 6	140 ± 16	1	$e^+e^- \to (h_c\pi^+\pi^-)$	BESIII (Ablikim et al., 2017a)	
X(4500)	4506^{+16}_{-19}	92^{+30}_{-21}	0^{++}	$B \to K(J/\psi \phi)$	LHCb (Aaij et al., 2017a, 2017d)	
X(4700)	4704_{-26}^{+17}	120_{-45}^{+52}	0^{++}	$B \to K(J/\psi \phi)$	LHCb (Aaij et al., 2017a, 2017d)	
<i>Y</i> (4660)	4643 ± 9	72 ± 11	1	$e^+e^- ightarrow \gamma(\psi'\pi^+\pi^-)$ $e^+e^- ightarrow \gamma(\Lambda_c^+\Lambda_c^-)$	Belle (Wang <i>et al.</i> , 2007, 2015), <i>BABAR</i> (Aubert <i>et al.</i> , 2007; Lees <i>et al.</i> , 2014) Belle (Pakhlova <i>et al.</i> , 2008)	

S. L. Olsen, T. Skwamicki, D. Ziemninska, Rev. Mod. Phys. 90, 015003 (2018)

State	M (MeV)	Γ (MeV)	J^{PC}	Process (decay mode)	Experiment	
$Z_c^{+,0}(3900)$	3886.6 ± 2.4	28.1 ± 2.6	1+-	$e^+e^- o \pi^{-,0}(J/\psi\pi^{+,0})$ $e^+e^- o \pi^{-,0}(D\bar{D}^*)^{+,0}$	BESIII (Ablikim <i>et al.</i> , 2013a, 2015f), Belle (Liu <i>et al.</i> , 2013) BESIII (Ablikim <i>et al.</i> , 2014b, 2015e)	← Genuine tetraquark
$Z_c^{+,0}(4020)$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$\begin{array}{c} e^+e^- \to \pi^{-,0}(h_c\pi^{+,0}) \\ e^+e^- \to \pi^{-,0}(D^*\bar{D}^*)^{+,0} \end{array}$	BESIII (Ablikim <i>et al.</i> , 2013b, 2014c) BESIII (Ablikim <i>et al.</i> , 2014a, 2015d)	
$Z^{+}(4050)$	4051_{-43}^{+24}	82^{+51}_{-55}	$?^{?+}$	$B \to K(\chi_{c1}\pi^+)$	Belle (Mizuk et al., 2008), BABAR (Lees et al., 2012a)	C
$Z^{+}(4200)$	4196^{+35}_{-32}	370^{+99}_{-149}	1^+	$egin{array}{lll} B ightarrow K(J/\psi\pi^+) \ B ightarrow K(\psi'\pi^+) \end{array}$	Belle (Chilikin <i>et al.</i> , 2014) LHCb (Aaij <i>et al.</i> , 2014b)	(a) 7
$Z^{+}(4250)$	4248^{+185}_{-45}	177^{+321}_{-72}	$?^{?+}$	$B \to K(\chi_{c1}\pi^+)$	Belle (Mizuk et al., 2008), BABAR (Lees et al., 2012a)	
Z ⁺ (4430)	4477 ± 20	181 ± 31	1+	$B \to K(\psi' \pi^+)$ $B \to K(J\psi \pi^+)$	 Belle (Choi <i>et al.</i>, 2008; Mizuk <i>et al.</i>, 2009), Belle (Chilikin <i>et al.</i>, 2013), LHCb (Aaij <i>et al.</i>, 2014b, 2015b) Belle (Chilikin <i>et al.</i>, 2014) 	Electrically charged state (+)
$P_c^+(4380)$	4380 ± 30	205 ± 88	$(\frac{3}{2} / \frac{5}{2})^{\mp}$	$\Lambda^0_h \to K(J/\psi p)$	LHCb (Aaij <i>et al.</i> , 2015c)	← Pentaguark
$P_c^+(4450)$	430 ± 30 4450 ± 3	$\frac{203 \pm 33}{39 \pm 20}$	$\left(\frac{5}{2} / \frac{3}{2}\right)^{\pm}$	$\Lambda_b^0 \to K(J/\psi p)$ $\Lambda_b^0 \to K(J/\psi p)$	LHCb (Aaij <i>et al.</i> , 2015c)	
$T_b(10860)$	$10891.1^{+3.4}_{-3.8}$	$53.7^{+7.2}_{-7.8}$	1	$e^+e^- \rightarrow (\Upsilon(nS)\pi^+\pi^-)$	Belle (Chen et al., 2008; Santel et al., 2016)	
$Z_b^{+,0}(10610)$	10607.2 ± 2.0	18.4 ± 2.4	1+-	$Y_b(10860) \to \pi^{-,0} \big(\Upsilon(nS) \pi^{+,0} \big)$	Belle (Bondar <i>et al.</i> , 2012; Garmash <i>et al.</i> , 2015), Belle (Krokovny <i>et al.</i> , 2013)	C
				$Y_b(10860) \to \pi^-(h_b(nP)\pi^+)$ $Y_b(10860) \to \pi^-(B\bar{B}^*)^+$	Belle (Bondar <i>et al.</i> , 2012) Belle (Garmash <i>et al.</i> , 2016)	
$Z_b^+(10650)$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\begin{array}{l} Y_b(10860) \to \pi^-(\Upsilon(nS)\pi^+) \\ Y_b(10860) \to \pi^-(h_b(nP)\pi^+) \\ Y_b(10860) \to \pi^-(B^*\bar{B}^*)^+ \end{array}$	Belle (Bondar <i>et al.</i> , 2012; Garmash <i>et al.</i> , 2015) Belle (Bondar <i>et al.</i> , 2012) Belle (Garmash <i>et al.</i> , 2016)	P

Is that all?

 $\sigma_{\delta m_{\rm BW}}$ keV c ²) $\sigma_{\rm BW}$

CC

|C| = 2

T_{cc} has been studied over **35 years** in theories!

https://indico.desy.de/event/28202/contributions/105627/attachments/67806/84639/EPS-HEP_2021_Polyakov_v5.pdf

ExHIC collaboration: Phys. Rev. Lett. 106, 212001 (2011), Phys. Rev. C84 (2011) 064910; Prog. Part. Nucl. Phys. 95 (2017) 279 (review)

- Production in relativistic heavy-ion collisions ?
 - ✓ Quarks are abundant
 - Possibility to find *rare* events
 - ✓ X(3872) was already observed in HIC CMS@LHC, Phys. Rev. Lett. 128, 032001 (2020)
 - Possibility to find other exotic hadrons ?

RHIC (Scenario 1)

ExHIC collaboration: Phys. Rev. Lett. 106, 212001 (2011), Phys. Rev. C84 (2011) 064910; Prog. Part. Nucl. Phys. 95 (2017) 279 (review)

Particle	Scenario 1		Scenario 2			Stat.	
	qq̄/qqq	Multiquark	qq/qqq	Multiquark			
RHIC							
T_{cc}^1	-	$5.0 imes 10^{-5}$	-	$5.3 imes 10^{-5}$	-	$8.9 imes10^{-4}$	# per
ĒΝ	_	2.6×10^{-3}	_	2.6×10^{-3}	1.3×10^{-2}	1.0×10^{-2}	nucleus-
\bar{D}^*N	_	$9.8 imes10^{-4}$	_	$9.3 imes10^{-4}$	$1.1 imes 10^{-2}$	$9.6 imes 10^{-3}$	nucleus
Θ_{cs}	-	$7.4 imes10^{-4}$	-	$7.4 imes10^{-4}$	_	$6.4 imes 10^{-3}$	collision
H _c	-	$2.7 imes10^{-4}$	-	$2.8 imes10^{-4}$	_	$5.7 imes10^{-4}$	COMBION
DNN	-	$1.8 imes 10^{-5}$	-	$1.8 imes 10^{-5}$	$9.4 imes10^{-5}$	$5.1 imes 10^{-5}$	Cf. D meso
$\Lambda_c N$	-	$1.5 imes 10^{-3}$	-	1.5×10^{-3}	$5.0 imes 10^{-3}$	$2.9 imes 10^{-3}$	~1
$\Lambda_c NN$	-	$6.7 imes10^{-6}$	-	$6.7 imes10^{-6}$	$2.9 imes10^{-6}$	$9.8 imes10^{-6}$	
T_{cb}^0	_	$9.3 imes 10^{-8}$	_	$9.9 imes10^{-8}$	_	$1.6 imes 10^{-6}$	
LHC (2.76 Te	V)						
T_{cc}^1	-	1.1×10^{-4}	-	$1.3 imes 10^{-4}$	_	2.7×10^{-3}	_
ĒΝ	-	4.3×10^{-3}	_	4.2×10^{-3}	$2.3 imes 10^{-2}$	1.9×10^{-2}	
\overline{D}^*N	-	1.6×10^{-3}	-	$1.3 imes 10^{-3}$	$2.0 imes 10^{-2}$	$1.8 imes 10^{-2}$	•
Θ_{cs}	-	1.2×10^{-3}	_	1.2×10^{-3}	_	1.2×10^{-2}	
<i>H</i> _c	-	$3.8 imes10^{-4}$	_	$4.0 imes 10^{-4}$	-	$8.6 imes10^{-4}$	
DNN	-	$2.0 imes10^{-5}$	_	$2.0 imes 10^{-5}$	$1.1 imes 10^{-4}$	$6.7 imes 10^{-5}$	
$\Lambda_c N$	-	$2.2 imes 10^{-3}$	-	$2.2 imes 10^{-3}$	$7.0 imes 10^{-3}$	$4.3 imes 10^{-3}$	
$\Lambda_c NN$	-	$6.7 imes10^{-6}$	-	$6.5 imes10^{-6}$	$2.7 imes10^{-6}$	$9.9 imes10^{-6}$	
T_{cb}^0	-	1.1×10^{-6}	-	$1.3 imes 10^{-6}$	_	$2.7 imes 10^{-5}$	
LHC (5.02 Te	V)						
T_{cc}^1	_	1.8×10^{-4}	-	$2.1 imes 10^{-4}$	_	4.4×10^{-3}	
ĒΝ	-	5.3×10^{-3}	-	5.3×10^{-3}	3.0×10^{-2}	$2.4 imes 10^{-2}$	
\bar{D}^*N	_	$2.0 imes 10^{-3}$	_	1.7×10^{-3}	$2.6 imes 10^{-2}$	$2.3 imes 10^{-2}$	•
Θ_{cs}	_	1.5×10^{-3}	_	1.4×10^{-3}	_	1.6×10^{-2}	
H _c	_	$4.7 imes 10^{-4}$	_	$4.9 imes 10^{-4}$	_	1.1×10^{-3}	
DNN	-	2.5×10^{-5}	-	$2.5 imes 10^{-5}$	$1.5 imes 10^{-4}$	$8.6 imes 10^{-5}$	
$\Lambda_c N$	-	2.7×10^{-3}	-	2.7×10^{-3}	9.1×10^{-3}	5.5×10^{-3}	
$\Lambda_c NN$	_	$8.2 imes 10^{-6}$	-	$8.0 imes10^{-6}$	$3.5 imes 10^{-6}$	1.3×10^{-5}	
T_{cb}^{0}	_	2.3×10^{-6}	-	2.7×10^{-6}	-	5.6×10^{-5}	

F. Glossary

N ... Nucleon (uud, udd)

 $\pi, \sigma, \rho, \omega$... Light mesons (carrying forces between two hadrons)

- $q \dots$ Light quark (u quark, d quark)
- Q ... Heavy quark (c quark, b quark)

 \bar{Q} ... Heavy antiquark (\bar{c} antiquark, \bar{b} antiquark)

 \overline{D} meson ... Heavy-light meson with $\overline{c}q$ (q = u, d)

B meson ... Heavy-light meson with $\overline{b}q$ (q = u, d)

P ... Pseudoscalar (spin 0) $\overline{Q}q$ meson, such as \overline{D} (charm) or *B* (bottom)

 P^* ... Vector (spin 1) $\overline{Q}q$ meson, such as \overline{D}^* (charm) or B^* (bottom)