The Z_{cs} states based on the molecular picture

Raquel Molina, Eulogio Oset

N. Ikeno, R. Molina and E. Oset, Phys. Lett. B 814, 136120 (2021) N. Ikeno, R. Molina and E. Oset, Phys. Rev. D 105, 014012 (2022)

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023), June 5-9th 2023

Discovery of Z_{cs}(3985)

- In 2020, BESIII reported a new state Z_{cs}(3985)
- A peak near threshold in $D_{s}^{*-}D^{0}$, $D_{s}^{-}D^{*0}$ invariant mass distribution of the $e^{+}e^{-} \rightarrow K^{+}(D_{s}^{*-}D^{0} + D_{s}^{-}D^{*0})$ reaction
- Mass and width:


```
\Gamma = 12.8^{+5.3}_{-4.4} \pm 3.0 \text{ MeV}
```


- The state lies about 7 MeV above the $D_{s}^{*}D^{0}$, $D_{s}^{-}D^{*0}$ threshold
- $Z_{cs}(3985) \sim (D_s^{*-}D^0) \sim (cbar \ s \ c \ ubar) : Hidden-charm strange tetraquark$
- $Z_c(3900) \sim (D^{*-}D^0) \sim (cbar d c ubar)$

 $\rm Z_{cs}(3985)$ could be the SU(3) partner of the $\rm Z_{c}(3900)$ state, where a d quark has been replaced by an s quark

=> Interesting to study the nature of $Z_{cs}(3985)$

Theoretical studies of $Z_{cs}(3985)$

 $Z_c(3900)$: BESIII Experiment (2014) in the $e^+e^- \rightarrow \pi D\bar{D}^*$ reaction

- $Z_c(3900)$ exists very close to $D\overline{D}^*$ threshold
- Z_c(3900) based on the molecular picture of DD^{*}
 F. Aceti, M. Bayar, E. Oset, A. Martinez Torres, K.P. Khemchandani, J.M. Dias, F.S. Navarra, M. Nielsen, PRD 90 (2014) 016003
 - Weakly bound state or virtual state is found
 - Peak close to the threshold of $D^0 D^{*-}$ is well reproduced

⇒ We use a similar formalism which studied $Z_c(3900)$ and calculate the $Z_{cs}(3985)$ state with the molecular picture

D Other studies: Quark model, Coupled channels, ... etc.

- S.H. Lee, M. Nielsen, U. Wiedner, J. Korean Phys. Soc. 55, 424 (2009).
- L. Meng, B. Wang, S.L. Zhu, PRD102, 111502(R) (2020).
- J.Z. Wang, Q.S. Zhou, X. Liu, T. Matsuki, EPJC81, 51 (2021).
- Z. Yang, X. Cao, F.K. Guo, J. Nieves, M.P. Valderrama, PRD103, 074029 (2021).
- V. Baru, E.Epelbaum, A.A. Filin, C. Hanhart, A.V. Nefediev, PRD105, 034014 (2022).
- Z.F. Sun, C.W. Xiao, arXiv:2011.09404 [hep -ph]. etc....

Formalism: Coupled channels approach

 $Z_{cs}(3985)$ is dynamically generated from the interaction of the coupled channels (molecular state, ... etc.)

Vector-pseudoscalar channels (VP) $J/\psi K^{-}(1), K^{*-}\eta_{c}(2), D_{s}^{*-}D^{0}(3), D_{s}^{-}D^{*0}(4)$

 Vector-pseudoscalar loop function G: $|T|^{2}$ $G_{l} = \int \frac{d^{3}q}{(2\pi)^{3}} \frac{\omega_{1} + \omega_{2}}{2\omega_{1}\omega_{2}} \frac{1}{(P^{0})^{2} - (\omega_{1} + \omega_{2})^{2} + i\epsilon}$ M $\omega_1 = \sqrt{m^2 + \vec{q}^2}, \ \omega_2 = \sqrt{M^2 + \vec{q}^2}$ G is regularized with the cutoff parameter q_{max} . q_{max} is around 700–850MeV here m, M the pseudoscalar and vector masses of the *l*-th channel

Interaction

We study the interaction between 4 channels using the local hidden gauge approach.

$$J/\psi K^{-}(1), \quad K^{*-}\eta_{c}(2), \quad D_{s}^{*-}D^{0}(3), \quad D_{s}^{-}D^{*0}(4)$$

• Local hidden gauge Lagrangians Bando, Kugo, Yamawaki, Phys. Rep. 164, (88) 217

$$\mathcal{L}_{VPP} = -ig \langle V^{\mu}[P, \partial_{\mu}P] \rangle$$
$$\mathcal{L}_{VVV} = ig \langle (V^{\mu}\partial_{\nu}V_{\mu} - \partial_{\nu}V_{\mu}V^{\mu})V^{\nu} \rangle$$

 $g = M_V/2f$ ($M_V = 800$ MeV, f = 93 MeV)

 $VP \rightarrow VP$ interaction through the vector mesons exchange

$$P = \begin{pmatrix} \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} + \frac{\pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} & \bar{D}^{0} \\ \pi^{-} & \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} - \frac{\pi^{0}}{\sqrt{2}} & K^{0} & D^{-} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}} + \sqrt{\frac{2}{3}}\eta' & D^{-}_{s} \\ D^{0} & D^{+} & D^{+}_{s} & \eta_{c} \end{pmatrix} \quad V_{\mu} = \begin{pmatrix} \frac{\omega}{\sqrt{2}} + \frac{\rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{*0} \\ \rho^{-} & \frac{\omega}{\sqrt{2}} - \frac{\rho^{0}}{\sqrt{2}} & K^{*0} & D^{*-} \\ K^{*-} & \bar{K}^{*0} & \phi & D^{*-}_{s} \\ D^{*0} & D^{+} & D^{+}_{s} & \eta_{c} \end{pmatrix}$$

Interaction

• The interaction between the channels i, j $V_{ij} = C_{ij}g^2(p_2 + p_4)(p_1 + p_3),$ $g = M_V/2f (M_V = 800 \text{ MeV}, f = 93 \text{ MeV})$

 $\begin{array}{ccc} \text{where the matrix } \mathsf{C}_{\mathbf{ij}} & J/\psi K^{-}\left(1\right), \ K^{*-}\eta_{c}\left(2\right), \ D_{s}^{*-}D^{0}\left(3\right), \ D_{s}^{-}D^{*0}\left(4\right) \\ (\mathsf{C}_{\mathbf{ji}} = \mathsf{C}_{\mathbf{ij}}\right) & \\ C_{ij} = \begin{pmatrix} 0 & 0 & \frac{1}{m_{D^{*}}^{2}} & \frac{1}{m_{D^{*}}^{2}} \\ 0 & \frac{1}{m_{D^{*}}^{2}} & \frac{1}{m_{D^{*}}^{2}} \\ & -\frac{1}{m_{J/\psi}^{2}} & 0 \\ & & -\frac{1}{m_{J/\psi}^{2}} \end{pmatrix} , \\ \end{array} , \\ \begin{array}{c} \text{We neglected } \mathsf{q}^{2} \text{ in the vector propagator in this expression} \\ \end{array} \right) \\ \end{array}$

• We consider the linear combination of states:

$$A = \frac{1}{\sqrt{2}} (D_s^- D^{*0} + D_s^{*-} D^0) \qquad B = \frac{1}{\sqrt{2}} (D_s^- D^{*0} - D_s^{*-} D^0)$$

=> The combination A couples to $J/\Psi K^-$ and $K^{*-}\eta_c$, while B does not couple.

Interaction for Z_{cs} (the analogy to Z_{c})

• We take now the states $J/\psi K^{-}(1)$, $K^{*-}\eta_{c}(2)$, $A = \frac{1}{\sqrt{2}}(D_{s}^{-}D^{*0} + D_{s}^{*-}D^{0})$ (3)

• In the previous study of $Z_c(3900)$

F. Aceti, M. Bayar, E. Oset, A. Martinez Torres, K.P. Khemchandani, J.M. Dias, F.S. Navarra, M. Nielsen, PRD 90 (2014) 016003

- $\overline{D}D^* \overline{D}^*D$ combination did not bind
- $\overline{D}D^* + \overline{D}^*D$ combination produced weakly bound state or virtual state.

=> We expect to get a similar result in the present Z_{cs} (3985) case

Differential cross section: Zcs

- Solid line: Result for $D_s^- D^{*0} + D_s^{*-} D^0$ combination with its coupled channels (c.c.).
- Dashed-dotted line: result folded with the experimental resolution (c.c.conv.)

Differential cross section: Zcs

$$\frac{d\sigma}{dM_{\bar{D}_sD^*}} = \frac{1}{s\sqrt{s}} p\tilde{q} N |T_{33}|^2$$

- $\sqrt{s} = 4681 \text{ MeV}$ N: a normalization constant $T_{33}: \text{ amplitude of}$ $D_s^{*-}D^0 + D_s^{-}D^{*0} \rightarrow D_s^{*-}D^0 + D_s^{-}D^{*0}$
- ✓ Our model does not produce a bound state nor resonance
- ✓ The result differs from that of the phase space.

This interaction has the effect of accumulating strength close to threshold This is strong enough to nearly produce a bound state, which reverts into the production of a virtual state

- Solid line: Result for $D_s^- D^{*0} + D_s^{*-} D^0$ combination with its coupled channels (c.c.).
- Dashed-dotted line: result folded with the experimental resolution (c.c.conv.)
- Dotted line: phase space.

Differential cross section: Zcs

$$\frac{d\sigma}{dM_{\bar{D}_sD^*}} = \frac{1}{s\sqrt{s}} p\tilde{q} N |T_{33}|^2$$

single channel combination $D_s^- D^{*0} - D_s^{*-} D^0$

✓ The result does not differ much from that of the phase space.

 \checkmark It is clearly incompatible with the data.

The interaction of coupled channels is important to produce the structure of $Z_{cs}(3985)$ close to threshold

- Solid line: Result for $D_s^- D^{*0} + D_s^{*-} D^0$ combination with its coupled channels (c.c.).
- Dashed-dotted line: result folded with the experimental resolution (c.c.conv.)
- Dashed line: the single channel $D_s^- D^{*0} D_s^{*-} D^0$ combination (1ch.).
- Dotted line: phase space.

Other Z_{cs} states at LHCb PRL127, 082001 (2021)

- Recent experimental papers:
- BESIII, Chin. Phys. C47, 033001 (2023) Search for hidden-charm tetraquark with strangeness in the reaction of $e^+e^- \rightarrow K^+D_s^{*-}D^{*0}+c.c.$
- LHCb, arXiv:2301.04899 [hep-ex] (2023) Evidence of a J/ ψ K⁰_s structure in B⁰-> J/ ψ ϕ K⁰_s decays

=> We study Z_{cs} based on the $D_s^* \overline{D}^*$ molecular state N. Ikeno, R. Molina and E. Oset, PRD105(2022)014012, PRD106 (2022)099905 (E)

The Z_{cs} state based on the $D_s^* \overline{D}^*$ molecular state

• Vector-vector channels (VV): $D_s^{*+}\overline{D}^{*0}$ (1), $J/\psi K^{*+}$ (2),

- The interaction is different for the different spin channels J
 - Contact term for the interaction
- Exchange term for the interaction

$$V^{(c)} = g^{2} \begin{pmatrix} 2 & -4 \\ -4 & 0 \end{pmatrix}, \qquad J = 0, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & -\frac{3s-\sum M_{i}^{2}}{D} \\ -\frac{3s-\sum M_{i}^{2}}{D} & 0 \end{pmatrix}, \qquad J = 0, 2$$

$$V^{(c)} = g^{2} \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{3}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{3}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad J = 1, \qquad \qquad V^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{3})\cdot(p_{4}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad U^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{4})\cdot(p_{4}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad U^{(ex)} = g^{2} \begin{pmatrix} -\frac{(p_{1}+p_{4})\cdot(p_{4}+p_{4})}{M_{J/\psi}^{2}} & 0 \\ 0 & 0 \end{pmatrix}, \qquad U^{(ex)$$

The diagonal terms are repulsive or zero for J = 0, 1, but attractive for J = 2.

 $\Sigma M_i^{\prime 2} = M_{D_s^*}^2 + M_{\bar{D}^{*0}}^2 + M_{J/\psi}^2 + M_{K^*}^2$ $D = M_{J/\Psi}^2 - 2\bar{M}_{D^*} E_{J/\psi}$ 12

Decay channels

The $J/\psi K^*$ state is 129 MeV below the $D_s^* \overline{D}^*$ threshold We only study the decay channels of the $D_s^* \overline{D}^*$ component

Diagram for $D_s^{*+}\bar{D}^{*0}$ decay to $\eta_c K^+$

Diagram for $D_s^{*+}\bar{D}^{*0}$ decay to $J/\psi K$.

Finally, we include all these decay channels taking for the $D_s^{*+}\bar{D}^{*0} \rightarrow D_s^{*+}\bar{D}^{*0}$ transition $V_{D_s^{*+}\bar{D}^{*0} \rightarrow D_s^{*+}\bar{D}^{*0}} + i \text{Im}V^{(a)} + i \text{Im}V^{(b)} + i \text{Im}V^{\prime(a)} + i \text{Im}V^{\prime(b)}$

Z_{cs} states from $D_s^* \overline{D}^*$ and $J/\psi K^*$ coupled channels R. Ikeno, R. Molina, E. Oset, PRD 105, 014012 (2022).

 $|T|^2$ for each channel for the different cut-off q_{max} values of J/ ψ K* channel

The system does not develop a bound state, but has enough attraction to create a strong cusp structure (~4120 MeV)

$J/\psi K$ distribution in $B^+ \rightarrow J/\psi \phi K^+$ decay

FIG. 5. A mechanism for $B^- \to J/\psi \phi K^-$ decay based on FIG. 6. (a) Mechanism for $B^- \to \phi D_s^{*-} D^{*0}$; (b) Rescattering mechanism leading to $\phi J/\psi K$. internal emission.

=> Further measurements around this region is required

Summary

The Z_{cs} state:

- One of the exotic hadrons with $c\bar{q}s\bar{c}$
- Z_{cs}(3985) at BESIII
 - Threshold effect from the coupled channel interaction based on the molecular picture of $D_s^*\bar{D}/\bar{D}_sD^*$
- Other Z_{cs} states
 - We have studied Z_{cs} states with coupled channels of $D_s^* \bar{D}^*$ and $J/\psi K^*$
 - The J=2 channel has enough attraction to create a strong cusp structure that shows up in the $J/\psi K$ invariant mass distribution in the B decay at the $D_s^* \overline{D}^*$ threshold.

Formalism: Coupled channels approach

 $J/\psi K^{-}(1), K^{*-}\eta_{c}(2), D_{s}^{*-}D^{0}(3), D_{s}^{-}D^{*0}(4)$

We study the interaction between 4 channels using the local hidden gauge approach.

 $VP \rightarrow VP$ interaction through the vector mesons exchange

The pseudoscalar exchange is found to give a very small contribution relative to vector meson exchange in Refs.

- J.M. Dias, G. Toledo, L. Roca, E. Oset, Phys. Rev. D103, 16019 (2021)

- F. Aceti, M. Bayar, E. Oset, A. Martinez Torres, K.P. Khemchandani, J.M. Dias, F.S. Navarra, M. Nielsen, PRD 90 (2014) 016003

