Tetraquark Tcc(3875): interpretación teórica. Funciones de correlación. Molécula o tetraquark compacto?

Tetraquark Tcc(3875): How to find out its origin and properties

E. Oset, IFIC CSIC, Universidad de Valencia

Experimental information and theoretical interpretation
General method to find out the nature of a state. Application to the $\operatorname{Tcc}(3875)$
Correlation functions applied to the Tcc
Inverse problem of finding the properties of the Tcc from the correlation functions

The Tcc discovery by the LHCb collaboration

Nature Phys. 18 (2022) 7, 751

Spectra without correction by experimental resolution

$$
m_{\exp }=3875.09 \mathrm{MeV}+\delta m_{\exp }
$$

Nature Commun. 13 (2022) 1, 3351

Spectra corrected by resolution and analyzed with a unitary amplitude

$$
\delta m_{\exp }=-360 \pm 40_{-0}^{+4} \mathrm{keV}
$$

$$
\Gamma=48 \pm 2_{-14}^{+0} \mathrm{keV}
$$

Effective theories for the interaction of hadrons.
Weinberg had the wisdom to propose an effective theory to describe the interaction at low energies between hadrons, eliminating the quarks and considering only the hadrons as elementary fields: Chiral Lagrangians

$$
\mathcal{L}_{2}=\frac{1}{12 f^{2}}\left\langle\left(\partial_{\mu} \Phi \Phi-\Phi \partial_{\mu} \Phi\right)^{2}+M \Phi^{4}\right\rangle
$$

Meson-Meson

$$
\begin{aligned}
& \Phi \equiv \frac{\lambda}{\sqrt{2}} \phi=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\
K^{-} & & \bar{K}^{0}
\end{array}\right. \\
& M=\left(\begin{array}{ccc}
m_{\pi}^{2} & 0 & 0 \\
0 & m_{\pi}^{2} & 0 \\
0 & 0 & 2 m_{K}^{2}-m_{\pi}^{2}
\end{array}\right),
\end{aligned}
$$

With these Lagrangians one can do perturbation theory \rightarrow chiral perturbation theory
However, one can use the amplitudes obtained and consider them as the potential to be used I in the Shroedinger equations (Lippmann Schwinger equation, Bethe Salpeter equation) \rightarrow Chiral unitary theory

$$
\begin{gathered}
H \Psi=\left(H_{0}+V\right) \Psi=E \Psi \Rightarrow\left(E-H_{0}\right) \Psi=V \Psi \\
\Psi=\Phi+\frac{1}{E-H_{0}} V \Psi \Rightarrow \Psi=\Phi+\frac{1}{E-H_{0}} T \Phi \\
T \dot{\Phi} \equiv V \Psi . \\
\mathrm{T}=\mathrm{V}+\mathrm{VGT}
\end{gathered} \quad T=V+V \frac{1}{E-H} V . \quad . \quad . \quad . \quad . \quad . \quad .
$$

$$
\begin{aligned}
& \mathcal{L}_{V V V}=i g\left\langle\left(V_{\mu} \partial_{\nu} V^{\mu}-\partial_{\nu} V_{\mu} V^{\mu}\right) V^{\nu}\right\rangle \\
& g=M_{V} / 2 f\left(M_{V} \approx 800 \mathrm{MeV}, f=93 \mathrm{MeV}\right) \\
& \mathcal{L}_{V P P}=-i g\left\langle V^{\mu}\left[P, \partial_{\mu} P\right]\right\rangle \\
& -i t=-g\left(V^{\mu} \partial_{\nu} V_{\mu}-\partial_{\nu} V_{\mu} V^{\mu}\right)_{i j} V_{j i}^{\nu} \frac{i}{q^{2}-M_{V}^{2}} V_{l m}^{\nu \prime}\left[P, \partial_{\nu} P\right]_{m l} \\
& \sum_{p o l} \epsilon_{j i}^{\nu} \epsilon_{l m}^{\nu^{\prime}}=\left(-g^{\nu \nu^{\prime}}+\frac{q^{\nu} q^{\nu^{\prime}}}{M_{V}^{2}}\right) \delta_{j l} \delta_{i m} \\
& -i t=-i \frac{g^{2}}{M_{V}^{2}}\left\langle\left(V^{\mu} \partial_{\nu} V_{\mu}-\partial_{\nu} V_{\mu} V^{\mu}\right)\left[P, \partial^{\nu} P\right]\right\rangle
\end{aligned}
$$

$\mathcal{L}=-\frac{1}{4 f^{2}}\left\langle\left[V^{\mu}, \partial_{\nu} V^{\mu}\right]\left[P, \partial^{\nu} P\right]\right\rangle \quad$ Chiral Lagrangian of M. C. Birse, Z. Phys. A 355, 231 (1996)
A. Feijoo, W.H. Liang, Eulogio Oset, Phys.Rev.D 104 (2021) 11, 114015

(b)

(c)

$$
\begin{aligned}
\mathcal{L}_{V P P} & =-i g\left\langle\left[P, \partial_{\mu} P\right] V^{\mu}\right\rangle \\
\mathcal{L}_{V V V} & =i g\left\langle\left(V^{\nu} \partial_{\mu} V_{\nu}-\partial_{\mu} V^{\nu} V_{\nu}\right) V^{\mu}\right\rangle \\
g & =\frac{M_{V}}{2 f}, \quad\left(M_{V}=800 \mathrm{MeV}, f=93 \mathrm{MeV}\right)
\end{aligned}
$$

$$
P=\left(\begin{array}{cccccccc}
\frac{\eta}{\sqrt{3}}+\frac{\eta^{\prime}}{\sqrt{6}}+\frac{\pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} & \bar{D}^{0} \\
\pi^{-} & \frac{\eta}{\sqrt{3}}+\frac{\eta^{\prime}}{\sqrt{6}}-\frac{\pi^{0}}{\sqrt{2}} & K^{0} & D^{-} \\
K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}}+\sqrt{\frac{2}{3} \eta^{\prime}} & D_{s}^{-} \\
D^{0} & D^{+} & D_{s}^{+} & \eta_{c}
\end{array}\right) \quad V_{\mu}=\left(\begin{array}{cccc}
\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{* 0} \\
\rho^{-} & -\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}} & K^{* 0} & D^{*-} \\
K^{*-} & K^{* 0} & \phi & D_{s}^{*-} \\
D^{* 0} & D^{*+} & D_{s}^{*+} & J / \psi
\end{array}\right)
$$

$D^{*+} D^{0}, D^{* 0} D^{+}$the 1,2 channels, the interaction that we obtain is

$$
\begin{aligned}
V_{i j}= & C_{i j} g^{2}\left(p_{1}+p_{3}\right) \cdot\left(p_{2}+p_{4}\right) \vec{\epsilon} \cdot \vec{\epsilon}^{\prime} \\
\rightarrow & C_{i j} g^{2} \frac{1}{2}\left[3 s-\left(M^{2}+m^{2}+M^{\prime 2}+m^{\prime 2}\right) \quad C_{i j}=\left(\begin{array}{cc}
\frac{1}{M_{J / \psi}^{2}} & \frac{1}{m_{\rho}^{2}} \\
\frac{1}{m_{\rho}^{2}} & \frac{1}{M_{J / \psi}^{2}}
\end{array}\right) \quad T=[1-V G]^{-1} V,\right.
\end{aligned}
$$

$$
\left|D^{*} D, I=0\right\rangle=-\frac{1}{\sqrt{2}}\left(D^{*+} D^{0}-D^{* 0} D^{+}\right)
$$

$$
\left|D^{*} D, I=1, I_{3}=0\right\rangle=-\frac{1}{\sqrt{2}}\left(D^{*+} D^{0}+D^{* 0} D^{+}\right)
$$

There is attraction in $\mathrm{I}=0$, repulsion in $\mathrm{I}=1$, but due to different masses there is a bit of isospin breaking

Convolution of the G function: Origin of the width.

Spectral function Mass distribution

$$
\operatorname{Im}\left[D\left(s_{V}\right)\right]=\operatorname{Im}\left(\frac{1}{s_{V}-M_{V}^{2}+i M_{V} \Gamma_{V}}\right)
$$

$$
G\left(\sqrt{s}, M_{k}, m_{k}\right)=\frac{\int_{\left(M_{V}-2 \Gamma_{V}\right)^{2}}^{\left(M_{V}+2 \Gamma_{V}\right)^{2}} d s_{V} G\left(\sqrt{s}, \sqrt{s_{V}}, m_{k}\right) \times \operatorname{Im}\left[D\left(s_{V}\right)\right]}{\int_{\left(M_{V}-2 \Gamma_{V}\right)^{2}}^{\left(M_{V}+2 \Gamma_{V}\right)^{2}} d s_{V} \operatorname{Im}\left[D\left(s_{V}\right)\right]}
$$

$$
G_{l}=i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{M_{l}}{E_{l}(\mathbf{q})} \frac{1}{k^{0}+p^{0}-q^{0}-E_{l}(\mathbf{q})+i \epsilon}
$$

$$
\begin{aligned}
\Gamma_{D^{*+}}\left(M_{\mathrm{inv}}\right)= & \Gamma\left(D^{*+}\right)\left(\frac{m_{D^{*+}}}{M_{\mathrm{inv}}}\right)^{2} . \\
& {\left[\frac{2}{3}\left(\frac{p_{\pi}}{p_{\pi, \text { on }}}\right)^{3}+\frac{1}{3}\left(\frac{p_{\pi}^{\prime}}{p_{\pi, \text { on }}^{\prime}}\right)^{3}\right] }
\end{aligned}
$$

$$
\begin{aligned}
\Gamma_{D^{* 0}}\left(M_{\mathrm{inv}}\right)= & \Gamma\left(D^{* 0}\right)\left(\frac{m_{D^{* 0}}}{M_{\mathrm{inv}}}\right)^{2} . \\
& {\left[0.647\left(\frac{p_{\pi}}{p_{\pi, \mathrm{on}}}\right)^{3}+0.353\right] }
\end{aligned}
$$

where p_{π} is the π^{+}momentum in $D^{*+} \rightarrow D^{0} \pi^{+}$decay

$$
\dot{D}^{* 0^{*}} \rightarrow D^{0} \pi^{0} \quad D^{* 0} \rightarrow D^{0} \gamma
$$ $p_{\pi}^{\prime}, p_{\pi, \text { on }}^{\prime}$ are the same magnitudes for $D^{*+} \rightarrow D^{+} \pi^{0}$.

Alternative method including vector selfenergy

$$
\begin{aligned}
G(s)= & i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}-m_{B}^{2}+i \epsilon} \frac{1}{(P-q)^{2}-m_{B^{*}}^{2}+i \sqrt{(P-q)^{2}} \Gamma_{B^{*}}\left((P-q)^{2}\right)} \\
& \Gamma_{B^{*}}\left(s^{\prime}\right)=\Gamma_{B^{*}}\left(m_{B^{*}}^{2}\right) \frac{m_{B^{*}}^{2}}{s^{\prime}}\left(\frac{p_{\gamma}\left(s^{\prime}\right)}{p_{\gamma}\left(m_{B^{*}}^{2}\right)}\right)^{3} \Theta\left(\sqrt{s^{\prime}}-m_{B}\right) \\
G(s) \simeq & \int_{0}^{q_{\max }} d q \frac{q^{2}}{4 \pi^{2}} \frac{\omega_{B}+\omega_{B^{*}}}{\omega_{B} \omega_{B^{*}}} \frac{1}{\sqrt{s}+\omega_{B}+\omega_{B^{*}}} \\
& \times \frac{1}{\sqrt{s}-\omega_{B}-\omega_{B^{*}}+i \frac{\sqrt{s} s^{\prime}}{2 \omega_{B^{*}}} \Gamma_{B^{*}}\left(s^{\prime}\right)}, \quad \omega_{B\left(B^{*}\right)}=\sqrt{\vec{q}^{2}+m_{B\left(B^{*}\right)}^{2}} \text { and } s^{\prime}=\left(\sqrt{s}-\omega_{B}\right)^{2}-\vec{q}^{2} .
\end{aligned}
$$

With mass from unitary reanalysis of LHCb data, Mikhasenko

Compositeness of a state. Derivation of the sum rule.

$$
\begin{aligned}
& \left\langle\vec{p}^{\prime}\right| V|\vec{p}\rangle=V\left(\vec{p}^{\prime}, \vec{p}\right)=v \Theta(\Lambda-p) \Theta\left(\Lambda-p^{\prime}\right) \quad \Lambda \equiv \mathrm{q}_{\max } \quad \text { Gives the range } \\
& T=V+V \frac{1}{E-H_{0}} T \\
& \langle\vec{p}| T\left|\vec{p}^{\prime}\right\rangle=\langle\vec{p}| V\left|\vec{p}^{\prime}\right\rangle+\int_{k<\Lambda} d^{3} k \frac{\langle\vec{p}| V|\vec{k}\rangle}{E-m_{1}-m_{2}-\frac{\vec{k}^{2}}{2 \mu}} \\
& \times\langle\vec{k}| T\left|\vec{p}^{\prime}\right\rangle, \\
& \text { Gamermann, Nieves } \\
& \text { E. O, Ruiz Arriola } \\
& \langle\vec{p}| T\left|\vec{p}^{\prime}\right\rangle=\Theta(\Lambda-p) \Theta\left(\Lambda-p^{\prime}\right) t \\
& t=v+v G t, \quad t=\frac{v}{1-v G} \quad G=\int_{p<\Lambda} d^{3} p \frac{1}{E-m_{1}-m_{2}-\frac{\vec{p}^{2}}{2 \mu}}
\end{aligned}
$$

Wave functions

$$
\left(H_{0}+V\right)|\psi\rangle=E|\psi\rangle
$$

$$
|\psi\rangle=\frac{1}{E-H_{0}} V|\psi\rangle
$$

$$
=v \frac{\Theta(\Lambda-p)}{E-m_{1}-m_{2}-\frac{\vec{p}^{2}}{2 \mu}} \int_{k<\Lambda} d^{3} k\langle\vec{k} \mid \psi\rangle
$$

Generalization to coupled channels

$$
\begin{array}{cc}
\left\langle\vec{p} \mid \psi_{i}\right\rangle=\Theta(\Lambda-p) \frac{1}{E-M_{i}-\frac{\vec{p}^{2}}{2 \mu_{i}}} \sum_{j} v_{i j} \int_{k<\Lambda} d^{3} k\left\langle\vec{k} \mid \psi_{j}\right\rangle, & \mathrm{g}_{\mathrm{i}}=\sum_{j} v_{i j} \int_{k<\Lambda} d^{3} k\left\langle\vec{k} \mid \psi_{j}\right\rangle \\
T=V+V \frac{1}{E-H} V . & \sum_{i}\left\langle\psi_{i} \mid \psi_{i}\right\rangle=\int d^{3} p \sum_{i}\left|\left\langle\vec{p} \mid \psi_{i}\right\rangle\right|^{2} \\
T_{i j}=v_{i j}+\sum_{m n} v_{i m} \int_{k<\Lambda} d^{3} k\left\langle\vec{k} \mid \psi_{m}\right\rangle \frac{1}{E-E_{\alpha}} & \left.\sum_{i} g_{i}^{2} \frac{d G_{i i}}{d E}\right|_{E=E_{\alpha}}=-1 \\
\times \int_{k^{\prime}<\Lambda} d^{3} k^{\prime}\left\langle\vec{k}^{\prime} \mid \psi_{n}\right\rangle v_{n j}, & \mathrm{~T}_{\mathrm{ij} \approx} \mathrm{~g}_{\mathrm{i}} \mathrm{~g}_{\mathrm{j}} /\left(\mathrm{E}-\mathrm{E}_{\alpha}\right) \\
\text { Each term with minus sign } & \text { gives the probability }
\end{array}
$$

$$
\left\langle\vec{p} \mid \psi_{i}\right\rangle=\Theta(\Lambda-p) \frac{1}{E-M_{i}-\frac{\vec{p}^{2}}{2 \mu_{i}}} \sum_{j} v_{i j} \int_{k<\Lambda} d^{3} k\left\langle\vec{k} \mid \psi_{j}\right\rangle
$$

$$
\int_{p<\Lambda} d^{3} p\left\langle\vec{p} \mid \psi_{i}\right\rangle=G_{i i} \sum_{j} v_{i j} \int_{k<\Lambda} d^{3} k\left\langle\vec{k} \mid \psi_{j}\right\rangle, \quad \quad G_{i} g_{i}=\psi_{i}(r=0)
$$

IMPORTANT: isospin is a symmetry of the strong interaction Strong interaction is of short range
What matters for isospin is the wave function at the origin of a channel
Not the probability (tied to the binding of the channel) Since G_{i} are similar for isospin partners, g_{i} is what matters for isospin

The derivation implicitly assumed that the potential is energy independent

How to account for missing channels?

$$
\begin{gathered}
v=\left(\begin{array}{cc}
v_{11} & v_{12} \\
v_{12} & 0
\end{array}\right) \quad T_{11}=\frac{v_{11}+v_{12}^{2} G_{2}}{1-\left(v_{11}+v_{12}^{2} G_{2}\right) G_{1}} \\
V_{\mathrm{eff}}=v_{11}+v_{12}^{2} G_{2} \quad T_{\mathrm{eff}}=\frac{V_{\mathrm{eff}}}{1-V_{\mathrm{eff}} G_{1}} \\
g_{\mathrm{eff}}^{2}=\lim \frac{\left(E-E_{0}\right) V_{\mathrm{eff}}}{1-V_{\mathrm{eff}} G_{1}}=\frac{V_{\mathrm{eff}}}{-\frac{\partial V_{\mathrm{eff}}}{\partial E} G_{1}-V_{\mathrm{eff}} \frac{\partial G_{1}}{\partial E}}
\end{gathered}
$$

Aceti, Dai, Geng, Zhang Eur.Phys.J.A 50 (2014) 57
T. Hyodo

Int.J.Mod.Phys.A 28 (2013)1330045

Channel 1
which, using the pole condition $1-V_{\text {eff }} G_{1}=0$, can be rewritten as

$$
\begin{equation*}
g_{\mathrm{eff}}^{2}=\frac{1}{-G_{1}^{2} \frac{\partial V_{\mathrm{eff}}}{\partial E}-\frac{\partial G_{1}}{\partial E}} \tag{70}
\end{equation*}
$$

$$
-g_{\mathrm{eff}}^{2} G_{1}^{2} \frac{\partial V_{\mathrm{eff}}}{\partial E}-g_{\mathrm{eff}}^{2} \frac{\partial G_{1}}{\partial E}=1
$$

Probability of channel 2

In this case we should add an explicit state adding to the potential

$C_{i j} /\left(E-E_{R}\right)$

the energy dependence of the potential will make the sum rule smaller than 1 to accommodate the probability of having this genuine state in the wave function.

Realistic example: $D_{s o}{ }^{*}(2317)$ is made from $K D$ and ηD_{s} channels. One can eliminate ηD_{s}

$$
V_{\mathrm{eff}}=V_{0}+\beta\left(s-s_{0}\right)
$$

s_{0} is the value of s for the bound state
To account for the possible genuine state we also allow a possible potential linear in s.

Back to the Tcc

$$
V=\left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{12} & V_{22}
\end{array}\right) \quad T=[1-V G]^{-1} V, \quad G=\int_{|\boldsymbol{q}|<q_{\max }} \frac{d^{3} q}{(2 \pi)^{3}} \frac{\omega_{1}+\omega_{2}}{2 \omega_{1} \omega_{2}} \frac{1}{s-\left(\omega_{1}+\omega_{2}\right)^{2}+i \epsilon}
$$

$$
\left|D^{*} D, I=0\right\rangle=-\frac{1}{\sqrt{2}}\left(D^{*+} D^{0}-D^{* 0} D^{+}\right)
$$

$$
\left|D^{*} D, I=1\right\rangle=-\frac{1}{\sqrt{2}}\left(D^{*+} D^{0}+D^{* 0} D^{+}\right)
$$

Assuming isospin symmetry in the potential $\longrightarrow\langle I=0| V|I=1\rangle=0 \longrightarrow V_{11}=V_{22}$

$$
\begin{aligned}
\langle I=0| V|I=0\rangle & =V_{11}-V_{12} \\
\langle I=1| V|I=1\rangle & =V_{11}+V_{12}
\end{aligned}
$$

We assume a general potential. The parameters will be fitted to data

$$
\begin{aligned}
& V_{11}=V_{11}^{\prime}+\frac{\alpha}{m_{V}^{2}}\left(s-s_{0}\right), \\
& V_{12}=V_{12}^{\prime}+\frac{\beta}{m_{V}^{2}}\left(s-s_{0}\right),
\end{aligned}
$$

Fit to scattering lengths and effective range two channels, $D^{0} D^{*+}$ and $D^{+} D^{* 0}$,

$$
f(s)=\frac{1}{-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}-i k}
$$

$$
T(s)=-8 \pi \sqrt{s} f(s)
$$

$$
\begin{aligned}
a_{1} & =6.134 \pm 0.51 \mathrm{fm} \\
r_{0,1} & =-3.516 \pm 0.50 \mathrm{fm} \\
a_{2} & =(1.707 \pm 0.30)-i(1.07 \pm 0.30) \mathrm{fm} \\
r_{0,2} & =(0.259 \pm 0.30)-i(3.769 \pm 0.30) \mathrm{fm}
\end{aligned}
$$

$$
T=\frac{1}{\mathrm{DET}}\left(\begin{array}{cc}
V_{11}+\left(V_{12}^{2}-V_{11}^{2}\right) G_{2} & V_{12} \\
V_{12} & V_{11}+\left(V_{12}^{2}-V_{11}^{2}\right) G_{1}
\end{array}\right) ; \operatorname{DET}=1-V_{11}\left(G_{1}+G_{2}\right)-\left(V_{12}^{2}-V_{11}^{2}\right) G_{1} G_{2}
$$

The bound state appears when $\operatorname{DET}=0$ at s_{0}, hence
\checkmark Allows to write V_{12} in terms of V_{11}

$$
\operatorname{DET}\left(s=s_{0}\right)=0
$$

We have 4 parameters and 6 data. We get a good fit

$$
P_{1}=-\left.g_{1}^{2} \frac{\partial G_{1}}{\partial s}\right|_{s=s_{0}}, \quad P_{2}=-\left.g_{2}^{2} \frac{\partial G_{2}}{\partial s}\right|_{s=s_{0}} \quad Z=1-P_{1}-P_{2}
$$

TABLE I: The obtained scattering lengths and effective ranges.

$a_{1}[\mathrm{fm}]$	$r_{0,1}[\mathrm{fm}]$	$a_{2}[\mathrm{fm}]$	$r_{0,2}[\mathrm{fm}]$
6.110 ± 0.065	-3.455 ± 0.194	$(1.761 \pm 0.031)-i(1.063 \pm 0.024)$	$(0.265 \pm 0.148)-i(3.760 \pm 0.142)$

TABLE II: The obtained coupling constants and probabilities.

$g_{1}[\mathrm{MeV}]$	$g_{2}[\mathrm{MeV}]$	P_{1}	P_{2}	Z
3759.88 ± 32.95	-3820.52 ± 43.61	0.685 ± 0.011	0.285 ± 0.005	0.030 ± 0.016

Recall LHCb data $a_{1}=6.134 \pm 0.51 \mathrm{fm}$,

$$
\begin{aligned}
r_{0,1} & =-3.516 \pm 0.50 \mathrm{fm} \\
a_{2} & =(1.707 \pm 0.30)-i(1.07 \pm 0.30) \mathrm{fm} \\
r_{0,2} & =(0.259 \pm 0.30)-i(3.769 \pm 0.30) \mathrm{fm}
\end{aligned}
$$

Direct fit to the $D^{0} D^{0} \pi^{+}$mass distribution

$$
a_{1}=6.34 \mathrm{fm}, \quad r_{0,1}=-2.85 \mathrm{fm}, \quad a_{2}=(2.075-i 0.975) \mathrm{fm}, \quad r_{0,2}=(-0.068-i 2.57) \mathrm{fm}, \quad \text { Our results }
$$

$$
P_{1}=0.690, \quad P_{2}=0.308, \quad Z=0.002, \quad g_{1}=3854 \mathrm{MeV}, \quad g_{2}=-4119 \mathrm{MeV} \text {. with } \Gamma_{\mathrm{D}^{\star}}=0
$$

$$
\begin{aligned}
& q_{\max }=(420 \pm 5) \mathrm{MeV}, \quad V_{11}^{\prime}=31.83 \pm 5, \\
& V_{12}^{\prime}=463.67 \pm 5, \quad \alpha=0 \pm 0.2, \quad \beta=0 \pm 0.2 \\
& a_{1}=(6.73-i 1.98) \mathrm{fm}, \quad a_{2}=(1.97-i 1.19) \mathrm{fm} \\
& a_{1}^{e x p}=[(7.16 \pm 0.51)-i(1.85 \pm 0.28)] \mathrm{fm}, \quad a_{2}^{e x p}=(1.76-i 1.82) \mathrm{fm} \underset{\mathrm{D}^{*} \text { width }}{\mathrm{LHCb} \text { data with }}
\end{aligned}
$$

Isospin of the Tcc:

$$
\begin{aligned}
& \left|D^{*} D, I=0\right\rangle=-\frac{1}{\sqrt{2}}\left(D^{*+} D^{0}-D^{* 0} D^{+}\right) \\
& \left|D^{*} D, I=1\right\rangle=-\frac{1}{\sqrt{2}}\left(D^{*+} D^{0}+D^{* 0} D^{+}\right) \\
& g_{1}=3854 \mathrm{MeV}, \quad g_{2}=-4119 \mathrm{MeV}
\end{aligned}
$$

This means that the state that we have found has I=0 very approximately

LIMITING CASE OF A NONMOLECULAR STATE

Assume I=0 single channel

$$
\widetilde{T}_{D^{*} D, D^{*} D}=\frac{g^{2}}{s-s_{0}}
$$

Unitarity demands

$$
T_{D^{0} D^{*+}, D^{0} D^{*+}}=\frac{1}{2} \frac{g^{2}}{s-\widetilde{s_{0}}-\frac{1}{2} g^{2} G_{D^{0} D^{*+}}-\frac{1}{2} g^{2} G_{D^{+} D^{* 0}}} .
$$

Genuine state in the limit of $\mathrm{g} \rightarrow 0 \quad a \rightarrow 0 ; \quad a_{1} \rightarrow 0, \quad a_{2} \rightarrow 0$

$$
\begin{aligned}
\frac{1}{2} r_{0,1} & =\lim _{g^{2} \rightarrow 0}-\frac{\sqrt{s_{1}}}{\mu_{1}} \frac{16 \pi}{g^{2}} \frac{\partial}{\partial s}\left\{s^{1 / 2}\left(s-s_{0}\right)-O\left(g^{2}\right)\right\} \\
& =\lim _{g^{2} \rightarrow 0}-\left.\frac{\sqrt{s_{1}}}{\mu_{1}} \frac{16 \pi}{g^{2}} \frac{1}{2 \sqrt{s}}\left(3 s-s_{0}\right)\right|_{s=s_{1}} \rightarrow-\infty \\
\frac{1}{2} r_{0,2} & =\lim _{g^{2} \rightarrow 0}-\left.\frac{\sqrt{s_{2}}}{\mu_{2}} \frac{16 \pi}{g^{2}} \frac{1}{2 \sqrt{s}}\left(3 s-s_{0}\right)\right|_{s=s_{2}} \rightarrow-\infty
\end{aligned}
$$

Striking discrepancy with the data
If g is not so small, make an expansion in $\mathrm{s}-\mathrm{s}_{0}$ and apply the former method
L.~R.~Dai, J.~Song and E.~Oset,
\%``volution of genuine states to molecular ones: The \$T_\{cc\}(3875)\$ case," [arXiv:2306.01607 [hep-ph]].

Femtoscopic correlation functions

In heavy ion collisions or p p collisions one observes pairs of particles and defines the correlation function as the ratio of probabilities to see the pair to the product of observing Individualy each particle. Under certain assumptions one finds

$$
\begin{gathered}
C(\vec{p})=\int d^{3} \vec{r} S_{12}(\vec{r})|\Psi(\vec{r}, \vec{p})|^{2} \quad S_{12}(\vec{r})=S_{12}(r)=\frac{1}{(\sqrt{4 \pi})^{3} R^{3}} \exp \left(-\frac{r^{2}}{4 R^{2}}\right) \\
C(\vec{p})=1+4 \pi \int_{0}^{+\infty} d r r^{2} S_{12}(r) \\
\times\left(\sum_{j} w_{j}\left|\widetilde{\Psi}_{j}(\vec{r}, \vec{p})\right|^{2}-j_{0}^{2}(p r)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \Psi_{j}(\vec{r}, \vec{p})=\delta_{i j} j_{0}(p r)+T_{j i}(E) \theta\left(q_{\max }-|\vec{p}|\right) \\
& \times \int_{|\vec{q}|<q_{\max }} d^{3} \vec{q} \frac{j_{0}(q r)}{E-\omega_{1}^{(j)}(q)-\omega_{2}^{(j)}(q)+i \eta}
\end{aligned}
$$

For the case of the observation of channel i

Particular case of the Tcc

$$
\begin{array}{cl}
C_{D^{0} D^{*+}}\left(p_{D^{0}}\right)=1+4 \pi \theta\left(q_{\max }-p_{D^{0}}\right) \times & C_{D^{+} D^{* 0}}\left(p_{D^{+}}\right)=1+4 \pi \theta\left(q_{\max }-p_{D^{+}}\right) \times \\
\int_{0}^{+\infty} d r r^{2} S_{12}(r)\left\{\mid j_{0}\left(p_{D^{0}} r\right)+\right. & \left.T_{11}(E) \widetilde{G}^{(1)}(r ; E)\right|^{2} \\
\left.+\left|T_{0}^{+\infty} d r \widetilde{G}^{2} \widetilde{G}_{12}^{(2)}(r ; E)\right|^{2}-j_{0}^{2}\left(p_{D^{0}} r\right)\right\} & +\left|T_{12}(E) \widetilde{G}^{(1)}(r ; E)\right|^{2}-j_{0}^{2}\left(p_{D^{+}} r\right)+\left.T_{22}(E) \widetilde{G}^{(2)}(r ; E)\right|^{2} \\
& \\
\widetilde{G}^{(i)}(r ; E)=\int_{|\vec{q}|<q_{\max }} \frac{d^{3} \vec{q}}{(2 \pi)^{3}} \frac{\omega_{1}^{(i)}(q)+\omega_{2}^{(i)}(q)}{2 \omega_{1}^{(i)}(q) \omega_{2}^{i}(q)} \\
& \times \frac{j_{0}(q r)}{s-\left[\omega_{1}^{(i)}(q)+\omega_{2}^{(i)}(q)\right]^{2}+i \eta}
\end{array}
$$

Eur.Phys.J.A 58 (2022) 7, 131

Note: the correlation functions start from threshold of each channel. Can we induce the Tcc and its properties from there, if these c. f. are measured?

Inverse problem

We assume we have data for the correlation functions and we carry a fit to the data with
$V_{11}, V_{12}, \alpha, \beta, q_{\text {max }}, R$. Once we determine the parameters we can calculate everything
THE METHOD WORKS. IT OPENS A NEW WINDOW TO INVESTIGATE HADRON HADRON INTERACTIONS FOR CASES WHERE THE FINAL STATE CANNOT BE PRODUCED OTHERWISE.

$$
\mathrm{X}^{2}=0.0005, \mathrm{q}_{\max }=400.1 \mathrm{MeV},
$$

$$
\mathrm{V} 11=34.51 \mathrm{MeV}, \mathrm{~V} 12=490.00 \mathrm{MeV}, \alpha=103.8, \beta=50.61, R=1.01 \mathrm{fm}
$$

a1, a2
(7.54-i 1.98) fm (2.07-i 1.24) fm
r01,r02
$(-2.94043541,0.00000000) \mathrm{fm} \quad(-6.091799214 \mathrm{E}-02,-2.41491890) \mathrm{fm}$
p1, p2
(0.699283779,-0.00000000) (0.312470883,-0.00000000)
gcoup1,gcoup2
$(3889.33765,0.00000000) \mathrm{MeV} \quad(-4170.44043,0.00000000) \mathrm{MeV}$

The values of the couplings, very similar and of opposite sign, indicate that one has an $\mathrm{I}=0$ state.
Error analysis of the magnitudes obtained is being done.
Errors of a few per cent. The most important: $P_{1}=0.684+-0.027, P_{2}=0.305+-0.013$
$P_{1}+P_{2}=0.989+-0.03, \quad R=0.998+-0.019$ (the input was $R=1$)
It is remarkable that the fits also provide the value of R, not only the parameters related to the interaction.

Applications to KD scattering done in Z. \sim W. \sim Liu, J. \sim X. \sim Lu and L. \sim S. \sim Geng \%"'Study of the DK interaction with femtoscopic correlation functions," Phys. Rev. D \textbf\{107\}, no.7, 074019 (2023)
M. \sim Albaladejo, J. \sim Nieves and E. \sim Ruiz-Arriola, \%`「Femtoscopic signatures of the lightest S-wave scalar open-charm mesons," [arXiv:2304.03107 [hep-ph]].

The inverse problem is under study: N. Ikeno and G. Toledo From correlation functions one can induce that there is a bound state corresponding to the Ds*(2317).

Conclusions:

We have studied the $\operatorname{Tcc}(3875)$ and found it to be well reproduced by the interaction of the $D^{0} D^{*+}, D^{+} D^{* 0}$ channels, obtained from the local hidden gauge approach, forming a molecular state of two mesons.

We have studied the inverse problem of determining the interaction of the $\mathrm{D}^{0} \mathrm{D}^{*+}, \mathrm{D}^{+} \mathrm{D}^{* 0}$ Channels from the experimental data. Conclusions from this analysis The Tcc has $\mathrm{I}=0$ and is of molecular nature, with $\mathrm{P}_{\mathrm{D} 0 \mathrm{D}^{+}+} \approx 70 \%, \mathrm{P}_{\mathrm{D}+\mathrm{D}^{*} 0} \approx 30 \%$.

We study also the femtoscopic correlation functions for these two channels and exploit the Inverse problem of getting the Tcc and its nature from the correlation functions. It works !! One can even get the size parameter of the source.

The success of this study opens the door to use the correlation functions for systems that cannot be studied otherwise. From data above threshold of the channels on can induce the existence of bound states by 50 MeV or more, not just close the threshold, and the nature of these states.

