Prospects for Exotic Mesons at the EIC

Hadron 2023, Genoa

Derek Glazier University of Glasgow 06/06/2023

Charmonium Exotics

The Electron Ion Collider and ePIC

EIC - Electron Ion Collider

Polarized electron and polarized ion collider 5-18 GeV Electrons 41-275 GeV Proton (+other ions) Substituting ring of RHIC (BNL) with an electron beamline.

ePIC - electron-Proton/Ion Collider Experiment

Primary detector design for IP6 (currently STAR)

Construction timeline 2025-2031/32

Spectroscopy at the EIC

Can use quasi-real photon production (e- scattering with $Q^2 \sim 0$)

- required electron detection very close to beam (< 10mrad)
- (relatively) high virtual photon flux
- transverse/longitudinal photon polarisation
- polarised target proton
- large acceptance detector

Physics benefits

- existence in photoproduction provides strong validation most states only seen in single production mechanisms
- minimises rescattering mechanisms due to broad W range
- in principle can produce any state/decay mode
- polarisation observables may provide additional insight

Challenges

- (Very) low cross section/branching ratios
- detection of electron along e- beam direction
- detection of nucleon along proton beam direction

Quasi-Real Photon Tagger

Quasi-real tagging (low Q²) (θ_e < 10 mrad)

Status

Geometry integrated into EPIC simulation Clustering, tracking and particle reconstruction Early stages of integrating into ElCrecon with ACTS

Detector Goals

Large acceptance (>10%) Good energy resolution ≲1% Reconstruction of scattering plane (polarization) Very high rate capability

Optimum solution

Two in-vacuum tagger modules 3 or 4 layers of pixel detectors Calorimeter not required (cf. current design)

Best technology

Timepix4

Ideal photon tagger

resolution than baseline calorimeter with improved heta and ϕ .

Real photon tagger

Quasi-real Photoproduction of XYZ

Factorise 2 photon vertices

(Joint Physics Analysis Center)

Phys. Rev. D 102, 114010 - Published 7 December 2020

https://github.com/dwinney/jpacPhoto

Event Generator (Formal)

$$\frac{d^4 \sigma}{ds dQ^2 d \phi dt} = \frac{d^2 \sigma_{e, \gamma * e'}}{ds dQ^2} \frac{d^2 \sigma_{\gamma * + p \to V + p}(s, Q^2)}{d \phi dt}$$

$$\frac{d^2 \sigma_{e,y*e'}}{ds dQ^2} = \frac{\alpha}{2\pi} \cdot \frac{K \cdot L}{E} \cdot \frac{1}{Q^2} \cdot \frac{1}{(s - M^2 + Q^2)}$$

$$\frac{d^2 \sigma_{\gamma^{*+p}}}{d \phi dt} = \frac{d \sigma^T(Q^2, s)}{d \phi dt} + (\epsilon + \delta) \frac{d \sigma^L(Q^2, s)}{d \phi dt}$$

$$\rightarrow$$
 Integrate for event rate

$$Q^{2} = 2E M x y$$

$$W^{2} = M^{2} + 2E M y - Q^{2}$$

$$L = \frac{1 + (1 - y)^{2}}{y} - \frac{2m_{e}^{2}y}{Q^{2}}$$

$$K = \frac{W^{2} - M^{2}}{2M} = v(1 - x) = Ey(1 - x) = v - \frac{Q^{2}}{2M}$$

$$\frac{d^2 \sigma^T(Q^2, s)}{d \phi dt} = \frac{d^2 \sigma_{\gamma + p \to V + p}}{d \phi dt} F(Q^2)$$

$$\frac{d^2 \sigma^L(Q^2, s)}{d \phi dt} = 0$$

 $\frac{d^2 \sigma_{y+p \rightarrow V+p}}{d \phi dt} = \frac{1}{128 \pi^2 s} \frac{1}{|\boldsymbol{p}_{y*cm}|^2} |M(s,t)|^2 \rightarrow |M(s,t)|^2 \text{ JPAC Photoproduction Amplitudes}$

Example, X and Y production

FIG. 7. Cross sections for Y(4260) photoproduction compared to the J/ψ and $\psi(2S)$ at low (left) and high (right) energies.

M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C. Fernández-Ramírez, V. Mathieu, and A. Szczepaniak (Joint Physics Analysis Center) Phys. Rev. D 102, 114010 – Published 7 December 2020

Production estimates for various Exotic candidates

https://www.sciencedirect.com/science/article/pii/S0146641023000133?via%3Dihub

TABLE II. Summary of results for production of some states of interest at the EIC electron and proton beam momentum $5 \times 100(GeV/c)$ (for electron x proton). Columns show : the meson name; our estimate of the total cross section; production rate per day, assuming a luminosity of 6.1×10^{33} cm⁻²s⁻¹; the decay branch to a particular measurable final state; its ratio; the rate per day of the meson decaying to the given final state.

Meson	Cross Section (nb)	Production rate (per day)	Decay Branch	Branch Ratio (%)	Events (per day)
$\chi_{c1}(3872)$	2.3	2.0 M	$J/\Psi \ \pi^+\pi^-$	5	6.1 k
Y(4260)	2.3	2.0 M	$J/\Psi \ \pi^+\pi^-$	1	1.2 k
$Z_{c}(3900)$	0.3	0.26 M	$J/\Psi \pi^+$	10	1.6 k
X(6900)	0.015	$0.013 \mathrm{\ M}$	$J/\Psi \; J/\Psi$	100	46
$Z_{cs}(4000)$	0.23	0.20 M	$J/\Psi K^+$	10	1.2 k
$Z_b(10610)$	0.04	$0.034 \mathrm{M}$	$\Upsilon(2S) \pi^+$	3.6	24

Production estimates for various Exotic candidates

TABLE II. Summary of results for production of some states of interest at the EIC electron and proton beam momentum $5 \times 100(GeV/c)$ (for electron x proton). Columns show : the meson name; our estimate of the total cross section; production rate per day, assuming a luminosity of 6.1×10^{33} cm⁻²s⁻¹; the decay branch to a particular measurable final state; its ratio; the rate per day of the meson decaying to the given final state.

Meson	Cross Section (nb)	Production rate (per day)	Decay Branch	Branch Ratio (%)	Events (per day)
$\chi_{c1}(3872)$	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	5	6.1 k
Y(4260)	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	1	1.2 k
$Z_c(3900)$	0.3	0.26 M	$J/\Psi \pi^+$	10	1.6 k
X(6900)	0.015	0.013 M	$J/\Psi J/\Psi$	100	46
$Z_{cs}(4000)$	0.23	0.20 M	$J/\Psi K^+$	10	1.2 k
$Z_b(10610)$	0.04	0.034 M	$\Upsilon(2S) \pi^+$	3.6	24

Production rate estimates only

Detection not included

Produce X,Y, ψ (2S) based on jpacPhoto & elSpectro

Produce events for 10 fb^{-1} (2-3 weeks)

Here focus on 5 Gev e- and 100 GeV proton beams

Approximately 300k events

Exclusive acceptance estimate around 10%

Simple Analysis results :

Just using track momentum Take PID from truth (100% efficient) Calculate Energy from momentum

ECCE Spectroscopy Simulations

X(3872) at COMPASS

Suggest a 1+- state instead of 1++ ...

J/ψ decay e+ acceptances at 1.5T

Other Useful Kinematics

Low Quasi-real Tagger can also provide :

Polarisation

Polarisation

Meson Decay angles

Z_c(3900) quasi-real photoproduction

FIG. 2. Integrated cross sections for the three Z states considered. Left panel: predictions for fixed-spin exchange, which we expect to be valid up to approximately 10 GeV above each threshold. Right panel: predictions for Regge exchange, valid at high energies. **JPAC model for Z**

----- Interpolation from low to high

COMPASS upper limit PLB 742,300 2015

Suggest estimates could be high by order of magnitude at W ~ 10 GeV

Semi Inclusive Meson Production

XYZ spectroscopy at electron-hadron facilities. II. Semi-inclusive processes with pion exchange

D. Winney, A. Pilloni, V. Mathieu, A. N. Hiller Blin, M. Albaladejo, W. A. Smith, and A. Szczepaniak (Joint Physics Analysis Center)

Phys. Rev. D 106, 094009 – Published 7 November 2022

$$E_{\mathcal{Q}}\frac{d^3\sigma}{d^3q_f} = \frac{K}{16\pi^3} |T_{\pi}(t)\mathcal{P}_{\pi}|^2 \sigma_{\text{tot}}^{\pi^*N},$$

Bottom vertex => SAID pion scattering

Detected events for Z⁺X⁰ @ 5x100

Ignore X° detection

Detected events for Z⁻X⁺⁺ @ 5x100

Overall > factor 3 more events with inclusive channels

Charmonium(like) spectroscopy with Energy upgraded CLAS12 Opportunities with Jlab Energy and Luminosity Upgrade 26th September 2022

https://indico.ectstar.eu/event/152/contributions/3134/attachments/2004/2614/ECTstarCLAS24.pdf

See also Prospects for XYZ Spectroscopy at GlueX, Sean Dobbs https://indico.ectstar.eu/event/152/contributions/3136/attachments/2006/2617/Trento_JLabUpgrade22.pdf

Science at the luminosity frontier : Jefferson Lab at 22 GeV https://www.jlab.org/conference/luminosity22gev

https://indico.jlab.org/event/677/contributions/11996/attachments/8793/12692/XYZMitchell.pdf , R. Mitchell
https://indico.jlab.org/event/677/contributions/11997/attachments/8794/12693/XYZ_jlab.pptx , A. Pilloni

White paper (to be published)

"Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab"

P. Rossi "New Opportunites with Jefferson Lab at 22 Gev" Thursday 10am

Full CLAS12 simulation at 22GeV

Use full CLAS12 gemc simulation and reconstruction

Assume scattered e- detected in "Zero degree spectrometer"

Do not detect the recoil neutron -reconstruct from other particles

masses

 J/Ψ Near-Threshold Photoproduction off the Proton and Neutron with CLAS12

R. Tyson, 1630 Thursday

Exploring the gravitational structure of the proton with the dilepton final state ...

P. Chatagnon, 0930 Friday

Acceptances @ 22GeV

Z decay and amplitudes

$$\mathcal{I}(\Omega, \Phi) = \mathcal{I}^{0}(\Omega) - \mathcal{P}.\mathcal{I}^{1}(\Omega)\cos 2\Phi - \mathcal{P}.\mathcal{I}^{2}(\Omega)\sin 2\Phi.$$
$$\mathcal{I}^{\alpha}(\Omega, \Phi) = \sum_{r,r'} \sum_{m,m'} \sum_{\lambda,\lambda'} \sqrt{\frac{2l+1}{4\pi}} \sqrt{\frac{2s+1}{4\pi}} \sqrt{\frac{2l'+1}{4\pi}} \sqrt{\frac{2s'+1}{4\pi}} \times (l, 0; s, \lambda|j, \lambda)(l', 0; s', \lambda'|j', \lambda') \times D^{j}_{m,\lambda}(\phi_{GJ}, \theta_{GJ}, 0) D^{s}_{\lambda,0}(\phi_{HF}, \theta_{HF}, 0) R_{Yi}(m_{Y}) \times D^{j'*}_{m',\lambda'}(\phi_{GJ}, \theta_{GJ}, 0) D^{s'*}_{\lambda',0}(\phi_{HF}, \theta_{HF}, 0) R^{*}_{Yi'}(m_{Y}) \times \rho^{\alpha}_{rr',mm'}.$$

$$\begin{split} \rho^{0}_{rr',mm'} &= \sum_{k} T^{k,\eta}_{r,m} T^{k,\eta'}_{r',m'} + T^{k,\eta'}_{r,m} T^{k,\eta'}_{r',m'}, \\ \rho^{1}_{rr',mm'} &= \sum_{k} T^{k,\eta'}_{r,m} T^{k,\eta}_{r',m'} + T^{k,\eta}_{r,m} T^{k,\eta'}_{r',m'}, \\ \rho^{2}_{rr',mm'} &= i \sum_{k} -T^{k,\eta'}_{r,m} T^{k,\eta}_{r',m'} + T^{k,\eta}_{r,m} T^{k,\eta'}_{r',m'}, \\ \mathbf{r} &= \{\mathbf{j},\mathbf{l},\mathbf{s}\} = \{\mathbf{j=1,l=(0,2),s=1}\} \\ \mathbf{And} \ \mathbf{m} &= -\mathbf{1,0,1} \ \mathbf{for} \ \mathbf{Z} \rightarrow \mathbf{J/\Psi} + \pi \\ \mathbf{k} &= \mathbf{spin} \ \mathbf{of} \ \mathbf{proton} \\ \mathbf{\eta} &= \mathbf{photon} \ \mathbf{helicity} \end{split}$$

Could determine production amplitudes for partial waves in terms of J,L,S,M,P of resonance, photon helicity

Can this give any information on structure/nature ?

e.g
$$T_s/T_D \rightarrow 0$$
 "if molecular", large "if tetraquark"
 $|T^{\eta=+1}_{m=1} - T^{\eta=-1}_{m=-1}| \rightarrow 0$ "if tetraquark"

Extracting spin information simulation @EIC

Conclusions

The EIC could provide a new tool for investigating exotic states

Low (and uncertain) cross sections and small branching ratios are main issue. Detector designs ongoing

Production rates at nominal luminosities could be up to O(1000)/day

We could expect to reconstruct around 10% fully exclusive events (most events lost in far forward/backward regions)

Inclusive channels can significantly enhance the yields

Given sufficient statistics polarised SDMEs should be measurable

Many possible mesons and final states to simulate...

Further work on best Physics observables needed.

Detector effects on Invariant Masses

Photoproduction of exotic mesons

1) Identify photoproduction of the narrow XYZ states. Typically these have only been seen in 1 production mechanism and photoproduction offers a clean mechanism whereby any resonance should be able to be photoproduced and therefore we would validate if these are real poles.

2) As photoproduction can produce any state we may see states that haven't been produced in other mechanisms. For example no "exotic" tensor mesons have been identified yet.

3) Photoproduction offers a means to determine quantum numbers of produces states, in particular we may search for broader overlapping states. Polarised beams give us a greater handle on this.

4) The nature of the observed states is a matter of great discussion. How these states behave in different production mechanism can help us understand the underlying dynamics (tetraquark, molecules, hybrids). Things like photocouplings or even Q2 dependences can be helpful here.

5) We can look for many varieties of decay products $J/\psi + \pi$ or K or vector or ... which are not well established at other experiments.

Useful Exclusivity variables

i.e. If measure everything

 ΔP_{+} difference : Here we take proton in Far Forward

= P₊ {calculated proton - measured proton}

 $\Delta \Phi$, Production Plane difference : $\Phi_{\text{meson}} - \Phi_{\text{proton}}$

Centre of Momentum frame Δ Breakup Momentum, $\mathtt{P}_{_{\mathrm{break}}}$:

 $P_{break}(E_{\gamma}, M_{p}, M_{meson}) - P_{break}(E_{\gamma}, meson)$ second term boosts meson into CM

 $\gamma = (e^{-} beam) - (e^{\prime -} scattered)$ Here we take e-' in QuasiReal Tagger

* Can also P_{π} of nucleon, giving 1 further condition

True Electron, True Proton, Realistic Meson

Missing Pion Background

Top 2% electron resolution Bottom 10% electron resolution

Fully Exclusive Missing Pion

Some discrimination between Exclusive Signal and background

Exclusive Photoproduction (Quasi-real)

Observation of XYZ states in photoproduction

- independent confirmation

Different production mechanism, different kinematics

Measurement of polarisation observables and photocouplings

- insights into production mechanisms and internal structure

XYZ spectroscopy at electron-hadron facilities: Exclusive processes

M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C. Fernández-Ramírez, V. Mathieu, and A. Szczepaniak (Joint Physics Analysis Center) Phys. Rev. D **102**, 114010 – Published 7 December 2020 See D.Winney Exotic Spectroscopy at the EIC

- qualitative behaviour and order of magnitude estimates

Invariant masses with ECCE

Acceptances for full final state much lower at 3T Solenoid - low energy pions

X & Y & $\psi(2S)$

X better at low proton Energy, Y, ψ better at high proton Energy

π + acceptances at 1.5T

π + acceptances at 3T

Far Forward Roman Pot Acceptance

Far Forward B0 Acceptance

Proton Detection B0 and RP

Roman Pot position and momentum

Correlation between position and $\mathbf{P}_{_{\mathrm{t},}}$ but dependent on $\boldsymbol{\Phi}_{_{\mathrm{RP}}}$

Proton Φ_{true} correlated with Φ_{RP} =>Assume it can be reconstructed

For these studies, if proton detected in RP 6% P_t resolution, B0 3% P_+ resolution

Assume (unrealistic) perfect Φ reconstruction

No Electron, True Proton, Realistic Meson

True Electron, "Realistic" Proton

+ Electron 2% energy resolution

+ Electron 5% energy resolution

+ Electron 10% energy resolution

Electron Detection

Pixel tracker

Pixel dimension	=	$55 \times 55 \ \mu m$
Detector area (512 \times 448 pixels)	=	7 cm ²
Detectors in layer (4×3)	=	12
Layer area (12 \times 7 cm ²)	=	84 cm ²
Pixels in layer (12 * 512 $ imes$ 448 pixels)	=	2.75M
Average rate per pixel (4 GHz / 2.75 M pixels)	=	1.5 kHz

Total bit rate per detector (256 Gb/s / 12) = 22 Gb/s

	Hit Rate (Mean)	Hit Rate (Max)	Bit Rate (Mean)	Bit Rate (Max)
Pixel	1.5 kHz	6.0 kHz	96 kb/s	384 kb/s
Detector	344 MHz	1.4 GHz	22 Gb/s	88 Gb/s
Layer	4.0 GHz	_	256 Gb/s	_

	Requirement	Timepix4	AC-LGAD	MAPS
Readout		SPIDR4	EICROC	Direct ?
Pixel Size (µm)	50 × 50	55×55	500 × 500	20×20
Sensor thickness (μ m)		100	50	20
Detector size (pixels)		512×448	64×64	Various
Detector area (cm ²)		6.94	10.24	Various
Layer Area (cm ²)	100	83 (3x4 Timepix4)	92 (3x3)	Various
Power consumption (W/cm ²)	As low as possible	1.0	0.4	0.15
Timing resolution (ns)	< 12	0.2	0.03	9
Minimum threshold (fC)		1.2	2.0	0.48
Individual pixel thresholds		Yes	Yes	No
Pixel hits in MIPS cluster		3	30	5 ?
Rate (various units)				
Hits/pixel/s (max)	6×10^3	$10.7 imes 10^3$	N/A	
Hits/detector/s (max)	$1.4 imes 10^9$	$2.5 imes 10^9$	í í	
Bits/detector/s (max)	$88 imes 10^9$	$160 imes 10^9$		
Bits/layer/s (integrated)	256×10^9	$>240 imes10^9$		
, , , , , , , , , , , , , , , , , , , ,				
		1		