\bar{D} meson and nucleon interaction: from exotic hadrons to charm nuclei

Y. Yamaguchi, S. Y., A. Hosaka, Phys. Rev. D106, 094001 (2022)

Shigehiro YASUI

\in Sasaki Lab. \subset SKCM $^{2} \subset$ Hiroshima University

```
SKCM
wpi
```


World Premier International Research Center Initiative/WPI at Hiroshima University

\checkmark Cross-pollinates mathematical knot theory and chirality knowledge across disciplines and scales \checkmark Creation of designable artificial knotlike particles that exhibit highly unusual and technologically useful properties

Hadron \& nuclear physics group
PI: Kenta SHIGAKI (HU, ALICE member)
PI: Chihiro SASAKI (HU, Uni. of Wroclaw) coPI: Chiho NONAKA (HU)
coPI: Muneto NITTA (HU, Keio Uni.)

Contents

1. Introduction: Why \bar{D} meson and nucleon?
2. \bar{D} meson and nucleon potential
3. B meson and nucleon potential
4. Discussions
5. Summary

Contents

1. Introduction: Why $\overline{\mathrm{D}}$ meson and nucleon?
2. \bar{D} meson and nucleon potential
3. B meson and nucleon potential
4. Discussions
5. Summary

1. Introduction

- Motivation to study exotic hadrons (multiquarks) \checkmark Color confinement (cf. Yang-Mills mass gap) \checkmark Flavor multiplets (unconventional assignment) \checkmark Multi-baryons (strange/charm/bottom nuclei)

Exotic hadrons: Diversity of hadrons

Pentaquark Hexaquark Tetraquark

Hadrocharmonium (normal, adjoint)

Hadronic molecule

M. Gell-Mann "Quarks" Phys. Lett. (1964) baryon b if we assign to the triplet the following properties: $\sin \frac{1}{2} . z=-\frac{1}{2}$. and barvon number $\frac{1}{3}$. and $s^{-\frac{1^{3}}{3}}$ of an now be $f \begin{aligned} & \text { an now be } \\ & \text { mbinations }\end{aligned}$ (qqq), (qqqqq), (qqq), $(q q q q q)$, baryon configura baryon configura tations $\mathbf{1 , 8} 8$, and
the lowest meson just 1 and 8.

Cf. S. L. Olsen, T. Skwamicki, D. Ziemninska, Rev. Mod. Phys. 90, 015003 (2018)

- We focus on heavy quarks!
\checkmark Charm (c) quark \& bottom (b) quark
\checkmark Mass hierarchy ($m_{c}, m_{b} \gg \Lambda_{\mathrm{QCD}}$)
\checkmark Heavy quark spin symmetry
\checkmark Many exotics have been found in experiments!

$$
X, Y, Z, P_{c}, T_{c c}, \ldots
$$

1. Introduction

- \bar{D} meson and nucleon (pentaquark)
$\checkmark \bar{c} q q q q(q=u, d)$: no annihilation channel

No annihilation \rightarrow (relatively) simple
$\sqrt{ }$ (Anti-)charm nuclei? cf. Review paper: Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)
\checkmark Extension to B meson and nucleon
$\overline{\boldsymbol{D}}=\left(\overline{\boldsymbol{D}}^{\mathbf{0}}, \boldsymbol{D}^{-}\right)$
$=(\bar{c} u, \bar{c} d)$

\bar{D} meson Nucleon

(anti D meson)
pentaquark (5 quark)
chiral + HQS symmetries:
Cohen, Hohler, Lebed, PRD72, 074010 (2005)
Yasui, Sudoh, PRD80, 034008 (2009)
Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84, 014032 (2011), ibid. 85, 054003 (2012)
etc.

1. Introduction

- \bar{D} meson and nucleon (pentaquark) $\checkmark \bar{c} q q q q(q=u, d)$: no annihilation channel

No annihilation \rightarrow (relatively) simple
$\sqrt{ }$ (Anti-)charm nuclei? cf. Review paper: Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)
\checkmark Extension to B meson and nucleon

$\overbrace{\bar{D}^{*}+d}^{\bar{D}^{*} N N} \quad$ (anti-)charm and bottom nuclei

\bar{D} meson Nucleon (anti D meson)
 pentaquark (5 quark)

chiral + HQS symmetries:
Cohen, Hohler, Lebed, PRD72, 074010 (2005) Yasui, Sudoh, PRD80, 034008 (2009)
Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84, 014032 (2011), ibid. 85, 054003 (2012) etc.

1. Introduction

- \bar{D} meson and nucleon (pentaquark) $\checkmark \bar{c} q q q q(q=u, d)$: no annihilation channel

No annihilation \rightarrow (relatively) simple
$\sqrt{ }$ (Anti-)charm nuclei? cf. Review paper: Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)
\checkmark Extension to B meson and nucleon

\bar{D} meson Nucleon (anti D meson) pentaquark (5 quark)
chiral + HQS symmetries:
Cohen, Hohler, Lebed, PRD72, 074010 (2005) Yasui, Sudoh, PRD80, 034008 (2009)
Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84, 014032 (2011), ibid. 85, 054003 (2012) etc.

Can (anti-)charm nuclei exist in our nature? =2.

1. Introduction

- 2022: First experiment for $\bar{D} N$ interaction!
\checkmark ALICE at LHC Phys. Rev. D106, $052010(2022) \leftarrow$ analysis by Kamiya, Hyodo, Ohnishi
$\checkmark D^{-} p(\bar{D} N)$ correlation function from proton-proton collisions
\checkmark Attraction suggested? (Cf. $K N$ is repulsive.)
Cf. Hyperon interaction: Ohnishi et al., Nucl.
Phys. A954, 294 (2016)

Model	$f_{0}(\mathrm{I}=0)$	$f_{0}(\mathrm{I}=1)$	n_{σ}
	Coulomb		
attraction Haidenbauer et al. [21]		$(1.1-1.5)$	
$-g_{\sigma}^{2} / 4 \pi=1$	0.14	-0.28	$(1.2-1.5)$
$-g_{\sigma}^{2} / 4 \pi=2.25$	0.67	0.04	$(0.8-1.3)$
repulsion Hofmann and Lutz [22]	-0.16	-0.26	$(1.3-1.6)$
attraction	Yamaguchi et al. [24]	-4.38	-0.07
(bound)	$(0.6-1.1)$		
attraction Fontoura et al. [23]	0.16	-0.25	$(1.1-1.5)$

[21] Haidenbauer, Krein, Meißner, Sibirtsev, EPJ. A33, 107 (2007)
[22] Hofmann, Lutz, NPA763, 90 (2005)
[24] Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84, 014032 (2011)
[23] Fontoura, Krein, Vizcarra, PRC87, 025206 (2013)

We should explore \bar{D} meson and nucleon interaction more seriously!

PHYSICAL REVIEW D 80, 034008 (2009) Exotic nuclei with open heavy flavor mesons

Shigehiro Yasui ${ }^{1, *}$ and Kazutaka Sudoh ${ }^{2, \dagger}$
Exotic baryons from a heavy meson and a nucleon: Positive parity states

Spin degeneracy in multi-hadron systems with a heavy quark Shigehiro Yasui ${ }^{\mathrm{a}, *}$, Kazutaka Sudoh ${ }^{\mathrm{b}}$, Yasuhiro Yamaguchi ${ }^{\mathrm{c}}$, Shunsuke Ohkoda ${ }^{\mathrm{c}}$, Atsushi Hosaka ${ }^{\text {c }}$, Tetsuo Hyodo ${ }^{\text {d, }}$ I

PHYSICAL REVIEW D 85, 054003 (2012)

PHYSICAL REVIEW D 84, 014032 (2011)
Exotic baryons from a heavy meson and a nucleon: Negative parity states
Yasuhiro Yamaguchi, ${ }^{1}$ Shunsuke Ohkoda, ${ }^{1}$ Shigehiro Yasui, ${ }^{2}$ and Atsushi Hosaka ${ }^{1}$
$\xrightarrow{\square}$
ELSEVIER
Nuclear Physics A 927 (2014) 110-118
physics
"
www.elsevier.com/locate/nuclphys

Exotic dibaryons with a heavy antiquark
Yasuhiro Yamaguchi ${ }^{\text {a,** }}$, Shigehiro Yasui ${ }^{\text {b }}$, Atsushi Hosaka ${ }^{\text {atc }}$ PHYSICAL REVIEW C 87, 015202 (2013)
\bar{D} and B mesons in a nuclear medium

S. Yasui

KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, 1-1 Oho, Ibaraki 305-0801, Japan
K. Sudoh

Progress in Particle and Nuclear Physics 96 (2017) 88-153

Contents lists available at ScienceDirect
Progress in Particle and Nuclear Physics
journal homepage: www.elsevier.com/locate/ppnp

Review
Heavy hadrons in nuclear matter

Cross Mark
Atsushi Hosaka ${ }^{\mathrm{a}, \mathrm{b}}$, Tetsuo $_{\mathrm{Hyodo}}{ }^{\mathrm{c}}$, Kazutaka Sudoh ${ }^{\mathrm{d}}$, Yasuhiro Yamaguchi ${ }^{\text {ce }}$,
Shigehiro Yasui ${ }^{\text {f, }}$

$\bar{D} N(B N)$ potential; the latest version

PHYSICAL REVIEW D 106, 094001 (2022)

Open charm and bottom meson-nucleon potentials à la the nuclear force

Yasuhiro Yamaguchio*
Department of Physics, Nagoya University, Nagoya 464-8602, Japan and Advanced Science Research Center, Japan Atomic Energy Agency (JAEA),
Tokai 319-1195, Japan
Shigehiro Yasui ${ }^{\dagger}{ }^{\dagger}$
Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan
Atsushi Hosaka ${ }^{\ddagger}{ }^{\ddagger}$
Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan;
Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan and Theoretical Research Division, Nishina Center, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan

I talk on this.

1. Introduction: Why \bar{D} meson and nucleon?
2. \bar{D} meson and nucleon potential
3. B meson and nucleon potential
4. Discussions
5. Summary
6. Introduction: Why \bar{D} meson and nucleon?
7. \bar{D} meson and nucleon potential
8. B meson and nucleon potential
9. Discussions
10. Summary

2. \bar{D} meson and nucleon potential

- Structure of \bar{D} meson: Heavy quark spin symmetry (HQS)
\checkmark HRS: $Q \rightarrow S Q$ with $S \in \operatorname{SU}(2)_{\text {heavy }}$ quark spin
$\checkmark D$ and D^{*} mesons as HQS doublet $\overline{\boldsymbol{D}}=\left(\bar{D}^{0}, \boldsymbol{D}^{-}\right)=(\bar{c} \boldsymbol{u}, \overline{\boldsymbol{c}} \boldsymbol{d})$ u \quad c $\quad \boldsymbol{t}$
$\checkmark B$ and B^{*} mesons also

$$
\boldsymbol{B}=\left(\boldsymbol{B}^{+}, \boldsymbol{B}^{0}\right)=(\overline{\boldsymbol{b}} \boldsymbol{u}, \overline{\boldsymbol{b}} d) \quad d \quad \boldsymbol{s} \quad \boldsymbol{b}
$$

770 MeV

140 MeV
π

5325 MeV

Pseudoscalar and vector mesons (P and P^{*}) become degenerate in heavy quark limit.
P and P^{*} should be considered simultaneously.

2. \bar{D} meson and nucleon potential
$-\bar{D}$ meson and nucleon potential $\left(P=\bar{D}, P^{*}=\bar{D}^{*}\right)$
$\checkmark P N-P^{*} N$ mixing (P and P^{*} are interchangeable.)
\checkmark Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
\checkmark OPEP (one-pion exchange potential) $\leftarrow \chi+$ HQS
\checkmark Scalar (σ), vector (ρ, ω) exchanges
\checkmark Analogy to nucleon-nucleon ($N N$) pot. (Note: $1 / \sqrt{2}$ factor for $P^{(*)} P^{(*)} m$)

π exchange \rightarrow spin flipping $\left(P, P^{*}\right.$ mixing) like in a deuteron
2. \bar{D} meson and nucleon potential
$-\bar{D}$ meson and nucleon potential $\left(P=\bar{D}, P^{*}=\bar{D}^{*}\right)$
$\checkmark P N-P^{*} N$ mixing (P and P^{*} are interchangeable.)
\checkmark Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
\checkmark OPEP (one-pion exchange potential) $\leftarrow \chi+$ HQS
\checkmark Scalar (σ), vector (ρ, ω) exchanges
\checkmark Analogy to nucleon-nucleon ($N N$) pot. (Note: $1 / \sqrt{2}$ factor for $P^{(*)} P^{(*)} m$)

π exchange \rightarrow spin flipping (P, P^{*} mixing) like in a deuteron
2. \bar{D} meson and nucleon potential
$-\bar{D}$ meson and nucleon potential $\left(P=\bar{D}, P^{*}=\bar{D}^{*}\right)$
$\checkmark P N-P^{*} N$ mixing (P and P^{*} are interchangeable.)
\checkmark Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
\checkmark OPEP (one-pion exchange potential) $\leftarrow \chi+$ HQS
\checkmark Scalar (σ), vector (ρ, ω) exchanges
\checkmark Analogy to nucleon-nucleon ($N N$) pot. (Note: $1 / \sqrt{2}$ factor for $P^{(*)} P^{(*)} m$)

π exchange \rightarrow spin flipping $\left(P, P^{*}\right.$ mixing) like in a deuteron

2. \bar{D} meson and nucleon potential

$-\bar{D}$ meson and nucleon potential $\left(P=\bar{D}, P^{*}=\bar{D}^{*}\right)$
$\checkmark P N-P^{*} N$ mixing (P and P^{*} are interchangeable.)
\checkmark Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
\checkmark OPEP (one-pion exchange potential) $\leftarrow \chi+\mathrm{HQS}$
\checkmark Scalar (σ), vector (ρ, ω) exchanges
\checkmark Analogy to nucleon-nucleon ($N N$) pot. (Note: $1 / \sqrt{2}$ factor for $P^{(*)} P^{(*)} m$)

π exchange \rightarrow spin flipping $\left(P, P^{*}\right.$ mixing) like in a deuteron

- Generality: spin-structure (q : light quark, N : nucleon) \checkmark Recombination: $[\bar{Q} q] N=\bar{Q}[q N]$
\checkmark HQS multiplets: which is realized in QCD?
- HQS singlet: $q+N$ with $j=0$ (total $J=1 / 2$ only)
- HQS doublet: $q+N$ with $j=1$ (total $J=1 / 2,3 / 2$ degenerate) light spin j

2. \bar{D} meson and nucleon potential

- \bar{D} meson and nucleon potential ($P=\bar{D}, P^{*}=\bar{D}^{*}$)
$\checkmark P N-P^{*} N$ mixing (P and P^{*} are interchangeable.)
\checkmark Chiral (χ) symmetry + Heavy-quark spin (HQS) symmetry
\checkmark OPEP (one-pion exchange potential) $\leftarrow \chi+$ HQS
\checkmark Scalar (σ), vector (ρ, ω) exchanges
\checkmark Analogy to nucleon-nucleon $(N N)$ pot. (Note: $1 / \sqrt{2}$ factor for $P^{(*)} P^{(*)} m$)

π exchange \rightarrow spin flipping (P, P^{*} mixing) like in a deuteron
- Generality: spin-structure (q : light quark, N : nucleon) \checkmark Recombination: $[\bar{Q} q] N=\bar{Q}[q N]$
\checkmark HQS multiplets: which is realized in QCD?
- HQS singlet: $q+N$ with $j=0$ (total $J=1 / 2$ only)
- HQS doublet: $q+N$ with $j=1$ (total $J=1 / 2,3 / 2$ degenerate)

- We need to solve QCD in order to get the potential, but it's difficult. \checkmark We still rely on model calculations.

2. \bar{D} meson and nucleon potential

- $P^{(*)} N$ potential ($P=\bar{D}, B$ meson; $P^{*}=\bar{D}^{*}, B^{*}$ meson, N nucleon) $\checkmark P N-P^{*} N$ channel mixing (multi-channel)

P^{*}

2. \bar{D} meson and nucleon potential

- $P^{(*)} N$ potential ($P=\bar{D}, B$ meson; $P^{*}=\bar{D}^{*}, B^{*}$ meson, N nucleon) $\checkmark P N-P^{*} N$ channel mixing (multi-channel)

- Heavy Meson Effective Theory (HMET) Luke, Manohar, Wise, Casalbuoni, ...
\checkmark Hadronic effective theory based on $\chi+$ HQS symmetries for P and P^{*}
\checkmark Effective field: $H_{\alpha}=\left(P_{\alpha}^{* \mu} \gamma_{\mu}+P_{\alpha} \gamma_{5}\right) \frac{1-\ngtr}{2} \quad H_{\alpha} \rightarrow \underset{\text { HQS }}{S H_{\beta} U_{\text {sym }}^{\dagger}} \underset{\text { sym }}{\dagger}$
$\checkmark P^{(*)} P^{(*)} m$ vertices are uniquely determined $(m=\pi, \sigma, \rho, \omega)$
$\mathcal{L}_{\pi H H}=i g_{\pi} \operatorname{tr}\left(H_{\alpha} \bar{H}_{\beta} \gamma_{\mu} \gamma_{5} A_{\beta \alpha}^{\mu}\right)$
$\mathcal{L}_{\sigma_{I} H H}=g_{\sigma_{I}} \operatorname{tr}\left(H \sigma_{I} \bar{H}\right)$
$\mathcal{L}_{v H H}=-i \beta \operatorname{tr}\left(H_{b} v^{\mu}\left(\rho_{\mu}\right)_{b a} \bar{H}_{a}\right)$
$+i \lambda \operatorname{tr}\left(H_{b} \sigma^{\mu \nu}\left(F_{\mu \nu}(\rho)\right)_{b a} \bar{H}_{a}\right)$

2. \bar{D} meson and nucleon potential

- $P^{(*)} N$ potential ($P=\bar{D}, B$ meson; $P^{*}=\bar{D}^{*}, B^{*}$ meson, N nucleon) $\checkmark P N-P^{*} N$ channel mixing (multi-channel)

N

$\sqrt{ }$

- Heavy Meson Effective Theory (HMET) Luke, Manohar, Wise, Casalbuoni, ...
\checkmark Hadronic effective theory based on $\chi+\mathrm{HQS}$ symmetries for P and P^{*}

$\checkmark P^{(*)} P^{(*)} m$ vertices are uniquely determined $(m=\pi, \sigma, \rho, \omega)$

$$
\begin{aligned}
\mathcal{L}_{\pi H H} & =i g_{\pi} \operatorname{tr}\left(H_{\alpha} \bar{H}_{\beta} \gamma_{\mu} \gamma_{5} A_{\beta \alpha}^{\mu}\right) \\
\mathcal{L}_{\sigma_{I} H H} & =g_{\sigma_{I}} \operatorname{tr}\left(H \sigma_{I} \bar{H}\right) \leftarrow \sigma \text { ís new! } \\
\mathcal{L}_{v H H} & =-i \beta \operatorname{tr}\left(H_{b} v^{\mu}\left(\rho_{\mu}\right)_{b a} \bar{H}_{a}\right) \\
& +i \lambda \operatorname{tr}\left(H_{b} \sigma^{\mu \nu}\left(F_{\mu \nu}(\rho)\right)_{b a} \bar{H}_{a}\right)
\end{aligned}
$$

σ is important for $N N$ ($I=0,1$ channels):
σ_{0} (weak coupling) for $N N$ with $I=0$
σ_{1} (strong coupling) for $N N$ with $I=1$
Previous works:
π only: Yasui, Sudoh, PRD80, 034008 (2009)
π, ρ, ω : Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84 014032 (2011), ibid. 054003 (2012)
2. \bar{D} meson and nucleon potential

- $P^{(*)} N$ state $\left(J^{P}=1 / 2^{-}, I=0\right.$ or 1) Note: applicable to $J^{P}=3 / 2^{-}$(HQS partner)
\checkmark Particle basis: $P N\left({ }^{2} S_{1 / 2}\right), P^{*} N\left({ }^{2} S_{1 / 2}\right), P^{*} N\left({ }^{4} D_{1 / 2}\right) \leftarrow 3$ channels
\checkmark HQS basis: $\bar{Q}_{S=1 / 2}[q N]_{j=0,1}^{\text {Cf. Yasui, Suudoh, Yamaguchi, Ohkoda, Hosaka, Hyodo, PLB727, 185 (2013); PRD91, }}$
\checkmark HQS basis: $Q_{S=1 / 2}[q N]_{j=0,1} 034034$ (2015)

2. \bar{D} meson and nucleon potential

- $P^{(*)} N$ state $\left(J^{P}=1 / 2^{-}, I=0\right.$ or 1) Note: applicable to $J^{P}=3 / 2^{-}$(HQS partner) \checkmark Particle basis: $P N\left({ }^{2} S_{1 / 2}\right), P^{*} N\left({ }^{2} S_{1 / 2}\right), P^{*} N\left({ }^{4} D_{1 / 2}\right) \leftarrow 3$ channels
$\sqrt{ }$ HQS basis: $\bar{Q}_{S=1 / 2}[q N]_{j=0}$ Cf. Yasui, Sudoh, Yamaguchi, Ohkoda, Hosaka, Hyodo, PLB727, 185 (2013); PRD91,

- $P^{(*)} N\left(1 / 2^{-}\right)$Hamiltonian $H_{J^{P}}=K_{J^{P}}+V_{J P}^{\pi}+V_{J P}^{\sigma_{I}}+V_{J P}^{\rho}+V_{J P}^{\omega}$ \checkmark Kinetic term $K_{1 / 2^{-}}=\operatorname{diag}\left(K_{0}, K_{0}^{*}, K_{2}^{*}\right)$ (S-wave, S-wave, D-wave) $\checkmark \pi, \sigma, v(=\rho, \omega)$ pot. term ($1 / \sqrt{2}$ factor included)

$$
\begin{aligned}
& V_{1 / 2^{-}}^{\pi}=\left(\begin{array}{ccc}
0 & \sqrt{3} C_{\pi} & -\sqrt{6} T_{\pi} \\
\sqrt{3} C_{\pi} & -2 C_{\pi} & -\sqrt{2} T_{\pi} \\
-\sqrt{6} T_{\pi} & -\sqrt{2} T_{\pi} & C_{\pi}-2 T_{\pi}
\end{array}\right) \quad V_{1 / 2^{-}}^{\sigma_{I}}=\left(\begin{array}{ccc}
C_{\sigma_{I}} & 0 & 0 \\
0 & C_{\sigma_{I}} & 0 \\
0 & 0 & C_{\sigma_{I}}
\end{array}\right) \\
& V_{1 / 2^{-}}^{v}=\left(\begin{array}{ccc}
C_{v}^{\prime} & 2 \sqrt{3} C_{v} & \sqrt{6} T_{v} \\
2 \sqrt{3} C_{v} & C_{v}^{\prime}-4 C_{v} & \sqrt{2} T_{v} \\
\sqrt{6} T_{v} & \sqrt{2} T_{v} & C_{v}^{\prime}+2 C_{v}+2 T_{v}
\end{array}\right) \text { including HQS singlet/doublet }
\end{aligned}
$$

\checkmark Tensor force $\left(T_{\pi}, T_{v}\right)$ induces strong mixing among 3 channels

2. \bar{D} meson and nucleon potentia

- $P^{(*)} N$ state $\left(J^{P}=1 / 2^{-}, I=0\right.$ or 1) Note: applicable to $J^{p}=3 / 2^{-}$(HQS partner) \checkmark Particle basis: $P N\left({ }^{2} S_{1 / 2}\right), P^{*} N\left({ }^{2} S_{1 / 2}\right), P^{*} N\left({ }^{4} D_{1 / 2}\right) \leftarrow 3$ channels
$\sqrt{ }$ HQS basis: $\bar{Q}_{S=1 / 2}[q N]_{j=0}$ Cf. Yasui, Sudoh, Yamaguchi, Ohkoda, Hosaka, Hyodo, PLB727, 185 (2013); PRD91, , ${ }_{S}=1 / 2[q N] j=0,1034034$ (2015)
- $P^{(*)} N\left(1 / 2^{-}\right)$Hamiltonian $H_{J P}=K_{J^{P}}+V_{J P}^{\pi}+V_{J P}^{\sigma_{I}}+V_{J P}^{\rho}+V_{J P}^{\omega}$ \checkmark Kinetic term $K_{1 / 2^{-}}=\operatorname{diag}\left(K_{0}, K_{0}^{*}, K_{2}^{*}\right)$ (S-wave, S-wave, D-wave) $\checkmark \pi, \sigma, v(=\rho, \omega)$ pot. term ($1 / \sqrt{2}$ factor included)

$$
\begin{aligned}
& V_{1 / 2^{-}}^{\pi}=\left(\begin{array}{ccc}
0 & \sqrt{3} C_{\pi} & -\sqrt{6} T_{\pi} \\
\sqrt{3} C_{\pi} & -2 C_{\pi} & -\sqrt{2} T_{\pi} \\
-\sqrt{6} T_{\pi} & -\sqrt{2} T_{\pi} & C_{\pi}-2 T_{\pi}
\end{array}\right) \quad V_{1 / 2^{-}}^{\sigma_{I}}=\left(\begin{array}{ccc}
C_{\sigma_{I}} & 0 & 0 \\
0 & C_{\sigma_{I}} & 0 \\
0 & 0 & C_{\sigma_{I}}
\end{array}\right) \\
& V_{1 / 2^{-}}^{v}=\left(\begin{array}{ccc}
C_{v}^{\prime} & 2 \sqrt{3} C_{v} & \sqrt{6} T_{v} \\
2 \sqrt{3} C_{v} & C_{v}^{\prime}-4 C_{v} & \sqrt{2} T_{v} \\
\sqrt{6} T_{v} & \sqrt{2} T_{v} & C_{v}^{\prime}+2 C_{v}+2 T_{v}
\end{array}\right) \text { including HQS singlet/doublet }
\end{aligned}
$$

\checkmark Tensor force $\left(T_{\pi}, T_{v}\right)$ induces strong mixing among 3 channels \checkmark Model parameters
$-\pi$ pot. coupling ($D^{*} \rightarrow D \pi$)
$-v=\rho, \omega$ pot. couplings (universal couplings)

- σ pot. coupling $\sim 1 / 3$ of $N N$ (\# of light quarks in $P^{(*)}$ meson)
- Momentum cutoffs (size ratios of $\bar{D}(B)$ and N from quark model)

2. \bar{D} meson and nucleon potential

- Results (\bar{D} and N)
\checkmark bound states $(I=0,1)$

$\bar{D} N$	B.E. [MeV]	Mixing ratio [\%]	
$I\left(J^{P}\right)=0\left(1 / 2^{-}\right)$	$\begin{gathered} 1.38 \\ \text { "shallow" } \end{gathered}$	$\begin{array}{ll} \hline \bar{D} N\left({ }^{2} S_{1 / 2}\right) & 96.1 \\ \bar{D}^{*} N\left({ }^{2} S_{1 / 2}\right) & 1.94 \\ \bar{D}^{*} N\left({ }^{4} D_{1 / 2}\right) & 1.93 \\ \hline \end{array}$	Cf. Deuteron binding energy 2.2 MeV
$I\left(J^{P}\right)=1\left(1 / 2^{-}\right)$	$\begin{gathered} 5.99 \\ \text { "deep", } \end{gathered}$	$\begin{array}{cc} \bar{D} N\left({ }^{2} S_{1 / 2}\right): & 88.9 \\ \bar{D}^{*} N\left({ }^{2} S_{1 / 2}\right): & 10.9 \\ \bar{D}^{*} N\left({ }^{4} D_{1 / 2}\right): & 0.11 \end{array}$	

2. \bar{D} meson and nucleon potential

- Results (\bar{D} and N)
\checkmark bound states $(I=0,1)$

$\bar{D} N$	B.E. [MeV]	Mixing ratio [\%]	
$\begin{gathered} I\left(J^{P}\right)=0\left(1 / 2^{-}\right) \\ " j=\mathbf{1}^{\prime \prime} \end{gathered}$		$\bar{D} N\left({ }^{2} S_{1 / 2}\right) \quad 96.1$	Cf. Deuteron binding energy 2.2 MeV
	1.38	$\bar{D}^{*} N\left({ }^{2} S_{1 / 2}\right) \quad 1.94$	
	"shallow"	$\bar{D}^{*} N\left({ }^{4} D_{1 / 2}\right) 1.93$	
		$\bar{D} N\left({ }^{2} S_{1 / 2}\right): 88.9$	
$I\left(J^{P}\right)=1\left(1 / 2^{-}\right)$	5.99	$\bar{D}^{*} N\left({ }^{2} S_{1 / 2}\right): 10.9$	
$" j=0 "$	"deep"	$\bar{D}^{*} N\left({ }^{4} D_{1 / 2}\right): 0.11$	

$-I=0$: shallow bound state (consistent with previous works)
$-I=1$: deeply bound state (new!)

- Both π and σ are important
- Note: σ pot. in $I=1$ is very strong
- Internal spin: " $j=1$ " for $I=0$ and " $j=0$ " for $I=1$ (approximate)

2. \bar{D} meson and nucleon potential \checkmark Phase shifts
(a) $\bar{D} N(I=0)$

(b) $\bar{D} N(I=1) \quad \bar{D} / \bar{D}^{*} \quad \pi, \sigma, \rho, \omega$
\checkmark Scattering lengths

$\bar{D} N$	$a[\mathrm{fm}]$	
$0\left(1 / 2^{-}\right)$	$\bar{D} N\left({ }^{2} S_{1 / 2}\right)$	
	$\bar{D}^{*} N\left({ }^{2} S_{1 / 2}\right)$	
$1\left(1 / 2^{-}\right)$	$0.868-i 3.72 \times 10^{-2}$	
$\bar{D} N\left({ }^{2} S_{1 / 2}\right)$	2.60	
$\bar{D}^{*} N\left({ }^{2} S_{1 / 2}\right)$	$0.944-i 0.722$	

1. Introduction: Why \bar{D} meson and nucleon?
2. \bar{D} meson and nucleon potential
3. B meson and nucleon potential
4. Discussions
5. Summary
6. Introduction: Why \bar{D} meson and nucleon?
7. \bar{D} meson and nucleon potential
8. B meson and nucleon potential
9. Discussions
10. Summary

3. B meson and nucleon potential

- Applicable for B meson and nucleon (more ideal in view of HQS)
- Results (B and N)
\checkmark Bound states ($\mathrm{I}=0,1$)

$I\left(J^{P}\right)=\begin{gathered}B N \\ 0\left(1 / 2^{-}\right)\end{gathered}$	B.E. $[\mathrm{MeV}]$	Mixing ratio [\%]		
		$B N\left({ }^{2} S_{1 / 2}\right)$	76.4	Cf. Deuteron binding energy 2.2 MeV
	29.7	$B^{*} N\left({ }^{2} S_{1 / 2}\right)$	14.1	
	"deep"	$B^{*} N\left({ }^{4} D_{1 / 2}\right.$		
$I\left(J^{P}\right)=1\left(1 / 2^{-}\right)$		$B N\left({ }^{2} S_{1 / 2}\right)$		
	66.0	$B^{*} N\left({ }^{2} S_{1 / 2}\right)$		
	"very deep" $B^{*} N\left({ }^{4} D_{1 / 2}\right) 1.82 \times 10^{-2}$			

3. B meson and nucleon potential

- Applicable for B meson and nucleon (more ideal in view of HQS)
- Results (B and N)
\checkmark Bound states (l=0, 1)

$-I=0$: deeply bound state (consistent with previous works)
- $I=1$: more deeply bound state (new!)
- Both π and σ are important
- Note: σ pot. in $I=1$ is very strongly attractive
- Internal spin: " $j=1$ " for $I=0$ and " $j=0$ " for $I=1$ (approximate)

3. B meson and nucleon potential \checkmark Phase shifts
(c) $B N(I=0)$

(d) $B N(I=1) \quad B / B^{*} \quad \pi, \sigma, \rho, \omega$

\checkmark Scattering lengths

$B N$	$a[\mathrm{fm}]$
$0\left(1 / 2^{-}\right)$	$B N\left({ }^{2} S_{1 / 2}\right) \quad 1.25$
	$B^{*} N\left({ }^{2} S_{1 / 2}\right) 1.03-i 1.07 \times 10^{-2}$
$1\left(1 / 2^{-}\right)$	$B N\left({ }^{2} S_{1 / 2}\right)$
	$B^{*} N\left({ }^{2} S_{1 / 2}\right)$

\checkmark Why not to research $B N$ correlation function from heavy-ion collisions?

- Very few theoretical works on $B N$ interaction
- Should we explore $B^{0} p(I=0$ and 1) channel?

1. Introduction: Why \bar{D} meson and nucleon?
2. \bar{D} meson and nucleon potential
3. B meson and nucleon potential
4. Discussions
5. Summary
6. Introduction: Why \bar{D} meson and nucleon?
7. \bar{D} meson and nucleon potential
8. B meson and nucleon potential
9. Discussions
10. Summary

4. Discussions

- Model dependence
\checkmark Ambiguity in σ potentials
- We assumed $P^{(*)} P^{(*)} \sigma$ strength coupling is " $1 / 3$ " of that in $N N \sigma$
\checkmark Estimate the uncertainty from σ couplings
- Dependence in binding energies

- Similar results for scattering lengths for $P N$ and $P^{*} N$
$\checkmark I=0$ is less dependent, but $I=1$ is more dependent
- σ is less important in $I=0$, but more important in $I=\mathbf{1}$

4. Discussions

- Charm (bottom) nuclei?

Cf. Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, Prog. Part. Nucl. Phys. 96, 88 (2017)

Flavor nuclei:

Diversity of matter \checkmark Can charm (bottom) nuclei exist as stable states?
\checkmark What about \bar{D} mesons in nuclear medium?

- Stability: binding energy?

TABLE I. List of the mass shifts of the \bar{D} meson in nuclear medium in previous works: quark meson coupling (QMC) model, QCD sum rule, coupled channel analysis, and chiral effective model.

Analysis	Ref.	Mass shift of $\bar{D}(\mathrm{MeV}) \quad$ D	Density $\rho\left(\mathrm{fm}^{-3}\right)$
QMC model(QMC: quark-meson coupling)[18]		-62 attractive	0.15
QCD sum rule	[19]	-48 ± 8 attractive	0.17
	[23]	+45 (averaged mass shift of D and \bar{D}) repulsive	0.15
	[28]	-46 ± 7 (averaged mass shift of D and \bar{D}) attractive	0.17
	[30]	-72 (averaged mass shift of D and \bar{D}) attractive	0.17
	[31]	+38 repulsive	0.17
Coupled channel analysis	[21]	+18 repulsive	0.17
	[22]	+(11-20) repulsive	0.16
	[26]	+35 repulsive	0.17
	[15]	$\simeq-(20-27)$ attractive	0.17
Chiral effective model	[20]	$\simeq-(30-180)$ attractive	0.15
	[25]	-27.2 attractive	0.15
	[16]	-35.1 attractive	0.17
	[37]	+97 (parity doublet model), +120 (skyrmion crystal) repulsive	e 0.16
	Our result*	+74 repulsive	0.095

*D. Suenaga, S. Yasui., M. Harada, Phys. Rev. C96, 015204 (2017) [See this paper for the reference numbers.]
Possible open question: can we study (anti-)charm nuclei through $\bar{D} N$ interaction?

- $\bar{D}(B)$ meson and nucleon potential is important for exotic hadrons and nuclei.
- We considered $\pi, \sigma, \rho, \omega$ exchanges based on chiral and HQS symmetries
- Bound states of \bar{D} meson and nucleon with $I\left(J^{P}\right)=0\left(1 / 2^{-}\right), 1\left(1 / 2^{-}\right)$
- Deeply bound states of B meson and nucleon with same $I\left(J^{P}\right)$
- Future studies: theories and experiments (LHC, Belle, J-PARC, etc.)
\checkmark Heavy ion collisions (LHC) ExHIC: PRL106 212001 (2011); PRC84, 064910 (2011), PPNP95, 279 (2017)
\checkmark Fixed target experiments (J-PARC) ${ }_{(2016)}^{\text {Yamaata-Sekihara, Garcia-Recio, Nieves, Salcedo, Tolos, } \mathrm{PLB754}, 26}$
\checkmark More states in the other $I\left(J^{P}\right)$?
\checkmark More states in bottom?
\checkmark Lattice QCD?
$\checkmark D_{s}^{-} N$? $\bar{D} \Lambda$? (from u, d to u, d, s)
\checkmark Multi-baryons: $P^{(*)} N N, P^{(*)} \alpha$?? ${ }_{\text {YPamaguchi, Y Yasui, Hosaka, }}^{\substack{\text { (2014 }}}$ \checkmark (Anti-)charm, bottom nuclei???

Can (anti-)charm nuclei exist in our nature?

Thanks!

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Reference system: nucleon-nucleon (NN)
\checkmark Similarity between NN and qN
$\checkmark \pi, \sigma, \rho, \omega$ exchange
$\checkmark \sigma$ is important to consider both $\mathrm{I}=0$ and $\mathrm{I}=1$ in NN

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Reference system: nucleon-nucleon (NN)
\checkmark Similarity between NN and qN
$\checkmark \pi, \sigma, \rho, \omega$ exchange

$\checkmark \sigma$ is important to consider both $\mathrm{I}=0$ and $\mathrm{I}=1$ in NN
- CD-Bonn is a realistic NN potential
\checkmark Reproducing the fundamental properties of NN force
\checkmark Simple model: one-meson exchange ($\pi, \sigma, \rho, \omega, \ldots$)
\checkmark However still complicated (because heavier mesons included)

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Reference system: nucleon-nucleon (NN)
\checkmark Similarity between NN and qN
$\checkmark \pi, \sigma, \rho, \omega$ exchange

$\checkmark \sigma$ is important to consider both $\mathrm{I}=0$ and $\mathrm{I}=1$ in NN
- CD-Bonn is a realistic NN potential
\checkmark Reproducing the fundamental properties of NN force
\checkmark Simple model: one-meson exchange ($\pi, \sigma, \rho, \omega, \ldots$)
\checkmark However still complicated (because heavier mesons included)
- We consider the simpler version of CD-Bonn ("modified CD-Bonn") \checkmark We consider only mesons with lower masses \checkmark Coupling constants as the same as in CD-Bonn
\checkmark Price to be paid: rescaling of the momentum cutoffs

Masses and coupling constants of exchanged mesons (same as CD-Bonn)			
Mesons	Masses $[\mathrm{MeV}]$	$g^{2} / 4 \pi$	f / g
π	138.04	13.6	-
ρ	769.68	0.84	6.1
ω	781.94	20	0.0
σ_{0}	350	0.51673	-
σ_{1}	452	3.96451	-

Scattering lengths, effective ranges, binding energy of a
deuteron in modified CD-Bonn

channel	$\kappa_{I}(I=0$ and $I=1)$	$a[\mathrm{fm}]$	$r_{\mathrm{e}}[\mathrm{fm}]$	$B_{\mathrm{d}}[\mathrm{MeV}]$
${ }^{3} S_{1}(I=0)$	0.8044226	5.296	1.562	2.225^{*}
${ }^{1} S_{0}(I=1)$	0.7729982	23.740^{*}	2.337	-

Reduction scale factor
in momentum cutoffs
Consistent with experiment values
$\mathrm{a}\left({ }^{3} \mathrm{~S}_{1}\right)=5.419 \pm 0.007 \mathrm{fm}, \mathrm{r}_{\mathrm{e}}\left({ }^{3} \mathrm{~S}_{1}\right)=1.753 \pm 0.008 \mathrm{fm}, \mathrm{B}_{\mathrm{d}}=2.225 \mathrm{MeV}$
$\mathrm{a}\left({ }^{1} \mathrm{~S}_{0}\right)=23.740 \pm 0.020 \mathrm{fm}, \mathrm{r}_{\mathrm{e}}\left({ }^{1} \mathrm{~S}_{0}\right)=2.77 \pm 0.05 \mathrm{fm}$

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Interaction Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\pi N N} & =-g_{\pi} \bar{\psi} i \gamma_{5} \boldsymbol{\tau} \cdot \boldsymbol{\pi} \psi \\
\mathcal{L}_{\sigma_{I} N N} & =-g_{\sigma_{I}} \bar{\psi} \sigma_{I} \psi \\
\mathcal{L}_{\rho N N} & =-g_{\rho} \bar{\psi} \gamma_{\mu} \boldsymbol{\tau} \cdot \boldsymbol{\rho}^{\mu} \psi-\frac{f_{\rho}}{4 m_{N}} \bar{\psi} \sigma_{\mu \nu} \boldsymbol{\tau} \cdot\left(\partial^{\mu} \boldsymbol{\rho}^{\nu}-\partial^{\nu} \boldsymbol{\rho}^{\mu}\right) \psi \\
\mathcal{L}_{\omega N N} & =-g_{\omega} \bar{\psi} \gamma_{\mu} \omega^{\mu} \psi
\end{aligned}
$$

A. Nucleon-nucleon pot. (modified CD-Bonn)

- Interaction Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\pi N N} & =-g_{\pi} \bar{\psi} i \gamma_{5} \boldsymbol{\tau} \cdot \boldsymbol{\pi} \psi \\
\mathcal{L}_{\sigma_{I} N N} & =-g_{\sigma_{I}} \bar{\psi} \sigma_{I} \psi \\
\mathcal{L}_{\rho N N} & =-g_{\rho} \bar{\psi} \gamma_{\mu} \boldsymbol{\tau} \cdot \boldsymbol{\rho}^{\mu} \psi-\frac{f_{\rho}}{4 m_{N}} \bar{\psi} \sigma_{\mu \nu} \boldsymbol{\tau} \cdot\left(\partial^{\mu} \boldsymbol{\rho}^{\nu}-\partial^{\nu} \rho^{\mu}\right) \psi, \\
\mathcal{L}_{\omega N N} & =-g_{\omega} \bar{\psi} \gamma_{\mu} \omega^{\mu} \psi
\end{aligned}
$$

- NN potential

$$
\begin{aligned}
V_{\pi}(r) & =\left(\frac{g_{\pi N N}}{2 m_{N}}\right)^{2} \frac{1}{3}\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} C_{\pi}(r)+S_{12}(\hat{\boldsymbol{r}}) T_{\pi}(r)\right) \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}{ }^{100} \\
V_{\sigma_{I}}(r) & =-\left(\frac{g_{\sigma_{I}}}{2 m_{N}}\right)^{2}\left(\left(\frac{2 m_{N}}{m_{\sigma_{I}}}\right)^{2}-1\right) C_{\sigma_{I}}(r) \\
V_{v}(r) & =g_{v N N}^{2}\left(\frac{1}{m_{v}^{2}}+\frac{1+f_{v} / g_{v N N}}{2 m_{N}^{2}}\right) C_{v}(r) \\
& +g_{v N N}^{2}\left(\frac{1+f_{v} / g_{v N N}}{2 m_{N}}\right)^{2} \frac{1}{3}\left(2 \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} C_{v}(r)-S_{12}(\hat{\boldsymbol{r}}) T_{v}(r)\right)^{\text {s. }}
\end{aligned}
$$

B. Open problems in $T_{c c}$
nature
physics

OPEN

Observation of an exotic narrow doubly charmed tetraquark

Bound state below $\mathrm{D}^{*+} \mathrm{D}^{0}$ threshold
$\delta m_{\text {BW }}=-\underline{273} \pm 61 \pm 5_{-14}^{+11} \mathrm{keV} \mathrm{c}^{-2}$,

$$
\Gamma_{\mathrm{BW}}=\underline{410} \pm 165 \pm 43_{-38}^{+18} \mathrm{keV},
$$

T_{cc} : doubly charmed tetraquark

$$
|C|=0 \quad|C|=2
$$

Z_{c}

$T_{c c}$ is genuinely exotic hadron (four quark at least)!

Important questions:

1. strong ud diquark attraction ?
2. $D(c \bar{u}) D^{*}(c \bar{d})$ molecule ?
3. Are there other T_{cc} ?
4. Are there T_{bb} (double bottom) ? etc.
B. Open problems in $T_{c c}$

Recent lattice QCD study on T_{bb} Meinel, Pflaumer, Wagner, Phys. Rev. D106, 034507 (2022)

T_{bb}
 Doubly bottom tetraquark

Why don't we study T_{bb} in future experiments?

C. New state of matter

- Charm (bottom) nuclei ? \checkmark Particle-antiparticle hybrid matter ? ?

HiggsTan.com
D. Light spin structure

- Heavy-quark spin structures (I=0)
\checkmark Light spin-complex $[\mathrm{qN}]_{\mathrm{j}}$ (HQ limit)
 - j=0: PN $\left({ }^{2} \mathrm{~S}_{1 / 2}\right): P^{*} N\left({ }^{2} \mathrm{~S}_{1 / 2}\right)=1: 3$
$-j=1: P N\left({ }^{2} S_{1 / 2}\right): P * N\left({ }^{2} S_{1 / 2}\right)=3: 1$ (\leftarrow relatively similar to this)
\checkmark Calculated mxing ratios
- Anti-DN(${ }^{2} S_{1 / 2}$):anti-D*N $\left({ }^{2} S_{1 / 2}\right)=96: 2$
$-\mathrm{BN}\left({ }^{2} \mathrm{~S}_{1 / 2}\right): \mathrm{B}^{*} \mathrm{~N}\left({ }^{2} \mathrm{~S}_{1 / 2}\right)=76: 14$
\checkmark Calculated $\mathrm{P}^{(*)} \mathrm{N}$ includes mostly the spin-complex $[q \mathrm{~N}]_{j}$ with $\mathrm{j}=1$
$\checkmark[q N]_{j=1}$ is analogue of a deuteron
- Duality between $\mathrm{P}^{(*)} \mathrm{N}$ and NN ?
D. Light spin structure
- Heavy-quark spin structures (I=0)
\checkmark Light spin-complex [qN] ${ }_{j}$ (HQ limit)

$\left.-\mathrm{j}=0: P N\left({ }^{2} \mathrm{~S}_{1 / 2}\right): P^{*} \mathrm{~N}^{2}{ }^{2} \mathrm{~S}_{1 / 2}\right)=1: 3$
$-\mathrm{j}=1: \mathrm{PN}\left({ }^{2} \mathrm{~S}_{1 / 2}\right): \mathrm{P}^{*} \mathrm{~N}\left({ }^{2} \mathrm{~S}_{1 / 2}\right)=3: 1$ (\leftarrow relatively similar to this)
\checkmark Calculated mxing ratios
- Anti-DN(${ }^{2} \mathrm{~S}_{1 / 2}$): anti-D*N $\left({ }^{2} \mathrm{~S}_{1 / 2}\right)=96: 2$
- $\mathrm{BN}\left({ }^{2} \mathrm{~S}_{1 / 2}\right): \mathrm{B}^{*} \mathrm{~N}\left({ }^{2} \mathrm{~S}_{1 / 2}\right)=76: 14$
\checkmark Calculated $\mathrm{P}^{(*)} \mathrm{N}$ includes mostly the spin-complex $[q \mathrm{~N}]_{j}$ with $\mathrm{j}=1$
$\checkmark[q N]_{j=1}$ is analogue of a deuteron
- Duality between $\mathrm{P}^{(*)} \mathrm{N}$ and NN ?
- Heavy-quark spin structures (I=1)
\checkmark Calculated mxing ratios
- Anti-DN $\left({ }^{2} \mathrm{~S}_{1 / 2}\right)$:anti-D*N $\left({ }^{2} \mathrm{~S}_{1 / 2}\right)=90: 11(\rightarrow \mathrm{j}=1)$
$-\mathrm{BN}\left({ }^{2} \mathrm{~S}_{1 / 2}\right): \mathrm{B}^{*} \mathrm{~N}\left({ }^{2} \mathrm{~S}_{1 / 2}\right)=39: 62(\rightarrow \mathrm{j}=0)$
\checkmark The spin-complex $[q N]_{j} \mathrm{j}=0$ is favored in $\mathrm{I}=1$ in HQ limit?
- This question should be related to the origin of σ potential

E. Exotic hadrons

- Motivation to study exotic hadrons (multiquarks) \checkmark Color confinement (Yang-Mills mass gap)
\checkmark Flavor multiplets (unconventional)
\checkmark Multi-baryons (ex. strange/charm nuclei)
M. Gell-Mann "Quarks"

Hadron physics in a nutshell

E. Exotic hadrons

S. L. Olsen, T. Skwamicki, D. Ziemninska, Rev. Mod. Phys. 90, 015003 (2018)

S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003)
\leftarrow Hybrid mesons (gluon excitation)

$Y(4260)$

S. L. Olsen, T. Skwamicki, D. Ziemninska, Rev. Mod. Phys. 90, 015003 (2018)

Is that all?

E. Exotic hadrons

OPEN

Observation of an exotic narrow doubly charmed tetraquark

Bound state below $\mathrm{D}^{*+} \mathrm{D}^{0}$ threshold

$$
\begin{aligned}
\delta m_{\mathrm{BW}} & =-\underline{273} \pm 61 \pm 5_{-14}^{+11} \mathrm{keV} c^{-2}, \\
\Gamma_{\mathrm{BW}} & =\underline{410} \pm 165 \pm 43_{-38}^{+18} \mathrm{keV},
\end{aligned}
$$

T_{cc} : doubly charmed tetraquark

$$
|C|=0 \quad|C|=2
$$

Z_{c}

T_{cc} is genuinely exotic hadron (four quark at least)!

E. Exotic hadrons

T_{cc} has been studied over 35 years in theories!

- Production in relativistic heavy-ion collisions ?
\checkmark Quarks are abundant
- Possibility to find rare events

Hadronization Detection

\checkmark X(3872) was already observed in HIC смs@Lнс, Phys. Rev. Lett. 128, 032001 (2020)

- Possibility to find other exotic hadrons?

RHIC (Scenario 1)

ExHIC collaboration: Phys. Rev. Lett. 106, 212001 (2011), Phys. Rev. C84 (2011) 064910; Prog. Part. Nucl. Phys. 95 (2017) 279 (review)

Particle	Scenario 1		Scenario 2		Mol.	Stat.	\# per nucleus-
	$q \bar{q} / q q q$	Multiquark	$q \bar{q} / q q q$	Multiquark			
RHIC							
$T_{c c}^{1}$	-	5.0×10^{-5}	-	5.3×10^{-5}	-	8.9×10^{-4}	
$\bar{D} N$	-	2.6×10^{-3}	-	2.6×10^{-3}	1.3×10^{-2}	1.0×10^{-2}	
$\bar{D}^{*} N$	-	9.8×10^{-4}	-	9.3×10^{-4}	1.1×10^{-2}	9.6×10^{-3}	nucleus
$\Theta_{c s}$	-	7.4×10^{-4}	-	7.4×10^{-4}	-	6.4×10^{-3}	collision
H_{c}	-	2.7×10^{-4}	-	2.8×10^{-4}	-	5.7×10^{-4}	colision
$\bar{D} N N$	-	1.8×10^{-5}	-	1.8×10^{-5}	9.4×10^{-5}	5.1×10^{-5}	Cf. D meson
$\Lambda_{c} N$	-	1.5×10^{-3}	-	1.5×10^{-3}	5.0×10^{-3}	2.9×10^{-3}	~ 1
Λ_{c} NN	-	6.7×10^{-6}	-	6.7×10^{-6}	2.9×10^{-6}	9.8×10^{-6}	
$T_{c b}^{0}$	-	9.3×10^{-8}	-	9.9×10^{-8}	-	1.6×10^{-6}	
LHC (2.76 TeV)							
$T_{c c}^{1}$	-	1.1×10^{-4}	-	1.3×10^{-4}	-	2.7×10^{-3}	
$\bar{D} N$	-	4.3×10^{-3}	-	4.2×10^{-3}	2.3×10^{-2}	1.9×10^{-2}	
$D^{*} N$	-	1.6×10^{-3}	-	1.3×10^{-3}	2.0×10^{-2}	1.8×10^{-2}	
$\Theta_{c s}$	-	1.2×10^{-3}	-	1.2×10^{-3}	-	1.2×10^{-2}	
$\mathrm{H}_{\text {c }}$	-	3.8×10^{-4}	-	4.0×10^{-4}		8.6×10^{-4}	
$\bar{D} N N$	-	2.0×10^{-5}	-	2.0×10^{-5}	1.1×10^{-4}	6.7×10^{-5}	
$\Lambda_{c} N$	-	2.2×10^{-3}	-	2.2×10^{-3}	7.0×10^{-3}	4.3×10^{-3}	
$\Lambda_{c} N N$	-	6.7×10^{-6}	-	6.5×10^{-6}	2.7×10^{-6}	9.9×10^{-6}	
$T_{c b}^{0}$	-	1.1×10^{-6}	-	1.3×10^{-6}	-	2.7×10^{-5}	
LHC (5.02 TeV)							
$T_{c c}^{1}$	-	1.8×10^{-4}	-	2.1×10^{-4}	-	4.4×10^{-3}	
$\bar{D} N$	-	5.3×10^{-3}	-	5.3×10^{-3}	3.0×10^{-2}	2.4×10^{-2}	
$\bar{D}^{*} N$	-	2.0×10^{-3}	-	1.7×10^{-3}	2.6×10^{-2}	2.3×10^{-2}	
$\Theta_{c s}$	-	1.5×10^{-3}	-	1.4×10^{-3}	-	1.6×10^{-2}	
H_{c}	-	4.7×10^{-4}	-	4.9×10^{-4}	-	1.1×10^{-3}	
$\bar{D} N N$	-	2.5×10^{-5}	-	2.5×10^{-5}	1.5×10^{-4}	8.6×10^{-5}	
$\Lambda_{C} N$	-	2.7×10^{-3}	-	2.7×10^{-3}	9.1×10^{-3}	5.5×10^{-3}	
Λ_{c} NN	-	8.2×10^{-6}	-	8.0×10^{-6}	3.5×10^{-6}	1.3×10^{-5}	
$T_{c b}^{0}$	-	2.3×10^{-6}	-	2.7×10^{-6}	-	5.6×10^{-5}	

F. Glossary

$N .$. Nucleon (uud, udd)

$\pi, \sigma, \rho, \omega \ldots$ Light mesons (carrying forces between two hadrons)
q... Light quark (u quark, d quark)
Q... Heavy quark (c quark, b quark)
$\bar{Q} \ldots$ Heavy antiquark (\bar{c} antiquark, \bar{b} antiquark)
\bar{D} meson ... Heavy-light meson with $\bar{c} q(q=u, d)$
B meson ... Heavy-light meson with $\bar{b} q(q=u, d)$
P... Pseudoscalar (spin 0) $\bar{Q} q$ meson, such as \bar{D} (charm) or B (bottom)
$P^{*} \ldots$ Vector (spin 1) $\bar{Q} q$ meson, such as \bar{D}^{*} (charm) or B^{*} (bottom)

