

June, 2023

CAN CONSTITUENT GLUONS DESCRIBE GLUEBALLS AND HYBRIDS?

Eric Swanson

References

Light hybrid decays, C. Farina & E.S. Swanson, in preparation.

Light hybrid mixing and phenomenology, E.S. Swanson, arXiv:2302.01372.

Christian Farina

Heavy hybrid decays in a constituent gluon model, C. Farina, H.G. Tecocoatzi, A. Giachino, E. Santopinto, & E.S. Swanson, Phys.Rev.D 102 (2020) 1, 014023.

The low lying glueball spectrum, A.P. Szczepaniak & E.S. Swanson, *Phys.Lett.B* 577 (2003) 61-66.

Coulomb gauge QCD, confinement, and the constituent representation, A.P. Szczepaniak & E.S. Swanson, *Phys.Rev.D* 65 (2001) 025012.

Flavour Mixing in the Isoscalar Sector a la LGT

Toward the excited isoscalar meson spectrum from lattice QCD, [HadSpec] J.J. Dudek et al. Phys.Rev.D 88 (2013) 9, 094505.

FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the $m_{\pi} = 391 \text{ MeV}$, $24^3 \times 128$ lattice. The vertical height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest hybrid meson supermultiplet will be discussed later.

Hybrid Flavour Mixing is Different!

7005cpms 4 u 5 mixing ! 4 Anomaly (= MAU)?) ~ as (40)2 or UIGBICEDIN grigt HYBRIDS 92 2 08 ~ 61

We need a specific model for hybrids and glueballs, interactions, etc

The form of the gluonic structure present in the operators having good overlap with these states is chromomagnetic, having $J_g^{P_gC_g} = 1^{+-}$. With the $q\bar{q}$ pair in an internal S-wave this describes the observed J^{PC} . Heav-

The lightest hybrid meson supermultiplet in QCD J.J. Dudek, Phys.Rev.D 84 (2011) 074023

Agrees with old bag models and other modelling

Heavy hybrids with constituent gluons, E.S. Swanson & A.P. Szczepaniak, Phys.Rev.D 59 (1999) 014035

the Hamiltonian

$$H_{QCD} = \int d^3x \left[\psi^{\dagger} \left(-i\alpha \cdot \nabla + \beta m \right) \psi + \frac{1}{2} \left(\mathcal{J}^{-1/2} \Pi \mathcal{J} \cdot \Pi \mathcal{J}^{-1/2} + B \cdot B \right) - g \psi^{\dagger} \alpha \cdot A \psi \right] + H_C$$

$$\begin{split} H_{C} &= \frac{1}{2} \int d^{3}x \, d^{3}y \, \mathcal{J}^{-1/2} \rho^{A}(\mathbf{x}x) \mathcal{J}^{1/2} \hat{K}_{AB}(\mathbf{x}, \mathbf{y}; \mathbf{A}) \mathcal{J}^{1/2} \rho^{B}(\mathbf{y}) \mathcal{J}^{-1/2} \\ \mathcal{J} &\equiv \det(\nabla \cdot D) \\ \rho^{A}(\mathbf{x}) &= f^{ABC} \mathbf{A}^{B}(\mathbf{x}) \cdot \mathbf{\Pi}^{C}(\mathbf{x}) + \psi^{\dagger}(\mathbf{x}) T^{A} \psi(\mathbf{x}) \\ \hat{K}^{AB}(\mathbf{x}, \mathbf{y}; \mathbf{A}) &\equiv \langle \mathbf{x}, A \mid \frac{g}{\nabla \cdot \mathbf{D}} (-\nabla^{2}) \frac{g}{\nabla \cdot \mathbf{D}} \mid \mathbf{y}, B \rangle \,. \\ D^{AB} &\equiv \delta^{AB} \nabla - g f^{ABC} A^{C} \end{split}$$

T.D.Lee

Particle Physics and Introduction to Field Theory

$$\begin{split} |JM;\lambda,\lambda'\rangle &= \frac{1}{\sqrt{2(N_c^2 - 1)}} \sqrt{\frac{2J + 1}{4\pi}} \int \frac{d^3k}{(2\pi)^3} \psi(k) D_{M,\lambda-\lambda'}^{J^*}(\phi,\theta,-\phi) \prod a^{\dagger}(k,\lambda,A) a^{\dagger}(-k,\lambda,A) |0\rangle \\ |JM;\eta\rangle &= \frac{1}{\sqrt{2}} \left(|JM;\lambda,\lambda'\rangle + \eta |JM;-\lambda,-\lambda'\rangle \right)_{9} \end{split}$$

$$E \int \frac{k^2 dk}{(2\pi)^3} |\psi_i(k)|^2 = \int \frac{k^2 dk}{(2\pi)^3} 2\omega(k) |\psi_i(k)|^2 + \frac{N_C}{2} \sum_i \int \frac{k^2 dk}{(2\pi)^3} \frac{q^2 dq}{(2\pi)^3} \frac{\omega(k)}{\omega(q)} \left[\frac{4}{3} V_0 + \frac{2}{3} V_2\right] |\psi_i(k)|^2$$
$$- \frac{N_C}{4} \int \frac{k^2 dk}{(2\pi)^3} \frac{q^2 dq}{(2\pi)^3} \frac{\left(\omega(k) + \omega(q)\right)^2}{\omega(k)\omega(q)} \psi_i^*(q) K_{ij}(q, k) \psi_j(k)$$
$$J^P = (\text{odd} \ge 3)^+ \text{ (there is no 1^+ gg glueball):}$$
$$K = \frac{J+2}{2J+1} V_{J-1} + \frac{J-1}{2J+1} V_{J+1};$$

$$K = \frac{J + 2}{2J + 1} V_{J-1} + \frac{J - 1}{2J + 1} V_{J+1};$$

$$J^{P} = (\text{even} \ge 0)^{-};$$

$$K = \frac{J}{2J + 1} V_{J-1} + \frac{J + 1}{2J + 1} V_{J+1};$$

$$J^{P} = 0^{+};$$

$$K = \frac{2}{3} \left(V_{0} + \frac{V_{2}}{2} \right).$$

$$\begin{split} |JM[LS\ell j_g\xi]\rangle &= \frac{1}{2}T_{ij}^A \int \frac{d^3q}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \Psi_{j_g;\ell m_\ell}(\mathbf{k},\mathbf{q}) \sqrt{\frac{2j_g+1}{4\pi}} D_{m_g\mu}^{j_g*}(\hat{k}) \chi_{\mu,\lambda}^{(\xi)} \\ &\times \langle \frac{1}{2}m\frac{1}{2}\bar{m}|SM_S\rangle \left\langle \ell m_\ell, j_g m_g |LM_L\rangle \left\langle SM_S, LM_L|JM \right\rangle b_{\mathbf{q}-\frac{\mathbf{k}}{2},i,m}^{\dagger} d_{-\mathbf{q}-\frac{\mathbf{k}}{2},j,\bar{m}}^{\dagger} a_{\mathbf{k},A,\lambda}^{\dagger}|0\rangle. \end{split}$$

TABLE II: J^{PC} Hybrid Multiplets.

multiplet	operator	ξ	j_g	ℓ	L	$J^{PC} S = 0 (S = 1)$
H_1	$\psi^\dagger {f B} \chi$	-1	1	0	1	$ 1^{}, (0, 1, 2)^{-+} $
H_2	$ \psi^{\dagger} \mathbf{\nabla} imes \mathbf{B} \chi $	-1	1	1	1	$ 1^{++}, (0, 1, 2)^{+-}$
H_3	$\psi^\dagger oldsymbol{ abla} \cdot \mathbf{B} \chi$	-1	1	1	0	$ 0^{++}, (1^{+-}) $
H_4	$\psi^{\dagger} [oldsymbol{ abla} \mathbf{B}]_2 \chi$	-1	1	1	2	$2^{++}, (1, 2, 3)^{+-}$

Hartree-Fock-type method

$$\Psi_{j_g;\ell m_\ell}(\mathbf{k},\mathbf{q}) = \chi_{j_g}(k) \,\varphi_\ell(q) Y_{\ell,m_\ell}(\hat{q}) \,.$$

$$K_{q}\varphi + \int \chi^{*}K_{g}\chi \cdot \varphi + \int \chi^{*}V\chi \cdot \varphi = E\varphi$$
$$K_{g}\chi + \int \varphi^{*}K_{q}\varphi \cdot \chi + \int \varphi^{*}V\varphi \cdot \chi = E\chi$$

Hartree-Fock-type method

$$\left[2M + \frac{q^2}{M}\right]\phi_{\ell}(q) + \int \left(\frac{k^2}{4M} + \Omega(k)\right)|\psi_j(k)|^2 \cdot \phi_{\ell}(x) + \frac{1}{6}V(x)\phi_{\ell}(x) - 3\int \left[V_0(y, x/2) + dV_2(y, x/2)\right]|\psi_j(y)|^2 \cdot \phi_{\ell}(x) = E\phi_{\ell}(x)$$
(63)

$$\left[\frac{k^2}{4M} + \Omega(k)\right]\psi_j(k) + \int \frac{q^2}{M}|\phi_\ell(q)|^2 \cdot \psi_j(x) + \frac{1}{6}\int V(y)|\phi_\ell(y)|^2 \cdot \psi_j(x) -3\int \left[V_0(x, y/2) + dV_2(x, y/2)\right]|\phi_\ell(y)|^2 \cdot \psi_j(x) = E\psi_j(x)$$
(64)

Hartree-Fock-type method

Hybrid Flavour Mixing

$$|u\bar{u}\rangle |d\bar{d}\rangle |s\bar{s}\rangle |gg\rangle$$

$$H_{uds} = \begin{pmatrix} m + A_{nn} & A_{nn} & A_{ns} & \mathscr{A}_{n}^{(0)} \\ A_{nn} & m + A_{nn} & A_{ns} & \mathscr{A}_{n}^{(0)} \\ A_{ns} & A_{ss} & m + \Delta m + A_{ss} & \mathscr{A}_{s}^{(0)} \\ \mathscr{A}_{n}^{(0)} & \mathscr{A}_{n}^{(0)} & \mathscr{A}_{s}^{(0)} & M_{gb} \end{pmatrix}.$$

$$H_{iso} = \begin{pmatrix} m & 0 & 0 & 0 \\ 0 & m + 2A_{nn} & \sqrt{2}A_{ns} & \sqrt{2}\mathcal{A}_{n}^{(0)} \\ 0 & \sqrt{2}A_{ns} & m + \Delta m + A_{ss} & \mathcal{A}_{s}^{(0)} \\ 0 & \sqrt{2}\mathcal{A}_{n}^{(0)} & \mathcal{A}_{s}^{(0)} & M_{gb} \end{pmatrix}.$$

truncate sums over glueballs

$$\ell = 0; S = 1; H_1 \text{ only}$$

$$\begin{aligned} \mathcal{A}_{f}^{(n)} &= -\frac{i[gF_{f}]}{4} \int \frac{k^{2}dk}{(2\pi)^{3}} \frac{\psi_{n}^{*}(k)\chi(k)}{\sqrt{\omega(k)}} C_{J}, \\ [gF_{f}] &= \int \frac{d^{3}q}{(2\pi)^{3}} \sqrt{4\pi\alpha_{V}(q)} \,\phi_{\ell=0}(q) \end{aligned}$$

"octet decay constant, F"

J^{PC}	nominal state	$u \bar{u} g$	$s \bar{s} g$	gg
1	light	≈ 100	pprox 0	≈ 0
	heavy	≈ 0	≈ 100	pprox 0
	glueball	≈ 0	pprox 0	≈ 100
0^{-+}	light	62 [87]	$17 \ [6]$	$21 \ [7]$
	heavy	24 [8]	75 [91]	0.5 [1]
	glueball	13 [5]	8[3]	$78 \ [92]$
1^{-+}	light	37	63	0
	heavy	63	37	0
	glueball	0	0	100
2^{-+}	light	54 [59]	46 [41]	0.1 [0]
	heavy	32 [38]	67 [61]	1 [1]
	glueball	2 [0.4]	$1 \ [0.6]$	97 [99]

LGT assumptions are validated

Vector-Hybrid Vector Mixing

Vector-Hybrid Vector Mixing

Hybrid configuration content of heavy S-wave mesons, [MILC] T. Burch & D. Toussaint, Phys. Rev. 68, 094504 (2003).

 $\begin{aligned} \mathcal{H}_{NRQCD} &\approx 170 \ \mathrm{MeV} \ (J/\psi) \\ \mathcal{H}_{NRQCD} &\approx 70 \ \mathrm{MeV} \ (\Upsilon) \,. \end{aligned}$

$$f_{H} = \frac{1}{\sqrt{M_{H}}} \sum_{n \neq H} \sqrt{M_{n}} f_{V}^{(n)} C_{n} \qquad C_{n} = \langle nS | H_{1}(1^{--}) \rangle$$

$$f_V^{(n)} = \sqrt{\frac{3}{M_n}} \int \frac{d^3k}{(2\pi)^3} \psi^{(n)}(\vec{k}) \sqrt{1 + \frac{m_q}{E_k}} \sqrt{1 + \frac{m_{\bar{q}}}{E_{\bar{k}}}} \left(1 + \frac{k^2}{3(E_k + m_q)(E_{\bar{k}} + m_{\bar{q}})}\right).$$

$$f_{H_1(1^{--})} \approx 20 \text{ MeV}.$$

lattice hybrid masses vs quark mass

lattice hybrid masses vs quark mass

lattice hybrid masses vs quark mass

state	Ref.	mass	width	model (iv)	mass	model (v)	mass
$\rho(770)$	PDG	775.2 ± 0.2	147.4 ± 0.8	$1^{3}S_{1}$	720	$1^{3}S_{1}$	810
$ \rho(1450) $	PDG	1465 ± 25	400 ± 60	2^3S_1	1440	2^3S_1	1405
$\rho(1570)$	PDG	1570 ± 70	144 ± 90	$1^{3}D_{1}$	1510	$1^{3}D_{1}$	1497
$\rho(1700)$	PDG	1720 ± 20	250 ± 100	$H_1(1^{})$	1760	$3^{3}S_{1}$	1770
						2^3D_1	1835
				3^3S_1	1850		
$\rho(1900)$	[32]	1900 ± 30	50 ± 30	2^3D_1	1910	$4^{3}S_{1}$	2080
$\rho(2150)$	[33]	2034 ± 16	234 ± 39	4^3S_1	2170	$H_1(1^{})$	2100
				3^3D_1	2220	$3^{3}D_{1}$	2130

TABLE IV: Model Assignments and Experimental Isovector Vector States (MeV).

$$e^+e^-
ightarrow \pi^+\pi^-\pi^+\pi^-\pi^0$$

Phys.Rev. D76 (2007) 092005 [3]

Conclusions

- -a reasonable approximation to lattice glueball and hybrid spectra is obtained (clearly room for improvement)
- -hybrid flavour mixing is roughly reproduced (except for 1--)
- -hybrid-vector mixing is roughly reproduced

-the constituent picture looks to be a good starting point for detailed modelling; it has the benefit of being a well-constrained, unified description of hadrons and their interactions

Conclusions

- vector hybrid near 2100 w/ decay constant ~ 20 MeV
- partner states at 2100-2250 and 2220-2350.
- with a $\pi_1(1600)$ expect partner states at 1750-1780 and ~1900 (near the $\eta_1(1855)$).

~thank you~