HAS QCD

Searching strong parity violation in

Motivations

Investigation of the "Strong CP problem"

Motivations

Investigation of the "Strong CP problem"

Matter-Antimatter imbalance

Motivations

EW sector
CP violation is included

Motivations

EW sector
CP violation is included
Weak CP

Motivations

EW sector
Weak CIP

CP violation is included too small...

Motivations

EW sector

Weak Cl
CP violation is included too small...

QCD sector

Motivations

EW sector

Weak Cl

QCD sector

Stromg CP

CP violation is included
too small...

Motivations

EW sector

Feak Cl

QCD sector
Strong CP

CP violation is included
too small...
$\mathcal{L}_{\mathrm{QCD}}^{\prime}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}^{\mathrm{CP}}$

Motivations

EW sector

Weak Cl

QCD sector
Strong CP

CP violation is included
too small...
$\mathcal{L}_{\mathrm{QCD}}^{\prime}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}^{\mathrm{CP}}$
θ-term
SMEFT operators

Motivations

EW sector
Weak Cl

QCD sector
Stromg CP

CP violation is included
too small...
$\mathcal{L}_{\mathrm{QCD}}^{\prime}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}^{\mathrm{CP}}$
θ-term
SMEFT operators

Nucleon electric dipole moment

Motivations

EW sector

Weak Cl

QCD sector
Strong CP

CP violation is included
too small...
$\mathcal{L}_{\mathrm{QCD}}^{\prime}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}^{\mathrm{CP}}$
θ-term
SMEFT operators

Nucleon electric dipole moment never measured...

Motivations

P-symmetry

Motivations

P-symmetry

QCD sector

QCD Lagrangian is assumed to be invariant under parity transformations

Motivations

P-symmetry

QCD sector
QCD Lagrangian is assumed to be invariant under parity transformations

Are there any effects of QCD
P-violation on the internal structure of nucleons?

Motivations

P-symmetry
QCD sector
QCD Lagrangian is assumed to be invariant under parity transformations

Are there any effects of QCD
P-violation on the internal structure of nucleons?

Terms from EW sector

Motivations

P-symmetry

QCD sector

QCD Lagrangian is assumed to be invariant under parity transformations

Are there any effects of QCD

P-violation on the internal structure of nucleons?

Terms from EW sector
Wealk Paiclasiom
\checkmark

Motivations

P-symmetry
QCD sector
QCD Lagrangian is assumed to be invariant under parity transformations

Are there any effects of QCD

P-violation on the internal structure of nucleons?

Terms from EW sector

Terms from QCD sector

Motivations

P-symmetry
QCD sector
QCD Lagrangian is assumed to be invariant under parity transformations

Are there any effects of QCD

P-violation on the internal structure of nucleons?

Terms from EW sector
Weak Pryiolatiom

0

Which implications could the

presence of strong P-violation cause
to inclusive DIS?

DIS process

$$
l(\ell)+N(P) \rightarrow \gamma^{*}(q) \rightarrow l\left(\ell^{\prime}\right)+X
$$

Cross Section

$$
\frac{d^{3} \sigma}{d x_{B} d y d \phi_{S}}=\frac{\alpha^{2} y}{2 Q^{4}} L_{\mu \nu}\left(l, l^{\prime}, \lambda_{e}\right) 2 M W^{\mu \nu}(q, P, S)
$$

In general

Cross Section

$$
\frac{d^{3} \sigma}{d x_{B} d y d \phi_{S}}=\frac{\alpha^{2} y}{2 Q^{4}} L_{\mu \nu}\left(l, l^{\prime}, \lambda_{e}\right) 2 M W^{\mu \nu}(q, P, S)
$$

In general

$$
\frac{d^{3} \sigma}{d x_{B} d y d \phi_{S}}=\frac{\alpha^{2} y}{2 Q^{4}} \sum_{j=\gamma, \gamma Z, Z} \eta^{j} L_{\mu \nu}^{(j)}\left(l, l^{\prime} ; \lambda_{e}\right) 2 M W^{\mu \nu}(q, P, S)
$$

Cross Section

$$
\frac{d^{3} \sigma}{d x_{B} d y d \phi_{S}}=\frac{\alpha^{2} y}{2 Q^{4}} L_{\mu \nu}\left(l, l^{\prime}, \lambda_{e}\right) 2 M W^{\mu \nu}(q, P, S)
$$

In general

$$
\begin{aligned}
& \frac{d^{3} \sigma}{d x_{B} d y d \phi_{S}}=\frac{\alpha^{2} y}{2 Q^{4}} \sum_{j=\gamma, \gamma Z, Z} \eta^{j} L_{\mu \nu}^{(j)}\left(l, l^{\prime} ; \lambda_{e}\right) 2 M W^{\mu \nu}(q, P, S) \\
& \eta^{\gamma}=1 \quad \eta^{\gamma Z}=\left(\frac{G_{F} M_{Z}^{2}}{2 \sqrt{2} \pi \alpha}\right) \frac{Q^{2}}{Q^{2}+M_{Z}^{2}} \quad \eta^{Z}=\left(\eta^{\gamma Z}\right)^{2}
\end{aligned}
$$

Hadronic Tensor (unpolarized)

$2 M W_{\mu \nu}(q, P)=\sum_{X} \int \frac{d^{3} P_{X}}{2 E_{X}} \delta^{4}\left(P+q-P_{X}\right)\langle P| J_{\mu}^{\dagger}(0)\left|P_{X}\right\rangle\left\langle P_{X}\right| J_{\nu}(0)|P\rangle$

Hadronic Tensor (unpolarized)

$2 M W_{\mu \nu}(q, P)=\sum_{X} \int \frac{d^{3} P_{X}}{2 E_{X}} \delta^{4}\left(P+q-P_{X}\right)\langle P| J_{\mu}^{\dagger}(0)\left|P_{X}\right\rangle\left\langle P_{X}\right| J_{\nu}(0)|P\rangle$
Dominant contribution on the Light-Cone

Hadronic Tensor (unpolarized)

$$
2 M W_{\mu \nu}(q, P)=\sum_{X} \int \frac{d^{3} P_{X}}{2 E_{X}} \delta^{4}\left(P+q-P_{X}\right)\langle P| J_{\mu}^{\dagger}(0)\left|P_{X}\right\rangle\left\langle P_{X}\right| J_{\nu}(0)|P\rangle
$$

Dominant contribution on the Light-Cone

$$
2 M W^{\mu \nu}(q, P, S)=\sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\Phi(q, P, S) \Gamma^{\mu} \gamma^{+} \Gamma^{\nu}\right]
$$

Hadronic Tensor (unpolarized)

Hadronic Tensor (unpolarized)

Hadronic Tensor (unpolarized)

Hadronic Tensor (unpolarized)

Correlation distribution function
J. Collins, "Foundation of Perturbative QCD"
M. Anselmino et al., Z. Phys. C 64, 267 (1997)

Hadronic Tensor (unpolarized)

P-odd structures already present in the hadronic tensor!

$$
2 M W^{\mu \nu}(q, P, S)=\sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\begin{array}{|}
\Phi(q, P, S) & \left.\Gamma^{\mu} \gamma^{+} \Gamma^{\nu}\right] \\
\text { Correlation distribution function }
\end{array}\right.
$$

$$
\Phi_{i j}(k, P, S)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i k \cdot \xi}\langle P| \bar{\psi}_{i}(0) U(0, \xi) \psi_{i}(\xi)|P\rangle
$$

Hadronic Tensor (unpolarized)

P-odd structures already present in the hadronic tensor!

$$
2 M W^{\mu \nu}(q, P, S)=\sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr} \underbrace{\Phi(q, P, S)}_{\quad \text { Correlation distribution function }} \Gamma^{\mu} \gamma^{+} \Gamma^{\nu}]
$$

$$
\Phi_{i j}(k, P, S)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i k \cdot \xi}\langle P| \bar{\psi}_{i}(0) U(0, \xi) \psi_{i}(\xi)|P\rangle
$$

Decomposition in partonic densities
J. Collins, "Foundation of Perturbative QCD"
M. Anselmino et al., Z. Phys. C 64, 267 (1997)

Partonic correlator (unpolarized)

Integrated correlator

$$
\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}
$$

Partonic correlator (unpolarized)

Integrated correlator
$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Lorenz scalar

Partonic correlator (unpolarized)

Integrated correlator
$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Hermiticity

Lorenz scalar
Hermiticity

Partonic correlator (unpolarized)

Integrated correlator
$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Hermiticity
Lorenz scalar

Parity invariance

Partonic correlator (unpolarized)

Integrated correlator

$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Hermiticity
Lorenz scalar

Parity invariance
Hermiticity
$\mathbb{1}, \gamma^{\mu}, \sigma^{\mu \nu}$

Partonic correlator (unpolarized)

Integrated correlator

$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Hermiticity
Parity invariance
Lorenz scalar
Hermiticity
Parity invariance
$\mathbb{1}, \gamma^{\mu}, \sigma^{\mu \nu}$

Partonic correlator (unpolarized)

Integrated correlator

$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Hermiticity
Parity invariance
Lorenz scalar
Hermiticity
Parity invariance
$\mathbb{1}, \gamma^{\mu}, \sigma^{\mu \nu}$
$i \gamma^{5}, \gamma^{\mu} \gamma^{5}, i \gamma^{5} \sigma^{\mu \nu}$

Partonic correlator (unpolarized)

Integrated correlator
$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Hermiticity
Parity invariance
Lorenz scalar
Hermiticity
Parity invariance
$\mathbb{1}, \gamma^{\mu}, \sigma^{\mu \nu}$
$i \gamma^{5}, \gamma^{\mu} \gamma^{5}, i \gamma^{5} \sigma^{\mu \nu}$
Leading twist contributions

Partonic correlator (unpolarized)

Integrated correlator
$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Hermiticity
Parity invariance
$\mathbb{1}, \gamma^{\mu}, \sigma^{\mu \nu}$

Lorenz scalar
Hermiticity
Parity invariance
$i \gamma^{5}, \gamma^{\mu} \gamma^{5}, i \gamma^{5} \sigma^{\mu \nu}$

Leading twist contributions
$\Phi_{\mathrm{PE}}(x) \simeq \frac{1}{2} f_{1}(x) \gamma^{-}$

Partonic correlator (unpolarized)

Integrated correlator
$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Hermiticity
Parity invariance
Lorenz scalar
Hermiticity
Parity invariance
$\mathbb{1}, \gamma^{\mu}, \sigma^{\mu \nu}$

$$
i \gamma^{5}, \gamma^{\mu} \gamma^{5}, i \gamma^{5} \sigma^{\mu \nu}
$$

Leading twist contributions

$$
\Phi_{\mathrm{PE}}(x) \simeq \frac{1}{2} f_{1}(x) \gamma^{-}
$$

$$
\Phi_{\mathrm{PV}}(x) \simeq \frac{1}{2} g_{1}^{\mathrm{PV}}(x) \gamma^{5} \gamma^{-}
$$

Partonic correlator (unpolarized)

Integrated correlator
$\Phi_{i j}\left(x_{B}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P\rangle_{\xi^{+}=\xi_{T}=0}$

Lorenz scalar
Hermiticity
Parity invariance
Lorenz scalar
Hermiticity
Parity invariance
$\mathbb{1}, \gamma^{\mu}, \sigma^{\mu \nu}$
$i \gamma^{5}, \gamma^{\mu} \gamma^{5}, i \gamma^{5} \sigma^{\mu \nu}$
Leading twist contributions

$$
\begin{gathered}
\Phi_{\mathrm{PE}}(x) \simeq \frac{1}{2} f_{1}(x) \gamma^{-} \quad \Phi_{\mathrm{PV}}(x) \simeq \frac{1}{2} g_{1}^{\mathrm{PV}}(x) \gamma^{5} \gamma^{-} \\
\Phi(x)=\Phi_{\mathrm{PE}}(x)+\Phi_{\mathrm{PV}}(x)
\end{gathered}
$$

Neutral-current DIS

$$
\begin{array}{rlr}
\frac{d \sigma^{ \pm}}{d x d y}=\frac{2 \pi \alpha^{2}}{x y Q^{2}}[& \left(Y_{+}+\gamma^{2} y^{2} / 2\right)\left(F_{2 U U}+\lambda F_{2 L U}^{ \pm}\right) & \\
& -y^{2}\left(F_{L, U U}+\lambda F_{L, L U}^{ \pm}\right) & \frac{d \sigma^{ \pm}}{d x d y}=\frac{2 \pi \alpha^{2}}{x y Q^{2}}\left[Y_{+} F_{2}^{ \pm}-y^{2} F_{L}^{ \pm} \mp Y_{-} x F_{3}^{ \pm}\right] \\
& \left.-\frac{Y_{-}}{\sqrt{1+\gamma^{2}}}\left(x F_{3 U U}^{ \pm}+\lambda x F_{3 L U}\right)\right] &
\end{array}
$$

Focus: structure function $x F_{3}\left(x, Q^{2}\right)$

$$
x F_{3 L U}\left(x, Q^{2}\right)=x F_{3}^{(\gamma)}-g_{V}^{e} \eta_{\gamma Z} x F_{3}^{(\gamma Z)}+\left(g_{V}^{e}{ }^{2}+g_{A}^{e}{ }^{2}\right) \eta_{Z} x F_{3}^{(Z)}
$$

Focus: structure function $x F_{3}\left(x, Q^{2}\right)$

$$
x F_{3 L U}\left(x, Q^{2}\right)=x F_{3}^{(\gamma)}-g_{V}^{e} \eta_{\gamma Z} x F_{3}^{(\gamma Z)}+\left(g_{V}^{e}{ }^{2}+g_{A}^{e}{ }^{2}\right) \eta_{Z} x F_{3}^{(Z)}
$$

$$
\begin{aligned}
x F_{3}^{(\gamma)}\left(x, Q^{2}\right) & =0 \\
x F_{3}^{(\gamma Z)}\left(x, Q^{2}\right) & =\sum_{q} 2 e_{q} g_{A}^{q} x f_{1}^{(q-\bar{q})} \\
x F_{3}^{(Z)}\left(x, Q^{2}\right) & =\sum_{q} 2 g_{V}^{q} g_{A}^{q} x f_{1}^{(q-\bar{q})}
\end{aligned}
$$

Focus: structure function $x F_{3}\left(x, Q^{2}\right)$

$$
x F_{3 L U}\left(x, Q^{2}\right)=x F_{3}^{(\gamma)}-g_{V}^{e} \eta_{\gamma Z} x F_{3}^{(\gamma Z)}+\left(g_{V}^{e}{ }^{2}+g_{A}^{e}{ }^{2}\right) \eta_{Z} x F_{3}^{(Z)}
$$

$$
\begin{aligned}
x F_{3}^{(\gamma)}\left(x, Q^{2}\right) & =0 \\
x F_{3}^{(\gamma Z)}\left(x, Q^{2}\right) & =\sum_{q} 2 e_{q} g_{A}^{q} x f_{1}^{(q-\bar{q})} \\
x F_{3}^{(Z)}\left(x, Q^{2}\right) & =\sum_{q} 2 g_{V}^{q} g_{A}^{q} x f_{1}^{(q-\bar{q})}
\end{aligned}
$$

$$
\begin{aligned}
x \Delta F_{3}^{(\gamma)}\left(x, Q^{2}\right) & =-\sum_{q} e_{q}^{2} x g_{1}^{\mathrm{PV}(q+\bar{q})} \\
x \Delta F_{3}^{(\gamma Z)}\left(x, Q^{2}\right) & =-\sum_{q} 2 e_{q} g_{V}^{q} x g_{1}^{\mathrm{PV}(q+\bar{q})} \\
x \Delta F_{3}^{(Z)}\left(x, Q^{2}\right) & =-\sum_{q}\left(g_{V}^{q 2}+g_{A}^{q 2}\right) x g_{1}^{\mathrm{PV}(q+\bar{q})}
\end{aligned}
$$

Additional contributions due to the new PV parton distribution

Focus: structure function $x F_{3}\left(x, Q^{2}\right)$

$$
x F_{3 L U}\left(x, Q^{2}\right)=x F_{3}^{(\gamma)}-g_{V}^{e} \eta_{\gamma Z} x F_{3}^{(\gamma Z)}+\left(g_{V}^{e}{ }^{2}+g_{A}^{e}{ }^{2}\right) \eta_{Z} x F_{3}^{(Z)}
$$

$$
x F_{3}^{(\gamma)}\left(x, Q^{2}\right)=0
$$

Focus: structure function $x F_{3}\left(x, Q^{2}\right)$

$$
x F_{3 L U}\left(x, Q^{2}\right)=x F_{3}^{(\gamma)}-g_{V}^{e} \eta_{\gamma Z} x F_{3}^{(\gamma Z)}+\left(g_{V}^{e}{ }^{2}+g_{A}^{e}{ }^{2}\right) \eta_{Z} x F_{3}^{(Z)}
$$

$$
x F_{3}^{(\gamma)}\left(x, Q^{2}\right)=0
$$

MAIN INNOVATION OF PV-HYPOTESIS

$$
x \Delta F_{3}^{(\gamma)}\left(x, Q^{2}\right)=-\sum_{q} e_{q}^{2} x g_{1}^{\mathrm{PV}(q+\bar{q})}
$$

Additional contributions due to the new PV parton distribution

Neutral-current DIS

$$
\begin{aligned}
\frac{d \sigma^{ \pm}}{d x d y}=\frac{2 \pi \alpha^{2}}{x y Q^{2}}[& \left(Y_{+}+\gamma^{2} y^{2} / 2\right)\left(F_{2 U U}+\lambda F_{2 L U}^{ \pm}\right) \\
& -y^{2}\left(F_{L, U U}+\lambda F_{L, L U}^{ \pm}\right) \\
& \left.-\frac{Y_{-}}{\sqrt{1+\gamma^{2}}}\left(x F_{3 U U}^{ \pm}+\lambda x F_{3 L U}\right)\right]
\end{aligned}
$$

Neutral-current DIS

$$
\begin{aligned}
\frac{d \sigma^{ \pm}}{d x d y}=\frac{2 \pi \alpha^{2}}{x y Q^{2}}[& \left(Y_{+}+\gamma^{2} y^{2} / 2\right)\left(F_{2 U U}+\lambda F_{2 L U}^{ \pm}\right) \\
& -y^{2}\left(F_{L, U U}+\lambda F_{L, L U}^{ \pm}\right) \\
& \left.-\frac{Y_{-}}{\sqrt{1+\gamma^{2}}}\left(x F_{3 U U}^{ \pm}+\lambda x F_{3 L U}\right)\right]
\end{aligned}
$$

Standard DIS structure functions

Neutral-current DIS

$$
\begin{aligned}
\frac{d \sigma^{ \pm}}{d x d y}=\frac{2 \pi \alpha^{2}}{x y Q^{2}}[& \left(Y_{+}+\gamma^{2} y^{2} / 2\right)\left(F_{2 U U}+\lambda F_{2 L U}^{ \pm}\right) \\
& -y^{2}\left(F_{L, U U}+\lambda F_{L, L U}^{ \pm}\right) \\
& \left.-\frac{Y_{-}}{\sqrt{1+\gamma^{2}}}\left(x F_{3 U U}^{ \pm}+\lambda x F_{3 L U}\right)\right]
\end{aligned}
$$

Standard DIS structure functions

$$
\begin{aligned}
F_{2 U U}\left(x, Q^{2}\right) & =F_{2}^{(\gamma)}-g_{V}^{e} \eta_{\gamma Z} F_{2}^{(\gamma Z)}+\left(g_{V}^{e}{ }^{2}+g_{A}^{e}{ }^{2}\right) \eta_{Z} F_{2}^{(Z)} \\
F_{2 L U}^{ \pm}\left(x, Q^{2}\right) & =\mp g_{A}^{e} \eta_{\gamma Z} F_{2}^{(\gamma Z)} \pm 2 g_{V}^{e} g_{A}^{e} \eta_{Z} F_{2}^{(Z)} \\
x F_{3 U U}^{ \pm}\left(x, Q^{2}\right) & =\mp g_{A}^{e} \eta_{\gamma Z} x F_{3}^{(\gamma Z)} \pm 2 g_{V}^{e} g_{A}^{e} \eta_{Z} x F_{3}^{(Z)} \\
x F_{3 L U}\left(x, Q^{2}\right) & =x F_{3}^{(\gamma)}-g_{V}^{e} \eta_{\gamma Z} x F_{3}^{(\gamma Z)}+\left(g_{V}^{e}{ }^{2}+g_{A}^{e}{ }^{2}\right) \eta_{Z} x F_{3}^{(Z)}
\end{aligned}
$$

Phenomenology

Experimental observable

PVDIS Asymmetry

$$
A_{\mathrm{PV}} \equiv \frac{d \sigma(\lambda=1)-d \sigma(\lambda=-1)}{d \sigma(\lambda=1)+d \sigma(\lambda=-1)}
$$

Experimental observable

PVDIS Asymmetry

$$
\begin{aligned}
A_{\mathrm{PV}} & \equiv \frac{d \sigma(\lambda=1)-d \sigma(\lambda=-1)}{d \sigma(\lambda=1)+d \sigma(\lambda=-1)} \\
& =\frac{Y_{+} F_{2 L U}-y^{2} F_{L, L U}-Y_{-} x F_{3 L U}}{Y_{+} F_{2 U U}-y^{2} F_{L, U U}-Y_{-} x F_{3 U U}}
\end{aligned}
$$

PVDIS Collaboration, Nature 506 (2014)
D. Wang et al., Phys.Rev.C 91 (2015)

$$
Y_{ \pm}=1 \pm(1-y)^{2}
$$

Experimental observable

PVDIS Asymmetry

$$
A_{\mathrm{PV}} \equiv \frac{d \sigma(\lambda=1)-d \sigma(\lambda=-1)}{d \sigma(\lambda=1)+d \sigma(\lambda=-1)}
$$

$$
=\frac{Y_{+} F_{2 L U}-y^{2} F_{L, L U}-Y_{-} x F_{3 L U}}{Y_{+}\left(F_{2 U U}\right)-y^{2}\left(F_{L, U U}-Y-x F_{3 U U}\right.}
$$

$$
Y_{ \pm}=1 \pm(1-y)^{2}
$$

Contribution of $g_{1}^{P V}$ in each of the structure functions due to
γZ and Z channels

Available experimental data

HERA dataset
(Run I + II combined)

H1 Collaboration, Eur. Phys. J. C 78 (2018)

Available experimental data

HERA dataset
(Run I + II combined)
H1 Collaboration, Eur. Phys. J. C 78 (2018)
e^{+}asymmetry: 136 data
e^{-}asymmetry: 138 data

Available experimental data

HERA dataset

(Run I + II combined)
H1 Collaboration, Eur. Phys. J. C 78 (2018)
e^{+}asymmetry: 136 data
e^{-}asymmetry: 138 data

JLab6 PVDIS dataset

PVDIS Collaboration, Nature 506 (2014)
D. Wang et al., Phys.Rev.C 91 (2015)

Available experimental data

HERA dataset

(Run I + II combined)
H1 Collaboration, Eur. Phys. J. C 78 (2018)
e^{+}asymmetry: 136 data
e^{-}asymmetry: 138 data

e^{-}asymmetry: 2 data

JLab6 PVDIS dataset

PVDIS Collaboration, Nature 506 (2014)
D. Wang et al., Phys.Rev.C 91 (2015)

Available experimental data

HERA dataset

(Run I + II combined)
H1 Collaboration, Eur. Phys. J. C 78 (2018)
e^{+}asymmetry: 136 data
e^{-}asymmetry: 138 data

e^{-}asymmetry: 2 data

JLab6 PVDIS dataset

PVDIS Collaboration, Nature 506 (2014)
D. Wang et al., Phys.Rev.C 91 (2015)

SLAC-E122 dataset

C.Y. Prescott et al., Phys. Lett. B (1979)

Available experimental data

HERA dataset

(Run I + II combined)
H1 Collaboration, Eur. Phys. J. C 78 (2018)
e^{+}asymmetry: 136 data
e^{-}asymmetry: 138 data

e^{-}asymmetry: 2 data
e^{-}asymmetry: 11 data

Available experimental data

HERA dataset
(Run I + II combined)
H1 Collaboration, Eur. Phys. J. C 78 (2018)
e^{+}asymmetry: 136 data
e^{-}asymmetry: 138 data

JLab6 PVDIS dataset
PVDIS Collaboration, Nature 506 (2014)
D. Wang et al., Phys.Rev.C 91 (2015)

SLAC-E122 dataset
C.Y. Prescott et al., Phys. Lett. B (1979)

H1 Collaboration

e^{-}asymmetry: 2 data
e^{-}asymmetry: 11 data

Available experimental data

HERA dataset
(Run I + II combined)
H1 Collaboration, Eur. Phys. J. C 78 (2018)
e^{+}asymmetry: 136 data
e^{-}asymmetry: 138 data

JLab6 PVDIS dataset
PVDIS Collaboration, Nature 506 (2014)
D. Wang et al., Phys.Rev.C 91 (2015)

SLAC-E122 dataset
C.Y. Prescott et al., Phys. Lett. B (1979)

Imbalance between information from electron and positron beams
$\mathrm{Q}^{2}\left[\mathrm{GeV}^{2}\right]$
e^{-}asymmetry: 2 data
e^{-}asymmetry: 11 data

Experimental data: energy range

HERA dataset

Experimental data: energy range

HERA dataset
$Q^{2} \in(200,30000) \mathrm{GeV}^{2}$

Experimental data: energy range

HERA dataset

$$
Q^{2} \in(200,30000) \mathrm{GeV}^{2}
$$

high-energy
$Q^{2} \gg M_{N}^{2}$
no need of modification of the theory

Experimental data: energy range

HERA dataset

$$
Q^{2} \in(200,30000) \mathrm{GeV}^{2}
$$

high-energy
$Q^{2} \gg M_{N}^{2}$
no need of modification of the theory
JLab6 + SLAC-E122 datasets

Experimental data: energy range

HERA dataset
high-energy
$Q^{2} \gg M_{N}^{2}$
no need of modification of the theory
JLab6 + SLAC-E122 datasets
low-energy
$Q^{2} \simeq M_{N}^{2}$

$$
Q^{2} \in(200,30000) \mathrm{GeV}^{2}
$$

$$
Q^{2} \in(0.9,1.9) \mathrm{GeV}^{2}
$$

Experimental data: energy range

HERA dataset
high-energy
$Q^{2} \gg M_{N}^{2}$
no need of modification of the theory
JLab6 + SLAC-E122 datasets
low-energy
$Q^{2} \simeq M_{N}^{2}$
applicability of the theory?

$$
Q^{2} \in(200,30000) \mathrm{GeV}^{2}
$$

$$
Q^{2} \in(0.9,1.9) \mathrm{GeV}^{2}
$$

Experimental data: energy range

HERA dataset
high-energy
$Q^{2} \gg M_{N}^{2}$
no need of modification of the theory
JLab6 + SLAC-E122 datasets
low-energy
$Q^{2} \simeq M_{N}^{2}$
applicability of the theory?

$$
Q^{2} \in(200,30000) \mathrm{GeV}^{2}
$$

$Q^{2} \in(0.9,1.9) \mathrm{GeV}^{2}$
Target-Mass Corrections
e.g., A. Bacchetta et al., JHEP 02 (2007)

Experimental data: energy range

HERA dataset
high-energy
$Q^{2} \gg M_{N}^{2}$
no need of modification of the theory
JLab6 + SLAC-E122 datasets
low-energy
$Q^{2} \simeq M_{N}^{2}$
applicability of the theory?
$Q^{2} \in(200,30000) \mathrm{GeV}^{2}$
$Q^{2} \in(0.9,1.9) \mathrm{GeV}^{2}$
Target-Mass Corrections
e.g., A. Bacchetta et al., JHEP 02 (2007)

EW radiative corrections
J. Erler, S. Su, Prog.Part.Nucl.Phys. 71 (2013)

Experimental data: energy range

HERA dataset

high-energy
$Q^{2} \gg M_{N}^{2}$
no need of modification of the theory
JLab6 + SLAC-E122 datasets
low-energy
$Q^{2} \simeq M_{N}^{2}$
applicability of the theory?

$$
\begin{aligned}
& C_{1 u}=2 g_{A}^{e} g_{V}^{u}=2\left(-\frac{1}{2}\right)\left(\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{W}\right) \\
& C_{2 u}=2 g_{V}^{e} g_{A}^{u}=2\left(-\frac{1}{2}+2 \sin ^{2} \theta_{W}\right)\left(\frac{1}{2}\right) \\
& C_{1 d}=2 g_{A}^{e} g_{V}^{d}=2\left(-\frac{1}{2}\right)\left(-\frac{1}{2}+\frac{2}{3} \sin ^{2} \theta_{W}\right) \\
& C_{2 d}=2 g_{V}^{e} g_{A}^{d}=2\left(-\frac{1}{2}+2 \sin ^{2} \theta_{W}\right)\left(-\frac{1}{2}\right)
\end{aligned}
$$

$Q^{2} \in(200,30000) \mathrm{GeV}^{2}$
$Q^{2} \in(0.9,1.9) \mathrm{GeV}^{2}$
Target-Mass Corrections
e.g., A. Bacchetta et al., JHEP 02 (2007)

EW radiative corrections

J. Erler, S. Su, Prog.Part.Nucl.Phys. 71 (2013)

Experimental data: energy range

HERA dataset

high-energy
$Q^{2} \gg M_{N}^{2}$
no need of modification of the theory

JLab6 + SLAC-E122 datasets

low-energy
$Q^{2} \simeq M_{N}^{2}$
applicability of the theory?

$$
\begin{aligned}
& C_{1 u}=2 g_{A}^{e} g_{V}^{u}=2\left(-\frac{1}{2}\right)\left(\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{W}\right) \\
& C_{2 u}=2 g_{V}^{e} g_{A}^{u}=2\left(-\frac{1}{2}+2 \sin ^{2} \theta_{W}\right)\left(\frac{1}{2}\right) \\
& C_{1 d}=2 g_{A}^{e} g_{V}^{d}=2\left(-\frac{1}{2}\right)\left(-\frac{1}{2}+\frac{2}{3} \sin ^{2} \theta_{W}\right) \\
& C_{2 d}=2 g_{V}^{e} g_{A}^{d}=2\left(-\frac{1}{2}+2 \sin ^{2} \theta_{W}\right)\left(-\frac{1}{2}\right)
\end{aligned}
$$

$$
Q^{2} \in(200,30000) \mathrm{GeV}^{2}
$$

$$
Q^{2} \in(0.9,1.9) \mathrm{GeV}^{2}
$$

Target-Mass Corrections

e.g., A. Bacchetta et al., JHEP 02 (2007)

EW radiative corrections

J. Erler, S. Su, Prog.Part.Nucl.Phys. 71 (2013)

$$
\begin{aligned}
& C_{1 u}^{\mathrm{SM}}=-0.1887-0.0011 \times \frac{2}{3} \ln \left(\left\langle Q^{2}\right\rangle / 0.14 \mathrm{GeV}^{2}\right) \\
& C_{1 d}^{\mathrm{SM}}=0.3419-0.0011 \times \frac{-1}{3} \ln \left(\left\langle Q^{2}\right\rangle / 0.14 \mathrm{GeV}^{2}\right) \\
& C_{2 u}^{\mathrm{SM}}=-0.0351-0.0009 \ln \left(\left\langle Q^{2}\right\rangle / 0.078 \mathrm{GeV}^{2}\right) \\
& C_{2 d}^{\mathrm{SM}}=0.0248+0.0007 \ln \left(\left\langle Q^{2}\right\rangle / 0.021 \mathrm{GeV}^{2}\right)
\end{aligned}
$$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

PV parton density comes from the structure
$\gamma^{5} \gamma^{\mu}$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

PV parton density comes from the structure
$\gamma^{5} \gamma^{\mu} \longrightarrow \quad$ Same evolution as helicity PDF $g_{1}\left(x, Q^{2}\right)$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

PV parton density comes from the structure
$\begin{aligned} \gamma^{5} \gamma^{\mu} & \longrightarrow \quad \text { Same evolution as helicity PDF } g_{1}\left(x, Q^{2}\right) \\ & \text { C-odd }\end{aligned}$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

PV parton density comes from the structure

$$
\begin{aligned}
& \gamma^{5} \gamma^{\mu} \longrightarrow \quad \text { Same evolution as helicity PDF } g_{1}\left(x, Q^{2}\right) \\
& x F_{3}^{j}\left(x, Q^{2}\right)=\sum_{q} C_{q}^{j} x f_{1}^{(q-\bar{q})}
\end{aligned}
$$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

PV parton density comes from the structure

$\gamma^{5} \gamma^{\mu}$	$\longrightarrow \quad$ Same evolution as helicity PDF $g_{1}\left(x, Q^{2}\right)$
	C-odd

$$
x F_{3}^{j}\left(x, Q^{2}\right)=\sum_{q} C_{q}^{j} x f_{1}^{(q-\bar{q})} \quad \Delta x F_{3}^{j}\left(x, Q^{2}\right)=-\sum_{q} C_{q}^{\prime j} x \alpha g_{1}
$$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

PV parton density comes from the structure

$$
\left.\begin{array}{rl}
\gamma^{5} \gamma^{\mu} & \longrightarrow \text { Same evolution as helicity PDF } g_{1}\left(x, Q^{2}\right) \\
\text { C-odd }
\end{array}\right] \begin{aligned}
& \longrightarrow F_{3}^{j}\left(x, Q^{2}\right)=\sum_{q} C_{q}^{j} x f_{1}^{(q-\bar{q})} \quad \Delta x F_{3}^{j}\left(x, Q^{2}\right)=-\sum_{q} C_{q}^{\prime j} x \alpha g_{1}^{(q+\bar{q})}
\end{aligned}
$$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

PV parton density comes from the structure

$$
\begin{aligned}
& \gamma^{5} \gamma^{\mu} \xrightarrow{\longrightarrow} \text { Same evolution as helicity PDF } g_{1}\left(x, Q^{2}\right) \\
& x F_{3}^{j}\left(x, Q^{2}\right)=\sum_{q} C_{q}^{j} x f_{1}^{(q-\bar{q})} \quad \Delta x F_{3}^{j}\left(x, Q^{2}\right)=-\sum_{q} C_{q}^{\prime j} x \alpha g_{1}^{(q+\bar{q})} \\
& F_{2}^{j}\left(x, Q^{2}\right)=\sum_{q} \hat{C}_{q}^{j} x f_{1}^{(q+\bar{q})}
\end{aligned}
$$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

PV parton density comes from the structure
$\gamma^{5} \gamma^{\mu} \longrightarrow$ Same evolution as helicity PDF $g_{1}\left(x, Q^{2}\right)$
C-odd
$x F_{3}^{j}\left(x, Q^{2}\right)=\sum_{q} C_{q}^{j} x f_{1}^{(q-\bar{q})}$
$\Delta x F_{3}^{j}\left(x, Q^{2}\right)=-\sum_{q} C_{q}^{\prime j} x \alpha g_{1}^{(q+\bar{q})}$
$F_{2}^{j}\left(x, Q^{2}\right)=\sum_{q} \hat{C}_{q}^{j} x f_{1}^{(q+\bar{q})}$

$$
\Delta F_{2}^{j}\left(x, Q^{2}\right)=-\sum_{q} \hat{C}_{q}^{\prime j} x \alpha g_{1}^{(q-\bar{q})}
$$

Parameterization of $g_{1}^{P V}\left(x, Q^{2}\right)$

PV parton density comes from the structure

Error propagation

PDF set for

Error propagation

PDF set for
$f_{1}\left(x, Q^{2}\right)$
NNPDF4. 0
Ball et al. (NNPDF), EPJ C 82 (2022)

Error propagation

PDF set for
$f_{1}\left(x, Q^{2}\right)$
$g_{1}\left(x, Q^{2}\right)$

NNPDF4. 0
Ball et al. (NNPDF), EPJ C 82 (2022)
NNPDFpol1. 1
Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

Error propagation

PDF set for

$$
\begin{aligned}
& f_{1}\left(x, Q^{2}\right) \\
& g_{1}\left(x, Q^{2}\right)
\end{aligned}
$$

NNPDF4. 0
Ball et al. (NNPDF), EPJ C 82 (2022)
NNPDFpol1. 1
Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF

Error propagation

PDF set for

$$
\begin{aligned}
& f_{1}\left(x, Q^{2}\right) \\
& g_{1}\left(x, Q^{2}\right)
\end{aligned}
$$

NNPDF4.0
Ball et al. (NNPDF), EPJ C 82 (2022)
NNPDFpol1. 1
Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF
100 MC replicas of helicity PDF

Error propagation

PDF set for

$$
\begin{aligned}
& f_{1}\left(x, Q^{2}\right) \\
& g_{1}\left(x, Q^{2}\right)
\end{aligned}
$$

NNPDF4. 0
Ball et al. (NNPDF), EPJ C 82 (2022)
NNPDFpol1. 1
Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF
100 MC replicas of helicity PDF
100 MC replicas experimental data

Error propagation

PDF set for

$$
\begin{aligned}
& f_{1}\left(x, Q^{2}\right) \\
& g_{1}\left(x, Q^{2}\right)
\end{aligned}
$$

NNPDF4. 0
Ball et al. (NNPDF), EPJ C 82 (2022)
NNPDFpol1. 1
Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF
100 MC replicas of helicity PDF
100 MC replicas experimental data

Error propagation

PDF set for

$$
\begin{aligned}
& f_{1}\left(x, Q^{2}\right) \\
& g_{1}\left(x, Q^{2}\right)
\end{aligned}
$$

NNPDF4. 0
Ball et al. (NNPDF), EPJ C 82 (2022)
NNPDFpol1. 1
Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF
100 MC replicas of helicity PDF
100 MC replicas experimental data

Statistical distribution of

 100 values of parameter α
Results of the fit: χ^{2} values

Fit WITH EW radiative corrections

	N of points	$x^{2} / N_{\text {data }}(\mathrm{SM})$	$X^{2 /} \mathrm{N}_{\text {data }}$ (Fit)
HERA A^{+}	136	1.12	1.12
HERA A^{-}	138	0.98	0.98
JLab6 A^{-}	2	0.67	0.42
SLAC-E122 A^{-}	11	0.97	0.94
TOTAL	287	1.042	1.037

Results of the fit: data-theory comparison

Results of the fit: data-theory comparison

Very small uncertainties in the predictions because the fit is dominated by data with smaller errors

Results of the fit: data-theory comparison

There's room for a better description for positron asymmetry at low- Q

Very small uncertainties in the predictions because the fit is dominated by data with smaller errors

Results of the fit: data-theory comparison

Very small uncertainties in the predictions because the fit is dominated by data with smaller errors

There's room for a better description for positron asymmetry at low- Q

Agreement for electron asymmetry, but too large errors at low-Q

Results of the fit: data-theory comparison

Results of the fit: data-theory comparison

Sizeable improvement of the fit w.r.t. SM predictions

Results of the fit: data-theory comparison

Sizeable improvement of the fit w.r.t. SM predictions

Old dataset with still quite large experimental errors ($>20 \%$)

Results of the fit: data-theory comparison

Sizeable improvement of the fit w.r.t. SM predictions

Old dataset with still quite large experimental errors ($>20 \%$)

Data points which actually drive the fit due to very small experimental errors ($\sim \%$)

Results of the fit: $g_{1}^{P V}\left(x, Q^{2}\right)$ extraction

$$
\begin{gathered}
g_{1}^{\mathrm{PV}}(x)=\alpha g_{1}(x) \\
\alpha=(-1.01 \pm 0.66) \cdot 10^{-4}
\end{gathered}
$$

Conclusions and Outlook

Conclusions and Outlook

- The strong P- violation can give origin to a new structure function in DIS cross section for one-photon exchange

Conclusions and Outlook

- The strong P- violation can give origin to a new structure function in DIS cross section for one-photon exchange
- A fit of present experimental data is compatible with a non-zero contribution from a new strong PV parton density at more than 1 sigma

Conclusions and Outlook

- The strong P- violation can give origin to a new structure function in DIS cross section for one-photon exchange
- A fit of present experimental data is compatible with a non-zero contribution from a new strong PV parton density at more than 1 sigma
- To better investigate its behaviour, new data are needed especially at small (medium) values of Q

Conclusions and Outlook

- The strong P- violation can give origin to a new structure function in DIS cross section for one-photon exchange
- A fit of present experimental data is compatible with a non-zero contribution from a new strong PV parton density at more than 1 sigma
- To better investigate its behaviour, new data are needed especially at small (medium) values of Q
- Experimental data from positron beam are welcome to shed light on the complementarity with electron beam

Conclusions and Outlook

- A different behaviour of the PV parton distribution w.r.t. the variable x can be investigated

Conclusions and Outlook

- A different behaviour of the PV parton distribution w.r.t. the variable x can be investigated

Conclusions and Outlook

- Predictions of the size of the PV distribution can be made in the kinematic domains of JLab12, JLab20+(?) and EIC

Conclusions and Outlook

- Further investigations on a new P-odd, CP-odd distribution function arising when considering the polarisation of the target

$$
\begin{aligned}
\Phi^{q}\left(x, Q^{2}\right)=\{ & f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{\mathrm{PV} q}\left(x, Q^{2}\right) \gamma_{5} \\
& +S_{L}\left(g_{1}^{q}\left(x, Q^{2}\right) \gamma_{5}+f_{1 L}^{\mathrm{PV} q}\left(x, Q^{2}\right)\right) \\
& \left.-\$_{T}\left(h_{1}^{q}\left(x, Q^{2}\right) \gamma_{5}-e_{1 T}^{\mathrm{PV} q}\left(x, Q^{2}\right)\right)\right\} \frac{\not x_{+}}{2}
\end{aligned}
$$

Conclusions and Outlook

- Further investigations on a new P-odd, CP-odd distribution function arising when considering the polarisation of the target

$$
\begin{aligned}
\Phi^{q}\left(x, Q^{2}\right)=\{ & f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{\mathrm{PV} q}\left(x, Q^{2}\right) \gamma_{5} \\
& +S_{L}\left(g_{1}^{q}\left(x, Q^{2}\right) \gamma_{5}+f_{1 L}^{\mathrm{PV} q}\left(x, Q^{2}\right)\right) \\
& \left.-\$_{T}\left(h_{1}^{q}\left(x, Q^{2}\right) \gamma_{5}-e_{1 T}^{\mathrm{PV} q}\left(x, Q^{2}\right)\right)\right\} \frac{\not x_{+}}{2}
\end{aligned}
$$

Conclusions and Outlook

- Further investigations on a new P-odd, CP-odd distribution function arising when considering the polarisation of the target

$$
\begin{aligned}
\Phi^{q}\left(x, Q^{2}\right)=\{ & f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{\mathrm{PV} q}\left(x, Q^{2}\right) \gamma_{5} \\
& +S_{L}\left(g_{1}^{q}\left(x, Q^{2}\right) \gamma_{5}+f_{1 L}^{\mathrm{PV} q}\left(x, Q^{2}\right)\right) \\
& \left.-\$_{T}\left(h_{1}^{q}\left(x, Q^{2}\right) \gamma_{5}-e_{1 T}^{\mathrm{PV} q}\left(x, Q^{2}\right)\right)\right\} \frac{\not x_{+}}{2}
\end{aligned}
$$

$\Delta x_{B} g_{5}\left(x_{B}, Q^{2}\right) \approx \Delta x_{B} g_{5}^{(\gamma)}\left(x_{B}, Q^{2}\right)=\frac{1}{2} \sum_{q} e_{q}^{2} x_{B} f_{1 L}^{\mathrm{PV}(q-\bar{q})}$

