A new measurement of $X(3872) \rightarrow D^0 \overline{D}^{*0}$ at Belle

Kiyoshi Tanida <kytanida@gmail.com> (Japan Atomic Energy Agency) @Hadron2023 6 June 2023

Introduction

- X(3872) (aka $\chi_{c1}(3872)$) -- very famous exotic state
 - Narrow width
 - On the DD^{*} threshold
 - Violates isospin in $J/\psi\rho$ vs $J/\psi\omega$ decays - $J^{PC}=1^{++}$
- S-wave DD* molecule?

– Mixed with charmonium?

D⁰D̄^{*0} decay has the largest BR
 → Coupling to the DD^{*} channel is strong

Structure and Lineshape Analysis

- Determining $X(3872) \rightarrow DD^*$ coupling strength is important to discuss the structure.
 - Strong coupling → Molecular state (loosely bound or virtual)

- Wider lineshape because of phase space and threshold effect
 Better mass resolution
 - thanks to small Q-value (~100 keV, ~1/20 of $J/\psi \pi^+\pi^-$)
- Belle experiment is suitable because $D^{*0} \rightarrow D^0 \gamma$, $D^0 \pi^0$ can be reconstructed.

- Study of $X(3872) \rightarrow D^0 \overline{D}^{*0}$ lineshape
 - Flatte model: coupled channel effect

Belle experiment

- Almost 4π, good momentum resolution (Δp/p~0.1%), EM calorimeter, PID & Si Vertex detector
- 7.72x10⁸ $B\overline{B}$ pairs, 1.8x10⁵ $B \rightarrow (X(3872) \rightarrow D^0\overline{D}^{*0})K$ decays

Event Reconstruction, Selection and Detector Response

- D⁰ candidates are reconstructed in six decay modes $-K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{+}\pi^{-}, K^{0}_{S}\pi^{+}\pi^{-}, K^{0}_{S}\pi^{+}\pi^{-}\pi^{0},$ $K^{-}K^{+}$
 - Signal efficiency is improved by a factor of 1.9 from the previous Belle measurement: [PRD 81, 031103 (2010)]

Result

Result

Fit 1 (Breit-Wigner)

- Significance: 7.5σ in total
- First observation from the B^0 channel (5.2 σ)
- Branching ratios

 $\begin{aligned} \mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X(3872) \to D^0 \overline{D}{}^{0*}) \\ &= (0.97^{+0.21}_{-0.18} \pm 0.10) \times 10^{-4} \end{aligned}$

 $\mathcal{B}(B^0 \to X(3872)K^0) / \mathcal{B}(B^+ \to X(3872)K^+)$ $= 1.34^{+0.47+0.10}_{-0.40-0.12}$

• Mass & width

$$m = 3873.71^{+0.56}_{-0.50} \pm 0.13 \text{ MeV}/c^2$$

$$\Gamma = 5.2^{+2.2}_{-1.5} \pm 0.4 \text{ MeV}$$

• All are consistent with and improved from the previous Belle result [PRD81.031103 (2010)]

Fit 2 (Flatte)

- A Flatte-like model by Hanhart et al.
 - Used in LHCb analysis for the J/ $\psi\pi\pi$ channel [PRD 102, 092005 (2020)]

$$f(E) = \frac{gk_{D^0\overline{D}^{*0}}}{|E - E_f| + \frac{i}{2}} [\Gamma_0 + \Gamma_{J/\psi\rho}(E) + \Gamma_{J/\psi\omega}(E) + \frac{g(k_{D^0\overline{D}^{*0}} + k_{D+D^{*-}})}{|Partial widths for}]|^2$$
Mass difference from $D^0\overline{D}^{*0}$ threshold Partial widths for radiative, $J/\psi\rho$, and $J/\psi\omega$ decays Coupling to $D\overline{D}^*$ channel $\cdots g$: Coupling constant to $D\overline{D}^*$ channel $\cdots k_a$: Momentum for channel a

C

 $\begin{pmatrix} k_{D^0\overline{D}^{*0}} = \sqrt{2\mu E} \\ \mu \text{ is reduced mass} \end{pmatrix}$

Hanhart at al PRD 76 03/007 (2007)

Constraints

- Fit does not converge w/o constraints due to poor statistics
 - $-\Gamma_{J/\psi\omega}$ is fixed by world-average BR
 - $E_{\rm f}, \Gamma_0, \text{ and } \Gamma_{J/\psi\rho} \text{ are fixed based on LHCb result}$ [PRD 102, 092005 (2020)] $\frac{dg}{dE_f} = -15.11 \text{ GeV}^{-1}, f_\rho = 1.8 \times 10^{-3}, \Gamma_0 = 1.4 \text{ MeV}$ (uncertainties are considered)

\rightarrow Only g is floated

Fit bias

• Lineshape converges to a fixed form for large g

 \rightarrow Only lower limit can be obtained for large g

Result and discussion

- Fit result: g = 0.29^{+2.69}_{-0.15} (stat. only)
 → Lower limit: g > 0.094 (90% CL) including systematic uncertainty
- Partial width for $D^0\overline{D}^{*0}$ channel is rather large
- According to Fermi's golden rule, the limit corresponds to
 M > 5.9 GeV

Summary & Prospect

- Using the Belle full data, we performed lineshape analysis for $X(3872) \rightarrow D^0 \overline{D}^{*0}$
 - Obtained g > 0.094 (90% CL), corresponding to decay matrix element $|\mathcal{M}| > 5.9 \text{ GeV}$
- Statistics limited → ~x50 Larger statistics expected with Belle II
- Even better sensitivity can be obtained by analyzing $J/\psi\pi\pi$ decay (from Belle II or LHCb) simultaneously.
 - → Determination of $X(3872) \rightarrow D^0 \overline{D}^{*0}$ coupling

Exotic hadron mini-symposium in JPS-APS meeting in Hawaii

- JPS-APS Hawaii meeting: Oct. 7-12
- "Physics of Exotic Hadrons From Discovery to Understanding"
 HYATT REGENCY MAUL RESORT AND SPA
- Calling for contributed talks until July 7th
- If you are interested, please visit
 https://indico.frib.msu.edu/event/66

