

Floriana Giannuzzi INFN Bari, Italy HADRON2023 Genova, 8 June 2023

Outline

> Tetraquark and pentaquark masses in a potential model updated to recent observations

relativistic kinematics

▶ $Q\bar{Q}$ potential from AdS/QCD

Use Salpeter equation for tetraquarks and pentaquarks: reduce the problem of studying interactions among more quarks by considering a series of two-body interactions

Model AdS/QCD potential

Potential model

Masses of mesons containing at least one heavy quark, with $\ell=0$

$$\left(\sqrt{m_1^2 - \nabla^2} + \sqrt{m_2^2 - \nabla^2} + V(r)\right)\psi(\mathbf{r}) = M\,\psi(\mathbf{r})$$

- relativistic dynamics
- two-body interaction

 \Rightarrow tetraquark and pentaquark as a result of a series of two-body interactions:

Tetraquark

Pentaquark

bound state of diquark and antidiquark

bound state of antiquark and 2-diquark state

Introduction Potential model Results Model AdS/QCD

Two-body interaction in mesons:

$$V(r) = V_{QCD}(r) + V_{spin}(r) + V_0$$

 \blacktriangleright $V_{QCD}(r)$ from AdS/QCD

► $V_{spin}(r)$ for spin-spin interaction [PRD 72, 054026 (2005)], in one-gluon exchange approximation: $V_{spin}(r) = A \frac{\tilde{\delta}(r)}{m_1 m_2} \mathbf{S_1} \cdot \mathbf{S_2}$ with $\tilde{\delta}(r) = \left(\frac{\sigma}{\sqrt{\pi}}\right)^3 e^{-\sigma^2 r^2}$ Different values of A for mesons containing a charm or a bottom quark (A_c, A_b) to account for

Different values of A for mesons containing a charm or a bottom quark (A_c, A_b) to account to the different values of α_s at the two scales

V₀ a constant (parameter)

► cutoff at short distance to cure the singularity of the wavefunction. Such a divergence is an artifact of the approximations involved to get the Salpeter equation $V(r) = V(r_M)$ for $r \leq r_M$, with $r_M = \frac{k}{M}$

Model AdS/QCD potential

AdS/CFT correspondence [Maldacena, '97]

т

Equivalence between certain bulk string theories and boundary field theories

Type IIB string theory
on
$$AdS_5 \times S^5$$
 \overleftrightarrow $\mathcal{N}=4$ SYM theory
on $4d$ Minkowski
 $R^4 = 4\pi g_s N \alpha'$ SUGRA limit
 $g_s \to 0$
 $R \to \infty$ large N + NP limit
 $N \to \infty$
 $\lambda = g_{YM}^2 N \to \infty$

Holographic correspondence: the boundary of AdS space is a Minkowski space, so the gauge theory can be obtained from a projection of the gravity theory on the boundary

Introduction Potential model Results Model AdS/QCD potential

Application to QCD: make the gauge theory of the duality similar to QCD

b Bottom-up approach: build a 5d effective field theory in AdS space and fit it to QCD

Confining background: introduce a "wall" in the radial direction

Model AdS/QCD potential

$Q\bar{Q}$ potential in soft-wall model

Compute the expectation value of the Wilson loop for $T \to \infty$ in static approximation:

$$\langle W_{\mathcal{C}} \rangle = \mathrm{e}^{-T \, V(r)}$$

AdS/CFT correspondence: $\langle W_C \rangle = e^{-S_{NG}}$ [Maldacena, PRL 80, 4859 (1998)]

 $\mathcal{S}_{NG}=$ Nambu Goto action = area of ws spanned by the string attached to $\mathcal C$ on the boundary

$$V(r) = \lim_{T \to \infty} \frac{1}{T} S_{NG}$$

Model AdS/QCD potential

$Q\bar{Q}$ potential in soft-wall model

Compute the expectation value of the Wilson loop for $T \to \infty$ in static approximation:

$$\langle W_{\mathcal{C}} \rangle = \mathrm{e}^{-T \, V(r)}$$

AdS/CFT correspondence: $\langle W_C \rangle = e^{-S_{NG}}$ [Maldacena, PRL 80, 4859 (1998)]

 $\mathcal{S}_{NG}=$ Nambu Goto action = area of ws spanned by the string attached to $\mathcal C$ on the boundary

$$V(r) = \lim_{T \to \infty} \frac{1}{T} S_{NG}$$

Model AdS/QCD potential

[Andreev et al., PRD 74, 025023 (2006)]

$$\mathcal{S}_{NG} = rac{g}{2\pi} \int d^2 \xi \sqrt{\det \left[g_{MN} \,\partial_lpha x^M \,\partial_eta x^N
ight]} \ ds^2 = rac{e^{cz^2/2}}{z^2} \left(dx^i dx^i + dz^2
ight)$$

Choosing
$$\xi^1 = t$$
 and $\xi^2 = x$

$$S_{NG} = \frac{g}{2\pi} T \int_{-\frac{r}{2}}^{+\frac{r}{2}} dx \, \frac{e^{cz^2/2}}{z^2} \sqrt{1 + \left(\frac{dz}{dx}\right)^2}$$

Eom for string z(x):

$$z \, z'' + (2 - c \, z^2)(1 + (z')^2) = 0$$

with boundary conditions:

$$z(r/2) = z(-r/2) = 0$$
 $z'(0) = 0$

Model AdS/QCD potential

- In conformal background no limits for z₀, sting goes deeper into the bulk as distance between quarks increases
- ln confined background $z_0 < \sqrt{2/c}$: when z_0 approaches the maximum value, the string becomes flat

Model AdS/QCD potential

Potential in parametric form:

$$r(z_{0}) = 2 z_{0} \int_{0}^{1} dv \, v^{2} e^{cz_{0}^{2}(1-v^{2})/2} \left(1 - v^{4} e^{cz_{0}^{2}(1-v^{2})}\right)^{-1/2}$$

$$V_{QCD}(z_{0}) = \frac{g}{\pi} \frac{1}{z_{0}} \left(-1 + \int_{0}^{1} dv \, v^{-2} \left[e^{cz_{0}^{2}v^{2}/2} \left(1 - v^{4} e^{cz_{0}^{2}(1-v^{2})}\right)^{-1/2} - 1\right]\right)$$

$$V(r) \xrightarrow[r \to 0]{} - \frac{g(2\pi)^{2}}{\Gamma(1/4)^{2}r}$$

$$V(r) \xrightarrow[r \to \infty]{} \frac{gec}{4\pi} r$$

Introduction Mesons and diquarks otential model Tetraquarks Results Pentaquarks

Fit parameters from meson spectra, at least one heavy quark

Mean error $\sim 0.63\%$

Parameters:

 $c = 0.300 \text{ GeV}^2 \qquad g = 2.750 \qquad V_0 = -0.488 \text{ GeV} \qquad k = 1.48$ $A_c = 7.920 \qquad A_b = 3.087 \qquad \sigma = 1.209 \text{ GeV}$ $m_q = 0.302 \text{ GeV} \qquad m_s = 0.454 \text{ GeV} \qquad m_c = 1.733 \text{ GeV} \qquad m_b = 5.139 \text{ GeV}$

Mesons and diquarks Tetraquarks Pentaquarks

Charm sector:

		J	= 0	J	= 1	
Flavor	Level	Th. mass	Exp. mass	Th. mass	Exp. mass	
$c\bar{q}$	1S	1.862	1.867^{*}	2.027	2.009*	
	2S	2.486	2.549	2.597	2.627	$ \leftarrow L$
	3S	2.923		2.987		$ \leftarrow L$
$c\bar{s}$	1S	1.973	1.968^{*}	2.111	2.112*	
	2S	2.585	2.591	2.675	2.714	$ \leftarrow L$
	3S	3.018		3.069		$ \leftarrow L$
$c\bar{c}$	1S	2.990	2.984*	3.125	3.097*	
	2S	3.600	3.637*	3.659	3.686*	
	3S	4.006		4.054		$\psi($
	4S	4.291		4.308		ψ
	5S	4.659		4.735		$\int \psi$

 $\leftarrow D_0(2550) \text{ and } D_1^*(2600) \text{ ok} \\ \leftarrow D_1^*(2760) \text{ lighter}$

$$\leftarrow D_{s0}(2590)$$
 and $D^*_{s1}(2700)$ ok
 $\leftarrow D^*_{s1}(2860)$ lighter

 $\psi(3770), \psi(4040), \psi(4160), \psi(4230), \psi(4360), \psi(4415), \psi(4660)$

Mesons and diquarks Tetraquarks Pentaquarks

Bottom sector:

		J :	= 0	J :	= 1
Flavor	Level	Th. mass	Exp. mass	Th. mass	Exp. mass
$b\bar{q}$	1S	5.198	5.279*	5.288	5.325*
	2S	5.762		5.822	
	3S	6.183		6.224	
$s\bar{b}$	1S	5.301	5.367^{*}	5.364	5.415*
	2S	5.860		5.899	
	3S	6.272		6.301	
$b\bar{c}$	1S	6.310	6.274*	6.338	
	2S	6.872	6.871	6.882	
	3S	7.225		7.232	
$b\overline{b}$	1S	9.387	9.399	9.405	9.460*
	2S	10.037	9.999	10.041	10.023^{*}
	3S	10.370		10.373	10.355^{*}
	4S	10.620		10.621	10.579^{*}
	5S	10.898		10.901	
	6S	11.029		11.029	

 $\Upsilon(10753)?^{?}(1^{--})$ $\Upsilon(10860), \Upsilon(11020)$

 $b\bar{q}/\bar{s}$ states with unknown SP: $B_J(5840) 1/2(?^{?})$, $B_J(5970) 1/2(?^{?})$, $B_{sJ}^*(5850) ?(?^{?})$, $B_{sJ}(6063) 0(?^{?})$, $B_{sJ}(6114) 0(?^{?})$

Introduction Mesons and diquarks Potential model Tetraquarks Results Pentaquarks

Diquarks in $\bar{3}_c$

$$\left(\sqrt{m_1^2 - \nabla^2} + \sqrt{m_2^2 - \nabla^2} + V(r)\right)\psi(\mathbf{r}) = M\,\psi(\mathbf{r})$$

• factor 1/2 in the potential (one-gluon exchange approximation)

Diquark masses (GeV):

[cq]	$\{cq\}$	[bq]	$\{bq\}$	[cs]	$\{cs\}$	[bs]	$\{bs\}$	$\{cc\}$	[cb]	$\{cb\}$	$\{bb\}$
2.118	2.168	5.513	5.526	2.237	2.276	5.619	5.630	3.414	6.735	6.741	10.018

 $[qq'] = \operatorname{diquark}$ with S = 0

 $\{qq'\} = diquark with S = 1$

Introduction Mesons and diquarks Potential model Tetraquarks Results Pentaquarks

Tetraquarks: diquark + antidiquark

$$\left(\sqrt{m_1^2-
abla^2}+\sqrt{m_2^2-
abla^2}+V(r)
ight)\psi({f r})\,=\,M\,\psi({f r})$$

smeared potential (interaction between extended objects)

$$ilde{V}(R) = rac{1}{N} \int d{f r_1} \int d{f r_2} |\psi_d({f r_1})|^2 |\psi_d({f r_2})|^2 V\Big(\Big|{f R} + {f r_1} - {f r_2}\Big|\Big)$$

Introduction Mesons and otential model Tetraquarks Results Pentaquarks

 $Qq\bar{Q}\bar{q}$ tetraquarks

			Q = c		Q :	= b
J^{PC}	Flavor content	1S	2S	3S	1S	2S
0^{++}	$[Qq][ar{Q}ar{q}]$	3.857	4.377	4.745	10.260	10.807
1^{++}	$([Qq]\{\bar{Q}\bar{q}\}+[\bar{Q}\bar{q}]\{Qq\})/\sqrt{2}$	3.899	4.421	4.788	10.284	10.821
1^{+-}	$([Qq]\{ar{Q}ar{q}\} - [ar{Q}ar{q}]\{Qq\})/\sqrt{2}$	3.899	4.421	4.788	10.284	10.821
0^{++}	$\{Qq\}\{ar{Q}ar{q}\}$	3.729	4.389	4.773	10.264	10.828
1^{+-}	$\{Qq\}\{ar{Q}ar{q}\}$	3.833	4.418	4.796	10.275	10.831
2^{++}	$\{Qq\}\{ar{Q}ar{q}\}$	3.988	4.485	4.846	10.296	10.837

Experimental candidates:

- ▶ $\chi_{c1}(3872)$ (1⁺⁺): masses and decay properties challenge quark models for mesons
- ► $Z_c(3900)^{\pm}$ (1⁺⁻), $X(4020)^{\pm}$ (?^{?-}), X(4055) 1⁺(?^{?-}), $Z_c(4200)^{\pm}$ (1⁺⁻), $Z_c(4433)^{\pm}$ (1⁺⁻): incompatible with a $Q\bar{Q}$ structure
- ▶ $Z_b(10610)^{\pm}$ (1⁺⁻), $Z_b(10650)^{\pm}$ (1⁺⁻): incompatible with a $Q\bar{Q}$ structure

Introduction Mesons and diquark Potential model Tetraquarks Results Pentaquarks

Masses of $Z_c(4200)^{\pm}$, $Z_b(10610)^{\pm}$ and $Z_b(10650)^{\pm}$ not found in table.

Try comparison with states in which one diquark is excited

J^{PC}	Mass ($Q = c$)	$Mass\;(Q=b)$
1+-	4.19-4.23	10.57

The two 1^{+-} states in bottom sector almost degenerate.

troduction Mesons and itial model Tetraquarks Results Pentaquarks

 $Qs ar{Q} ar{q}$ tetraquarks

		Q :	Q = c		= b
J^P	Flavor content	1S	2S	1S	2S
0^{+}	$[Qs][ar{Q}ar{q}]$	3.961	4.483	10.283	10.868
1^+	$[Qs]\{ar{Q}ar{q}\}$	4.008	4.528	10.321	10.906
1^{+}	$\{Qs\}[ar{Q}ar{q}]$	3.999	4.519	10.311	10.896
0^+	$\{Qs\}\{ar{Q}ar{q}\}$	3.840	4.491	10.280	10.918
1^+	$\{Qs\}\{ar{Q}ar{q}\}$	3.952	4.527	10.312	10.925
2^+	$\{Qs\}\{ar{Q}ar{q}\}$	4.113	4.599	10.384	10.944

Experimental observations:

•
$$Z_{cs}(4000)(1^+)$$
, with mass $3980 - 4010$ MeV

•
$$Z_{cs}(4220)^+(1^+)$$
 with mass 4216^{+50}_{-40} MeV

Introduction Mesons and diquarks Potential model Tetraquarks Results Pentaquarks

Tetraquarks with open charm and strangeness $(c\bar{s})$

J^P	Flavor content	Mass (GeV)
0^+	$[cq][ar{q}ar{s}]$	2.840
0^+	$\{cq\}\{ar{q}ar{s}\}$	2.503
1^+	$\{cq\}[ar{q}ar{s}]$	2.880
1^+	$\{cq\}\{ar{q}ar{s}\}$	2.748
1^+	$[cq]\{ar{q}ar{s}\}$	2.841
2^+	$\{cq\}\{ar{q}ar{s}\}$	2.983

- \blacktriangleright $D_{s0}^{*}(2317)$ (0⁺), $D_{s1}(2460)$ (1⁺) lighter
- $X_0(2900)$ different quark content (cs), not in this model

ntroduction Mesons and diqua ntial model Tetraquarks Results Pentaquarks

 $QQ\bar{Q}\bar{Q}$ tetraquarks = $\{QQ\} + \{\bar{Q}\bar{Q}\}$

		Q = c		Q = b			
J^{PC}	1S	2S	3S	1S	2S	3S	
0++	6.158	6.761	7.105	18.798	19.573	19.893	
1^{+-}	6.189	6.766	7.108	18.804	19.574	19.894	
2^{++}	6.314	6.811	7.138	18.817	19.577	19.895	

Experimental candidates in charm sector:

 \blacktriangleright observed narrow structure X(6900) could be a 2S state, even though masses in table are lower

Introduction Mesons and diquarks Potential model Tetraquarks Results Pentaquarks

Pentaquark configurations: three ways of combining five objects two by two, each is a 3_c or $\overline{3}_c$

Introduction Mesons and otential model Tetraquarks Results Pentaquarks

Masses (GeV) in model ${\cal A}$ for $QQ'qq\bar{q}$

Content	J^P	Q,Q'	= c	Q, Q' = b		Q = b, Q' = c	
		q' = u, d	q' = s	q' = u, d	q' = s	q' = u, d	q' = s
$ar{q}[Qq][Q'q']$	$1/2^{-}$	4.54	4.66	11.15	11.25	7.85	7.96
$\bar{q}\{Qq\}[Q'q']$	$1/2^{-}$	4.57	4.68	11.16	11.26	7.86	7.97
$\bar{q}[Qq]\{Q'q'\}$	$1/2^{-}$	4.57	4.66	11.16	11.25	7.92	8.01
$\bar{q}(\{Qq\}\{Q'q'\})_1$	$1/2^{-}$	4.64	4.73	11.19	11.28	7.94	8.04
$\bar{q}(\{Qq\}\{Q'q'\})_0$	$1/2^{-}$	4.69	4.78	11.20	11.29	7.96	8.05
$\bar{q}(\{Qq\}\{Q'q'\})_2$	$3/2^{-}$	4.62	4.72	11.18	11.27	7.94	8.03
$\bar{q}\{Qq\}[Q'q']$	$3/2^{-}$	4.65	4.77	11.18	11.28	7.89	8.00
$\bar{q}[Qq]\{Q'q'\}$	$3/2^{-}$	4.65	4.75	11.18	11.28	7.95	8.04
$\bar{q}(\{Qq\}\{Q'q'\})_1$	$3/2^{-}$	4.72	4.82	11.21	11.30	7.97	8.06
$ar{q}\{Qq\}\{Q'q'\}$	$5/2^{-}$	4.75	4.85	11.22	11.31	7.98	8.07

Introduction Mesons and or otential model Tetraquarks Results Pentaquarks

Masses (GeV) in model ${\cal B}$ for QQqqar q

Content	J^P	Mass (GeV)	Content	J^P	Mass (GeV)
$[[[[cq]ar{q}]q]c]$	$1/2^{-}$	4.57	$[[[[bq]ar{q}]q]b]$	$1/2^{-}$	11.18
$[[[\{cq\}ar{q}]q]c]$	$1/2^{-}$	4.60	$[[[\{bq\}ar{q}]q]b]$	$1/2^{-}$	11.19
$[\{[[cq]\bar{q}]q\}c]$	$1/2^{-}$	4.61	$[\{[[bq]\bar{q}]q\}b]$	$1/2^{-}$	11.19
$[[\{\{cq\}\bar{q}\}q]c]$	$1/2^{-}$	4.63	$[[\{\{bq\}\bar{q}\}q]b]$	$1/2^{-}$	11.20
$[\{[\{cq\}\bar{q}]q\}c]$	$1/2^{-}$	4.64	$[\{[\{bq\}\bar{q}]q\}b]$	$1/2^{-}$	11.20
$\{\{[[cq]\bar{q}]q\}c\}$	$3/2^{-}$	4.63	$\{\{[[bq]\bar{q}]q\}b\}$	$3/2^{-}$	11.19
$\{\{[\{cq\}\bar{q}]q\}c\}$	$3/2^{-}$	4.66	$\{\{[\{bq\}\bar{q}]q\}b\}$	$3/2^{-}$	11.20
$\{[\{\{cq\}\bar{q}\}q]c\}$	$3/2^{-}$	4.66	$\{[\{\{bq\}\bar{q}\}q]b\}$	$3/2^{-}$	11.20
$[\{\{\{cq\}\bar{q}\}q\}c]$	$3/2^{-}$	4.72	$[\{\{bq\}\bar{q}\}q\}b]$	$3/2^{-}$	11.22
$\{\{\{cq\}\bar{q}\}q\}c\}$	$5/2^{-}$	4.74	$\{\{\{bq\}\bar{q}\}q\}b\}$	$5/2^{-}$	11.23

Results

Pentaquarks

Results in model C for $QQqq\bar{q}$

Content	J^P	Mass (GeV)	Content	J^P	Mass (GeV)
$[cq][[cq]\bar{q}]$	$1/2^{-}$	4.59	$[bq][[bq]ar{q}]$	$1/2^{-}$	11.20
$[cq][\{cq\}ar{q}]$	$1/2^{-}$	4.62	$[bq][\{bq\}ar{q}]$	$1/2^{-}$	11.21
$\{cq\}[[cq]\bar{q}]$	$1/2^{-}$	4.68	$\{bq\}[[bq]ar{q}]$	$1/2^{-}$	11.23
$\{cq\}[\{cq\}\bar{q}]$	$1/2^{-}$	4.71	$\{bq\}[\{bq\}ar{q}]$	$1/2^{-}$	11.25
$\{cq\}\{\{cq\}\bar{q}\}$	$1/2^{-}$	4.77	$\{bq\}\{\{bq\}\bar{q}\}$	$1/2^{-}$	11.26
$\{cq\}[[cq]\bar{q}]$	$3/2^{-}$	4.69	$\{bq\}[[bq]ar{q}]$	$3/2^{-}$	11.23
$[cq]\{\{cq\}\bar{q}\}$	$3/2^{-}$	4.70	$[bq]\{\{bq\}ar{q}\}$	$3/2^{-}$	11.23
$\{cq\}[\{cq\}\bar{q}]$	$3/2^{-}$	4.72	$\{bq\}[\{bq\}ar{q}]$	$3/2^{-}$	11.25
$\{cq\}\{\{cq\}\bar{q}\}$	$3/2^{-}$	4.78	$\{bq\}\{\{bq\}\bar{q}\}$	$3/2^{-}$	11.26
$\{cq\}\{\{cq\}\bar{q}\}$	$5/2^{-}$	4.80	$\{bq\}\{\{bq\}\bar{q}\}$	$5/2^{-}$	11.27

Introduction Mesons and tential model Tetraquarks Results Pentaquarks

Results in model ${\cal B}$ for $Qqqq\bar{Q}$

Content	J^P	Mass (GeV)	Content	J^P	Mass (GeV)
$[[[[cq]ar{c}]q]q]$	$1/2^{-}$	4.57	$[[[bq]ar{b}]q]q]$	$1/2^{-}$	11.19
$[\{[[cq]\bar{c}]q\}q]$	$1/2^{-}$	4.57	$[\{[[bq]\bar{b}]q\}q]$	$1/2^{-}$	11.19
$[[\{\{cq\}\bar{c}\}q]q]$	$1/2^{-}$	4.58	$[[\{\{bq\}\bar{b}\}q]q]$	$1/2^{-}$	11.21
$[\{[\{cq\}\bar{c}]q\}q]$	$1/2^{-}$	4.64	$[\{[\{bq\}\bar{b}]q\}q]$	$1/2^{-}$	11.22
$[[[\{cq\}ar{c}]q]q]$	$1/2^{-}$	4.65	$[[[\{bq\}ar{b}]q]q]$	$1/2^{-}$	11.22
$\{\{[[cq]\bar{c}]q\}q\}$	$3/2^{-}$	4.64	$\{\{[[bq]\bar{b}]q\}q\}$	$3/2^{-}$	11.20
$[\{\{\{cq\}\bar{c}\}q\}q]$	$3/2^{-}$	4.66	$[\{\{\{bq\}\bar{b}\}q\}q]$	$3/2^{-}$	11.22
$\{[\{\{cq\}\bar{c}\}q]q\}$	$3/2^{-}$	4.67	$\{[\{\{bq\}\bar{b}\}q]q\}$	$3/2^{-}$	11.22
$\{\{[\{cq\}\bar{c}]q\}q\}$	$3/2^{-}$	4.71	$\{\{[\{bq\}ar{b}]q\}q\}$	$3/2^{-}$	11.23
$\{\{\{cq\}\bar{c}\}q\}q\}$	$5/2^{-}$	4.76	$\{\{\{bq\}\bar{b}\}q\}q\}$	$5/2^{-}$	11.24

Results	Pentaquarks

Comparison among models for pentaquarks with $QQqq\bar{q}$

overall agreement, small differences

▶ the masses in model \mathcal{B} are slightly higher than in model \mathcal{A} (mean difference $\sim 0.08\%$ for Q = c), and those in model \mathcal{C} are slightly higher than in model \mathcal{B} (mean difference $\sim 1.4\%$ for Q = c)

Introduction Mesons and diquarks Potential model Tetraquarks Results Pentaquarks

Comparison with the resonances observed by LHCb

State	Mass [MeV]
$P_c(4312)^+ \ P_c(4440)^+ \ P_c(4457)^+$	$\begin{array}{c} 4311.9 \pm 0.7 \substack{+6.8 \\ -0.6} \\ 4440.3 \pm 1.3 \substack{+4.1 \\ -4.7} \\ 4457.3 \pm 0.6 \substack{+4.1 \\ -1.7} \end{array}$

In this model:

states with spin 1/2 have masses in the range 4.57-4.65 GeV

_

_

- states with spin 3/2 have masses in the range 4.64-4.71 GeV
- state with spin 5/2 has mass 4.76 GeV

Hypothesis: constituent quark masses in potential models can get different values in baryon and meson spectroscopy [Maiani *et al.*, PRD 71, 014028 (2005)]

A possible implementation: different V_0 for baryons and pentaquarks.

Assuming the mass of the lightest spin-1/2 pentaquark with hidden charm is 4312 MeV, we find

- ▶ $V_0 = -0.594$ GeV (value from meson spectra was $V_0 = -0.488$ GeV)
- mass of the heaviest spin-1/2 pentaquark is 4.39 GeV
- ▶ mass of the heaviest spin-3/2 pentaquark is 4.45 GeV

getting a better agreement with experimental observations.

Spin splittings are not modified by a change in V_0 , while a different value of quark masses could, in principle, also affect the spin-spin interaction, so a proper investigation of this aspect would deserve a dedicated study based on baryon spectroscopy.

Conclusions

- AdS/QCD for $Q\bar{Q}$ potential in a potential model
- Adapt the two-body problem to states different from a meson, considering tetraquarks and pentaquarks as emerging from two and three subsequent interactions
 - Comparison of tetraquark spectra with some experimental data
 - Pentaquark masses are higher than those measured by LHCb, with a better agreement for $P_c(4440)^+$ and $P_c(4457)^+$
- Ongoing and future analyses:
 - **\triangleright** study of baryon and pentaquark spectroscopy to establish if different parameters (V_0 or constituent quark masses) are needed
 - add $\ell \neq 0$
 - try multi-quark potential describing baryons, tetraquarks, pentaquarks with two heavy quarks in BO approximation recently developed in AdS/QCD