20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) 5-9 Jun 2023, Genova - Italy

Studies of pentaquark states with strangeness at LHCb

Bo Fang (方勃) Wuhan University & Université Paris-Saclay & IJCLab **On behalf of the LHCb Collaboration**

Outline

- Hadron spectroscopy at LHCb and the LHCb detector
- History of pentaquark studies at LHCb
- Possible theoretical interpretations for pentaguark
- Studies of pentaguark states with strangeness at LHCb:
 - Other exotics@LHCb see Elisabetta's talk • Observation of the $\Xi_h^- \rightarrow J/\psi \Lambda K^-$ decay [PLB 772 (2017) 265]
 - First evidence of $P_{ws}^{\Lambda}(4459)^0$ in $\Xi_b^- \to J/\psi \Lambda K^-$ decays [Sci. Bull. 66 (2021) 1278]
 - First observation of $P^{\Lambda}_{\psi s}(4338)^0$ in $B^- \to J/\psi \Lambda \bar{p}$ decays [arXiv: 2210.10346] Submitted to PRL
- Prospects and summary

Hadron spectroscopy at LHCb

11.0 So far 70 hadrons have been discovered 10.5 at the LHC, of which 62 by LHCb 8.0 Observations of 4 pentaguark candidates 7.0 [PRL 122 (2019) 222001, arXiv: 2210.10346] 6.0 Mass [GeV/c²] Evidences of 2 pentaquark candidates, $P_{w}^{N}(4337)^{+}, P_{ws}^{\Lambda}(4459)^{0}$, need further bą $c\bar{c}(q\bar{q})$ 4.0 cōcō confirmation сą [PRL 128 (2022) 062001, Sci. Bull. 66 (2021) 1278] cāqā 3.0 bqq cqq New naming scheme: [arXiv:2206.15233] cc̄qqq 2.0 + 2012 2011

patrick.koppenburg@cern.ch 2023-02-10

The LHCb detector

A single-arm forward spectrometer, designed for the study of heavy flavour physics

Excellent vertex, IP and decay-time resolution $\sigma(IP) \approx$ 20 μm for high- p_T tracks

 $\sigma(\tau) \approx 45 \, fs$ for $B_s^0 \to J/\psi \phi$ and $B_s^0 \to D_s^- \pi^+$ decays

Very good momentum resolution $\delta p/p \approx$ 0.5%-1% for $p \in$ (0,200) GeV

 $\sigma(m_R) \approx$ 24 MeV for two-body B decays

Good hadron and muon identification $\epsilon_{K \to K} \approx$ 95% for $\epsilon_{\pi \to K} \approx$ 5% up to 100 GeV

 $\epsilon_{\mu \to \mu} \approx$ 97% for $\epsilon_{\pi \to \mu} \approx$ 1%-3%

Bo Fang 9/6/2023

Int. J. Mod. Phys. A 30(2015)153002 JINST 3(2008)S08005

 $2 < \eta < 5$ range (LHCb acceptance):

 $\sim 3 \times 10^4 / s b\bar{b}$ pairs@ 7 TeV $\sim x2$ yield@ 13 TeV 4

HADRON 2023

Observation of pentaquark in $\Lambda_h^0 \rightarrow J/\psi p K^-$

- ulletusing Run1 data
- ulletthe inclusion of LHCb Run2 data

Bo Fang 9/6/2023

In 2015, LHCb reported the first observation of pentaquark states P_w^N ($c\bar{c}uud$) in $\Lambda_h^0 \to J/\psi pK^-$ decays

Later, a new narrow pentaquark state $P_w^N(4312)^+$ and two-peak structure of $P_w^N(4450)^+$ were observed with

Possible theoretical interpretations for pentaguark

Hadron molecule

Hadrons bound via mesonic exchange

- J^P combinations highly restricted
- Width is narrow if below threshold

Wu, Molina, Oset, Zou [PRL 105 (2010) 232001] Karliner, Rosner [PRL 115 (2015) 122001] Chen, Sun, Liu, Zhu [PRD 100 (2019) 011502 (R)] and others

Compact state

(Di-)quarks bound via colour forces

- Width can be large

Maiani, Polos, Riquer [PLB 749 (2015) 289] Lebed, [PLB 749 (2015) 454] Santopinto, Giachino [PRD 96 (2017) 014014] Deng, [PRD 105 (2022) 116021] and others

Bo Fang 9/6/2023

• J^P and flavour multiplets expected

Triangle diagram

Rescattering effects

• If just kinematical effect, no narrow near-threshold peak in $\chi_{c1}p$ [JHEP 05 (2021) 95]

Guo, Meissner, Wang, Yang [PRD 92 (2015) 071502] Liu, Wang, Zhao [PLB 757 (2016) 231] Mikhasenko, [arXiv: 1507.06552] Szczepaniak, [**PLB 757 (2016) 61**] and others

Observation of the $\Xi_h^- \to J/\psi \Lambda K^-$ decay [PLB 772 (2017) 265]

Bo Fang 9/6/2023

Motivation for $\Xi_b^- \to J/\psi \Lambda K^-$

- Similar to $\Lambda_b^0 \to J/\psi p K^-$ decay, with a μ quark changed by an s quark
 - An additional diagram can contribute, where the s quark forms K^- instead of A ullet
- Suggested to search for pentaquark with open strangeness ($udsc\bar{c}$) in this decay [PRC 93 (2016) 065203]

Bo Fang 9/6/2023

[PLB 772 (2017) 265]

Dataset and reconstruction

- Run1 data was used, corresponding to an integrated luminosity of 3 fb⁻¹
- Reconstruction of $\Xi_h^- \to J/\psi \Lambda K^-$ decay
 - $J/\psi: \mu^+, \mu^-$ candidates from a common vertex and detached from any primary vertex (PV) of pp collision
 - $\Lambda: p, \pi^-$ candidates, both of either *long* tracks or *downstream* tracks, so called LL or DD

[PLB 772 (2017) 265]

Selection

- General selection criteria:
 - All final-state particles with high transverse momentum
 - $m(\mu^+\mu^-)$ and $m(p\pi^-)$ in known mass range of J/ψ and Λ
 - Require p, π^-, K^- not from any PV
 - Fake Λ candidates from misidentified K_{S}^{0} are vetoed
 - Ξ_h^- associated with appropriate PV
- Further suppress combinatorial background with a multivariate classifier BDTG
 - lacksquare
 - Signal efficiency of 90%(70%) and background rejection rate of 99%(97%) for LL(DD) \bullet
- Normalisation channel $\Lambda_b^0 \to J/\psi \Lambda$ with similar selection

In total 15 discriminating variables used, such as p_T of p, π^-, K^- and $J/\psi, \chi^2$ of kinematic fit and $cos\theta$...

Fit results

- $\Xi_h^- \to J/\psi \Lambda K^-$ (Run1)
 - ~100 signal for LL
 - ~210 signal for DD
 - combined signal significance ~ 21σ
- Production rate measured

 $\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \Lambda K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda)} = (4.19 \pm 0.29 \,(\text{stat}) \pm 0.15 \,(\text{syst})) \times 10^{-2}$

Mass difference between Ξ_b^- and Λ_b^0 measured, and combined with previous LHCb result from $\Xi_{b}^{-} \to \Xi_{c}^{0} \pi^{-}$ and $\Lambda_{b}^{0} \to \Lambda_{c}^{+} \pi^{-}$

 $M(\Xi_{h}^{-}) - M(\Lambda_{h}^{0}) = 177.73 \pm 0.33 \,(\text{stat}) \pm 0.14 \,(\text{syst}) \,\text{MeV}/c^{2}$

[PLB 772 (2017) 265]

First evidence of $P_{\psi s}^{\Lambda}(4459)^0$ in $\Xi_b^- \to J/\psi \Lambda K^-$ decays [Sci. Bull. 66 (2021) 1278]

Bo Fang 9/6/2023

 $\Xi_h^- \to J/\psi \Lambda K^-, J/\psi \to \mu^+\mu^-, \Lambda \to p\pi^-$

- This analysis use full Run1+Run2 LHCb data, ~ 9 fb⁻¹

[Sci. Bull. 66 (2021) 1278]

Full 6D amplitude analysis

- Similar to amplitude analysis in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays [PRL 115 (2015) 072001]
- Six dimensions:
 - $m(\Lambda K^{-})$
 - three helicity angles θ_{Ξ_h} , θ_{Ξ^-} , $\theta_{J/\psi}$
 - two azimuthal angles ϕ_{K} , ϕ_{μ}
- Formula cross checked with the Dalitz-Plot Decomposition (DPD) formula [PRD 101 (2020) 034033] and updated[CPC 45 (2021) 063103]

States included in nominal model of null hypothesis:

State	$M_0~({ m MeV})$	Γ_0 (MeV)	LS couplings	J^P examined
$\Xi(1690)^{-}$	1690 ± 10	< 30	4 (6)	$(1/2, 3/2)^{\pm}$
$\Xi(1820)^{-}$	1823 ± 5	24^{+15}_{-10}	3(6)	$3/2^{-}$
$\Xi(1950)^{-}$	1950 ± 15	60 ± 20	3(6)	$(1/2, 3/2, 5/2)^{\pm}$
$\Xi(2030)^-$	2025 ± 5	20^{+15}_{-5}	3(6)	$5/2^{\pm}$
NR ΛK^-	-	-	4(4)	$1/2^{-}$

NR: Non-resonance

Bo Fang 9/6/2023

[Sci. Bull. 66 (2021) 1278]

More technical details see Mengzhen's talk

Amplitude fit results

[Sci. Bull. 66 (2021) 1278]

After considering syst. uncertainty and look-elsewhere effect, $P_{ws}^{\Lambda}(4459)^0$ significance: 3.1 σ

First observation of $P_{\psi s}^{\Lambda}(4338)^0$ in $B^- \to J/\psi \Lambda \bar{p}$ decays [arXiv: 2210.10346] Accepted by PRL

Bo Fang 9/6/2023

$B^- \to J/\psi \Lambda \bar{p}, J/\psi \to \mu^+ \mu^-, \Lambda \to p\pi^-$

- Unique opportunity to simultaneously search for $\bar{P}_{\psi}^{N^-}(J/\psi\bar{p})$ and $P_{\psi s}^{\Lambda^0}(J/\psi\Lambda)$
- Dataset: full Run1+Run2 LHCb data (9 fb $^{-1}$)
- Signal yield ~4400 with purity of 93% in $\pm 2.5\sigma$ of B^- peak

Full 6D amplitude analysis

- Following the Dalitz-Plot Decomposition (DPD) formula [PRD 101 (2020) 034033]
- Six dimensions: \bullet
 - $m(\Lambda \bar{p})$
 - three helicity angles θ_{K^*} , $\theta_{J/w}$, θ_{Λ}
 - two azimuthal angles ϕ_p, ϕ_μ

The simplest and most effective amplitude model

- NR($\bar{p}\Lambda$)
- NR($J/\psi \bar{p}$)
- P_{ws}^{Λ} (rBW)

Bo Fang 9/6/2023

More technical details see Mengzhen's talk

[arXiv: 2210.10346] **Accepted by PRL**

Amplitude fit results

- Significance of $P_{ws}^{\Lambda}(4338)^0 > 10\sigma$
- $m(P_{\psi s}^{\Lambda 0}) = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$
- $\Gamma(P_{\psi s}^{\Lambda 0}) = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$
- Fit fraction for $P_{\psi s}^{\Lambda}(4338)^0$:

 $0.125 \pm 0.007 \pm 0.019$

- Very close to $\Xi_c^+ D^-$ threshold (4337.37 MeV)
- Spin-parity:

•
$$J = \frac{1}{2}$$
 determined

• P = -1 favoured, +1 rejected @90% CL

[arXiv: 2210.10346] **Accepted by PRL**

Summary and prospects

Two $P_{\psi s}^{\Lambda 0}$ candidates from LHCb:

 $P_{\psi s}^{\Lambda}(4459)^{0}$ with significance of 3.1 σ : [Sci. Bull. 66 (2021) 1278]

- Mass ~ 19 MeV below $\Xi_c^0 \overline{D}^{*0}$ threshold
- Need more data to:
 - Determine J^P
 - Explore possible two-peak structure

Summary and prospects

Two $P_{ws}^{\Lambda 0}$ candidates from LHCb:

 $P_{ws}^{\Lambda}(4459)^{0}$ with significance of 3.1 σ : [Sci. Bull. 66 (2021) 1278]

- Mass ~ 19 MeV below $\Xi_c^0 \overline{D}^{*0}$ threshold
- Need more data to:
 - Determine J^P
 - Explore possible two-peak structure

More modes to look at:

• $\Lambda_b^0 \to J/\psi \Lambda \pi^+ \pi^-, \Xi_b \to J/\psi \Lambda K^- \pi^+ (\pi^-)...$

•
$$B_s^0 \to J/\psi \Lambda \bar{\Lambda} \dots$$

•
$$\Xi_b^- \to \Xi_c^0 \bar{D}^0 K^- \dots$$

- $B^- \to \Lambda_c^+ \bar{\Lambda}_c^- K^-$ [arXiv:2211.00812]
- $\Lambda_h^0 \to \Lambda_c^+ K^+ K^- \pi^-$ [PLB 815 (2021) 136172]

More data is coming:

• Up to 5x (10x) statistics wrt current data will be collected in Run3 (Run3&4)...

Backup

Bo Fang 9/6/2023

New naming scheme

Minimal quark	Current name				
content					
$c\bar{c}$	$\chi_{c1}(3872)$				
$car{c}uar{d}$	$Z_{c}(3900)^{+}$				
$car{c}uar{d}$	$X(4100)^+$				
$car{c}uar{d}$	$Z_c(4430)^+$				
c ar c (s ar s)	$\chi_{c1}(4140)$				
$car{c}uar{s}$	$Z_{cs}(4000)^+$				
$car{c}uar{s}$	$Z_{cs}(4220)^+$				
$c \overline{c} c \overline{c}$	X(6900)				
$csar{u}ar{d}$	$X_0(2900)$				
$csar{u}ar{d}$	$X_1(2900)$				
$ccar{u}ar{d}$	$T_{cc}(3875)^+$				
$b \overline{b} u \overline{d}$	$Z_b(10610)^+$				
$car{c}uud$	$P_{c}(4312)^{+}$				
$car{c}uds$	$P_{cs}(4459)^0$				

[arXiv:2206.15233]

$$\begin{split} I^{(G)}, J^{P(C)} & \text{Proposed name} \\ \hline I^{G} = 0^{+}, J^{PC} = 1^{++} & \chi_{c1}(3872) \\ I^{G} = 1^{+}, J^{P} = 1^{+} & T^{b}_{\psi 1}(3900)^{+} \\ I^{G} = 1^{-} & T_{\psi}(4100)^{+} \\ I^{G} = 1^{+}, J^{P} = 1^{+} & T^{b}_{\psi 1}(4430)^{+} \\ I^{G} = 0^{+}, J^{PC} = 1^{++} & \chi_{c1}(4140) \\ I = \frac{1}{2}, J^{P} = 1^{+} & T^{\theta}_{\psi s1}(4000)^{+} \\ I = \frac{1}{2}, J^{P} = 1^{?} & T_{\psi s1}(4220)^{+} \\ I^{G} = 0^{+}, J^{PC} = ?^{?+} & T_{\psi \psi}(6900) \\ J^{P} = 0^{+} & T_{cs0}(2900)^{0} \\ J^{P} = 1^{-} & T_{cs1}(2900)^{0} \\ I^{G} = 1^{+}, J^{P} = 1^{+} & T^{b}_{\gamma 1}(10610)^{+} \\ I = \frac{1}{2} & P^{N}_{\psi s}(4312)^{+} \\ I = 0 & P^{A}_{\psi s}(4459)^{0} \end{split}$$

LHCb data taking

- Run1 (2011-2012): $L_{int} = 1 \text{ fb}^{-1}$ @ 7 TeV
- Run2 (2015-2018): $L_{int} = 6 \text{ fb}^{-1}$ @ 13 TeV

&
$$L_{int} = 2 \text{ fb}^{-1}$$
@ 8 TeV

Prospects

- LHCb upgrade1 detector: brand new \bullet tracking system
 - VErtex LOcator lacksquare
 - Upstream Tracker \bullet
 - Scintillating Fiber Tracker ullet
- Full software trigger, higher efficiency and ulletmore flexibility
- Run3&Run4: target $L_{int} \sim 50 \text{fb}^{-1}$ •

Vertex Locator

Bo Fang 9/6/2023

[arXiv: 2305.10515]

Amplitude analysis of

Total amplitude expressed in the basis of helicities in the Ξ^* decay chain: $\left| \mathcal{M}
ight|^2 = \sum_{\lambda_{arepsilon_b}} \sum_{\lambda_A} \sum_{\Delta\lambda_\mu} \left| \mathcal{M}^{arepsilon^*}_{\lambda_{arepsilon_b},\,\lambda_A,\,\Delta\lambda_\mu}
ight|^2$

The number of helicity couplings can be reduced by restricting the L values:

$$\mathcal{H}_{\lambda_B,\lambda_c}^{A \to BC} = \sum_L \sum_S \sqrt{\frac{2L+1}{2J_A+1}} \times B_{L,S} \times \left($$

Bo Fang 9/6/2023

$$\sum_{\lambda_{\mu}} + e^{i\,\Delta\lambda_{\mu}lpha_{\mu}} \left. \sum_{\lambda_{\Lambda}^{P_{cs}}} d^{\frac{1}{2}}_{\lambda_{\Lambda}^{P_{cs}},\lambda_{\Lambda}}(\theta_{\Lambda}) \, \mathcal{M}^{P_{cs}}_{\lambda_{\Xi_{b}},\lambda_{\Lambda}^{P_{cs}},\Delta\lambda_{\mu}} \right|^{2}$$

 $\left(egin{array}{c|c} J_B & J_C & S \ \lambda_B & -\lambda_C \end{array}
ight) imes \left(egin{array}{c|c} L & S & J_A \ 0 & \lambda_B - \lambda_C \end{array}
ight) imes \left(egin{array}{c|c} L & S & J_A \ 0 & \lambda_B - \lambda_C \end{array}
ight)$ 26

HADRON 2023

Systematic uncertainties of $P_{\psi S}^{\Lambda}(4459)^0$ [Sci. Bull. 66 (2021) 1278]

Source	P_c	$P_{cs}(4459)^0$		$\Xi(1690)^-$		$\Xi(1820)^-$			Ξ^{*-} (1950)	Ξ^{*-} (2030)	NR	
	M_0	Γ_0	\mathbf{FF}	M_0	Γ_0	\mathbf{FF}	M_0	Γ_0	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}
J^P	$^{+4.7}_{-0.3}$	$^{+0.0}_{-5.7}$	$^{+0.1}_{-1.3}$	$^{+1.2}_{-0.1}$	$^{+14.0}_{-\ 0.9}$	$^{+6.7}_{-0.3}$	$\substack{+0.8\\-0.2}$	$^{+1.4}_{-0.5}$	$^{+4.2}_{-0.3}$	$^{+ 0.2}_{- 9.4}$	$^{+0.0}_{-4.1}$	$+ 0.9 \\ -11.2$
Model	$^{+0.7}_{-1.1}$	$^{+8.0}_{-2.0}$	$^{+0.7}_{-0.5}$	$^{+0.5}_{-0.4}$	$^{+ 1.8}_{-13.5}$	$^{+1.9}_{-8.9}$	$^{+1.0}_{-0.6}$	$\substack{+7.8\\-8.2}$	$^{+6.9}_{-4.1}$	$^{+49.9}_{-\ 5.4}$	$^{+3.8}_{-1.6}$	$^{+10.3}_{-\ 6.4}$
Λ decay	$^{+0.0}_{-0.7}$	$^{+0.0}_{-4.7}$	$\substack{+0.0\\-0.3}$	$^{+0.0}_{-0.4}$	$^{+}_{-} 0.2$	$^{+0.0}_{-0.8}$	$^{+0.0}_{-0.5}$	$^{+0.0}_{-7.2}$	$^{+0.0}_{-4.1}$	$^{+}_{-} 2.4$	$^{+0.0}_{-1.3}$	$^{+}$ 3.9 $^{-}$ 0.0
sWeights	$^{+0.0}_{-0.2}$	$\substack{+0.3\\-0.0}$	$^{+0.1}_{-0.0}$	$^{+0.1}_{-0.1}$	$^{+}$ $^{3.1}$ $^{-}$ $^{0.2}$	$^{+1.4}_{-0.0}$	$^{+0.2}_{-0.2}$	$^{+2.2}_{-1.5}$	$^{+1.6}_{-0.5}$	$^{+}$ 0.7 $^{-}$ 1.6	$^{+0.0}_{-0.2}$	$^{+}_{-} rac{0.0}{2.7}$
Efficiency	$^{+0.1}_{-0.1}$	$^{+0.0}_{-0.5}$	$^{+0.0}_{-0.1}$	$^{+0.1}_{-0.2}$	$^{+}~2.1 \\ -~1.5$	$\substack{+0.8\\-1.3}$	$^{+0.1}_{-0.2}$	$^{+1.1}_{-0.3}$	$^{+0.5}_{-0.7}$	$^{+} 2.3 \\ - 1.0$	$\substack{+0.3\\-0.2}$	$^{+}$ 1.1 $^{-}$ 0.9
Final	$^{+4.7}_{-1.1}$	$^{+8.0}_{-5.7}$	$^{+0.7}_{-1.3}$	$^{+1.2}_{-0.4}$	$^{+14.0}_{-13.5}$	$^{+6.7}_{-8.9}$	$^{+1.0}_{-0.6}$	$^{+7.8}_{-8.2}$	$^{+6.9}_{-4.1}$	$+49.9 \\ - 9.4$	$+3.8 \\ -4.1$	$^{+10.3}_{-11.2}$

 $P_{ws}^{\Lambda}(4459)^{0}$: two-peak hypothesis

[Sci. Bull. 66 (2021) 1278]

- $P_{\psi s_1}^{\Lambda}$: • $m_1 = 4454.9 \pm 2.7 \text{ MeV}$ • $\Gamma_1 = 7.5 \pm 9.7 \text{ MeV}$ $P^{\Lambda}_{\psi s_{\gamma}}$: • $m_2 = 4467.8 \pm 3.7 \text{ MeV}$
- $\Gamma_2 = 5.2 \pm 5.3 \text{ MeV}$

[JHEP 12 (2019) 100] $B^- \rightarrow J/\psi \Lambda \bar{p}$ at CMS: Inconsistent with pure PHSP

Bo Fang 9/6/2023

29

Amplitude fit with an additional P_{ψ}^N

[arXiv: 2210.10346] **Accepted by PRL**

Amplitude analysis of $B^- \rightarrow J/\psi \Lambda \bar{p}$

$$\mathcal{O}_{\lambda_{J/\psi},\lambda_{\bar{\Lambda}},\lambda_p}^{K^*}(m_{J/\psi\bar{\Lambda}}^2,m_{\bar{\Lambda}p}^2) = \sum_{j^{K^*}} \sum_{\{\lambda'\}} \sqrt{\frac{2j^{K^*}+1}{4\pi}} H_{\lambda'_{J/\psi}}^{B-1}$$

$$\times \delta_{\lambda'_{J/\psi},\lambda_{J/\psi}} d^{1/2}_{\lambda'_{\bar{\Lambda}},\bar{\Lambda}_{p}}$$

$$O^{P_{c}}_{\lambda_{J/\psi},\lambda_{\bar{\Lambda}},\lambda_{p}}(m^{2}_{J/\psi\bar{\Lambda}},m^{2}_{\bar{\Lambda}p}) = \sum_{j^{P_{c}}} \sum_{\{\lambda'\}} \sqrt{\frac{2j^{P_{c}}+1}{4\pi}} H^{B\to}_{\lambda'_{\bar{\Lambda}}}$$

$$\times d^{1}_{\lambda'_{J/\psi},\lambda_{J/\psi}}(-\zeta)$$

$$O^{\bar{P}_{L}}_{\lambda_{J/\psi},\lambda_{\bar{\Lambda}},\lambda_{p}}(m^{2}_{J/\psi\bar{\Lambda}},m^{2}_{\bar{\Lambda}p}) = \sum_{j^{\bar{P}_{L}}} \sum_{\{\lambda'\}} \sqrt{\frac{2j^{\bar{P}_{L}}+1}{4\pi}} H^{B-}_{\lambda'_{p}}$$

$$imes d^1_{\lambda'_{J/\psi}\,,\lambda_{J/\psi}}(\zeta^{J/\psi}_{Bar\Lambda}$$

Final amplitude:

$$\begin{split} A_{\lambda_{p},\lambda_{\bar{p}},\Delta\mu}(6D) &= \sum_{\lambda_{\bar{\Lambda}},\lambda_{J/\psi}} \left(O^{K^{*}} + O^{P_{c}} + O^{\bar{P}_{L}} \right)_{\lambda_{J/\psi},\lambda_{\bar{\Lambda}},\lambda_{p}} (m_{J/\psi\bar{\Lambda}}^{2},m_{\bar{\Lambda}p}^{2}) \\ &\times D^{1*}_{\lambda_{J/\psi},\Delta_{\mu}}(\phi_{\mu},\theta_{J/\psi},0) H^{\bar{\Lambda}\to\bar{p}\pi}_{\lambda_{\bar{p}}} D^{1/2*}_{\lambda_{\bar{\Lambda}},\lambda_{\bar{p}}}(\phi_{\bar{p}},\theta_{\bar{\Lambda}},0) \end{split}$$

Bo Fang 9/6/2023

[arXiv: 2210.10346] **Accepted by PRL**

 $\sum_{J/\psi}^{R \to K^* J/\psi} R(m_{\bar{\Lambda}p}^2) d_{\lambda'_{J/\psi},\lambda'_{\bar{\Lambda}}-\lambda'_p}^{j^{K^*}}(\theta_{K^*}) H_{\lambda'_{\bar{\Lambda}},\lambda'_p}^{K^* \to \bar{\Lambda}p}$ (5) $^{2}_{,\lambda_{\bar{\Lambda}}}(\zeta_{Bp}^{\bar{\Lambda}}) d^{1/2}_{\lambda'_{p},\lambda_{p}}(-\zeta_{B\bar{\Lambda}}^{p}) \times (-1)^{j^{J/\psi} - \lambda'_{J/\psi}} (-1)^{j^{p} - \lambda'_{p}},$ $H^{P_c\bar{\Lambda}} R(m_{pJ/\psi}^2) d^{j^{P_c}}_{\lambda'_{\bar{\Lambda}},\lambda'_p - \lambda'_{J/\psi}}(heta_{P_c}) H^{P_c o pJ/\psi}_{\lambda'_p,\lambda'_{J/\psi}}$ (6) $(J/\psi) \delta_{\lambda'_{\bar{\Lambda}},\lambda_{\bar{\Lambda}}} d^{1/2}_{\lambda'_{p},\lambda_{p}} (\zeta^{p}_{BJ/\psi}) \times (-1)^{j^{\bar{\Lambda}} - \lambda'_{\bar{\Lambda}}} (-1)^{j^{J/\psi} - \lambda'_{J/\psi}},$ $^{ o ar{P}_L p} R(m_{J/\psi\,ar{\Lambda}}^2) \, d^{J^{ar{P}_L}}_{\lambda_p,\lambda'_{J/\psi}\,-\lambda'_{ar{\Lambda}}}(heta_{ar{P}_L}) H^{ar{P}_L o J/\psi\,ar{\Lambda}}_{\lambda'_{J/\psi'},\lambda'_{ar{\Lambda}}}$ (7) $\left(\delta_{\bar{\Lambda}}^{\psi} \right) d^{1/2}_{\lambda'_{\bar{\Lambda}},\lambda_{\bar{\Lambda}}} \left(-\zeta^{\bar{\Lambda}}_{BJ/\psi} \right) \delta_{\lambda'_{p},\lambda_{p}} \times (-1)^{j^{p}-\lambda'_{p}} (-1)^{j^{\bar{\Lambda}}-\lambda'_{\bar{\Lambda}}},$

HADRON 2023

Systematic uncertainties of $P_{\psi s}^{\Lambda}(4338)^0$

Source	$M_{P^{\Lambda}_{\psi s}}$	$\Gamma_{P^{\Lambda}_{\psi s}}$	$f_{P^{\Lambda}_{\psi s}}$	$f_{{ m NR}(J\!/\!\psi\overline{p})}$	$f_{\mathrm{NR}(A\overline{p})}$
Hadron radius	0.1	0.4	0.3	0.2	0.2
LS values	0.3	0.1	0.8	0.7	0.6
$\text{Breit-Wigner } \overline{P}_\psi^{N^-}$	0.1	0.9	0.8	•••	•••
$J^P(P_{\psi s}^{\Lambda \ 0})$ assignment	0.1	0.9	1.2	0.4	0.9
Fitting procedure	0.1	0.2	0.1	1.0	1.1
Efficiency	0.02	0.19	0.02	0.3	0.2
Λ decay parameters	0.02	0.04	0.01	0.3	0.2
Background	0.01	0.05	0.96	0.4	0.7
Mass resolution	0.01	0.03	0.01	0.1	0.1
Total	0.4	1.3	1.9	1.4	1.7

[arXiv: 2210.10346] **Accepted by PRL**

