

Modeling spin effects in electron-positron annihilation to hadrons

Albi Kerbizi University of Trieste and INFN Trieste

work done in the context of the POLFRAG project

Semi-inclusive deep inelastic scattering (SIDIS) powerful tool used to study the partonic structure of nucleons

Couples PDFs and fragmentation functions (FFs)

transverse spin structure \rightarrow involves the fragmentation of transversely polarized quarks described by the Collins FF H^{_h}_{1q} *Collins, NPB 396, 161 (1993).*

Semi-inclusive deep inelastic scattering (SIDIS) powerful tool used to study the partonic structure of nucleons

Couples PDFs and fragmentation functions (FFs)

transverse spin structure \rightarrow involves the fragmentation of transversely polarized quarks described by the Collins FF $H_{1q}^{\perp h}$

Collins, NPB 396, 161 (1993).

Example: Collins asymmetry $A_{UT}^{\sin \phi_h + \phi_S - \pi} = \frac{\sum_q e_q^2 h_1^q \otimes H_{1q}^{\perp h}}{\sum_q e_q^2 f_1^q \otimes D_{1q}^h}$ $h_1^q \rightarrow \text{transversity PDF}$ transverse polarization of quarks in a transversely polarized nucleon

Measured by HERMES (p), COMPASS (p,d), Jlab (n)

To extract transversity the Collins FF is needed

Semi-inclusive deep inelastic scattering (SIDIS) powerful tool used to study the partonic structure of nucleons

Couples PDFs and fragmentation functions (FFs)

transverse spin structure \rightarrow involves the fragmentation of transversely polarized quarks described by the Collins FF $H_{1q}^{\perp h}$ *Collins, NPB 396, 161 (1993).*

e⁺e⁻ annihilation to hadrons an important tool to study hadronization

q and \overline{q} have correlated transverse polarizations

 \rightarrow access to Collins FF $H_{1q}^{\perp h}$ via the Collins asymmetry in ${\rm e^+e^-}$

other FFs as well: unpolarized, interference..

Cross section for the production of two back-to-back hadrons h_1 and h_2 Boer, NPB, 806:23-67, 2009 D'Alesio et al., JHEP 10 (2021) 078

e⁺e⁻ annihilation to hadrons

$$\mathrm{d}\sigma^{\mathrm{e}^{+}\mathrm{e}^{-}\to\mathrm{h}_{1}\mathrm{h}_{2}\mathrm{X}} \propto 1 + \frac{\sin^{2}\theta}{1 + \cos^{2}\theta}A_{12}\cos(\phi_{1} + \phi_{2})$$

Collins asymmetry

$$A_{12}(z_1, z_2, P_{T_1}, P_{T_2}) = \frac{\sum_q e_q^2 H_{1q}^{\perp h_1}(z_1, P_{T_1}) \times H_{1\overline{q}}^{\perp h_2}(z_2, P_{T_2})}{\sum_q e_q^2 D_{1q}^{h_1}(z_1, P_{T_1}) \times D_{1\overline{q}}^{h_2}(z_2, P_{T_2})}$$

 $z_i = 2E_{h_i}/\sqrt{s}$

an important tool to study hadronization

q and \overline{q} have correlated transverse polarizations

 \rightarrow access to Collins FF $H_{1q}^{\perp h}$ via the Collins asymmetry in e⁺e⁻

other FFs as well: unpolarized, interference..

Cross section for the production of two back-to-back hadrons h_1 and h_2 Boer, NPB, 806:23–67, 2009

D'Alesio et al., JHEP 10 (2021) 078

$$d\sigma^{e^+e^- \to h_1 h_2 X} \propto 1 + \frac{\sin^2 \theta}{1 + \cos^2 \theta} A_{12} \cos(\phi_1 + \phi_2)$$

Collins asymmetry

$$A_{12}(z_1, z_2, P_{T_1}, P_{T2}) = \frac{\sum_q e_q^2 \ H_{1q}^{\perp h_1}(z_1, P_{T1}) \times H_{1\overline{q}}^{\perp h_2}(z_2, P_{T2})}{\sum_q e_q^2 \ D_{1q}^{h_1}(z_1, P_{T1}) \times \ D_{1\overline{q}}^{h_2}(z_2, P_{T2})}$$

 $z_i = 2E_{h_i}/\sqrt{s}$

many measurements by BELLE, BABAR, BESIII

Used for the extractions of transversity PDFs Anselmino et al, PRD 92 (11) (2015) 114023 Martin et al., PRD 91(1):014034, 2015 Kang et al., PRD 93 (1) (2016) 014009

Benchmark for hadronization models!

...

Modeling hadronization

We have developed a model for the simulation of the fragmentation of a quark with a given polarization \rightarrow string+³P₀ model

AK, Artru, Belghobsi, Bradamante, Martin, PRD 97, 074010 (2018)	PS mesons
AK, Artru, Belghobsi, Martin, PRD 100, 014003 (2019)	PS mesons
AK, Artru, Martin, PRD 104, 114038 (2021)	PS + VM

Implemented in Pythia for SIDIS → StringSpinner

AK, L. Lönnblad, CPC 272 (2022) 108234	PS, Pythia 8.2
AK, L. Lönnblad, arXiv: 2305.05058	PS + VM, Pythia 8.3

In the following slides

i) recall of the string+³P₀ model

ii) recipe for the simulation of $e^+e^- \rightarrow q\bar{q} \rightarrow hadrons$ application of the model to the hadronization of a quarkantiquark pair with correlated spin states

in collaboration with X. Artru

the hadronization of the $q\bar{q}$ pair is described in the string fragmentation framework supplemented with the ³P₀ model of quark tunneling extension of the Lund string Model (Pythia)

AK, Artru, Martin, PRD 104, 114038 (2021)

Genova, June 8, 2023

Albi Kerbizi (Trieste University and INFN)

quark splitting $q \rightarrow h + q'$

Relevant variables:
$\mathbf{k}_{\mathrm{T}} = \mathbf{p}_{\mathrm{T}} + \mathbf{k}_{\mathrm{T}}'$
$Z_{+} = p^{+}/k^{+}$
$\epsilon_h^2 = M^2 + p_T^2$

Transverse vectors defined w.r.t. string axis

AK, Artru, Martin, PRD 104, 114038 (2021)

quark splitting $q \rightarrow h + q'$

Relevant variables:
$\mathbf{k}_{\mathrm{T}} = \mathbf{p}_{\mathrm{T}} + \mathbf{k}_{\mathrm{T}}'$
$Z_{+} = p^{+}/k^{+}$
$\varepsilon_h^2 = M^2 + p_T^2$

Transverse vectors defined w.r.t. string axis

Quark splitting amplitude in the string+³P₀ model $T_{q',h,q} \propto C_{q',h,q} D_h(M^2) \left(\frac{1-Z_+}{\epsilon_h^2}\right)^{\frac{2}{2}} \exp\left[-\frac{\mathbf{b}_{\mathbf{L}}\epsilon_h^2}{2Z_+}\right] N_a^{-\frac{1}{2}}(\epsilon_h^2) e^{-\frac{\mathbf{b}_{\mathbf{T}}k'_{\mathbf{T}}^2}{2}}$ Γ_{h,s_h} $[\boldsymbol{\mu} + \sigma_{z}\boldsymbol{\sigma}_{T} \cdot \mathbf{k'}_{T}]$ ³P_o mechanism Coupling flavor transverse mass [μ complex mass momentum e.g. longitudinal momentum paramter] Free param. Lund (w.r.t string axis) $\Gamma_{h=PS} = \sigma_z$ Free param. string+³P₀

AK, Artru, Martin, PRD 104, 114038 (2021)

Antiquark splitting amplitude in the string+³P₀ model obtained by the quark one by

$$\{q, h, q'\} \rightarrow \{\bar{q}, H, \bar{q}'\}, \qquad Z_+ \rightarrow Z_-, \qquad \{k_T, p_T k'_T\} \rightarrow \{\bar{k}_T, P_T, \bar{k}'_T\}$$

The ingredients needed for e^+e^- annihilation

The recursive recipe for simulating e^+e^- annihilation

Integrate over the emissions of q and \overline{q} and set up the pair no info to q or $\overline{q} \rightarrow \eta(q) = 1_q$, $\eta(\overline{q}) = 1_{\overline{q}}$ i. generate the quark flavors and kinematics using $d\widehat{\sigma}(q\overline{q})/d\cos\theta \propto \left\langle \left|\widehat{M}\right|^2 \right\rangle$

ii. set up the joint spin density matrix $\rho(q, \overline{q}) \propto 1_q \otimes 1_{\overline{q}} - \sigma_q^z \otimes \sigma_{\overline{q}}^z$ $+ \sin^2\theta \, [\sigma_q^x \otimes \sigma_{\overline{q}}^x + \sigma_q^y \otimes \sigma_{\overline{q}}^y]/(1 + \cos^2\theta)$

 $\sigma_{a}^{\alpha} \rightarrow$ Pauli matrices along $\alpha = 0, x, y, z$ in the helicity frame of $a = q, \overline{q}$

The recursive recipe for simulating e^+e^- annihilation

Emit the first hadron the q side

assuming h=PS from

$$\rightarrow \eta(q) = \mathrm{T}_{\mathrm{q}',\mathrm{h},\mathrm{q}}^{\dagger} \,\eta(\mathrm{q}') \,\mathrm{T}_{\mathrm{q}',\mathrm{h},\mathrm{q}}$$

(no info to q' $\rightarrow \eta(q') = 1_{q'}$)

Emission probability density (splitting function)

$$\frac{dP(q \rightarrow h + q'; q\overline{q})}{dZ_{+}Z_{+}^{-1}d^{2}p_{T}} = Tr_{q'\overline{q}}T_{q',h,q}\rho(q,\overline{q}) T_{q',h,q}^{\dagger} = F_{q',h,q}(Z_{+}, p_{T}; k_{T}, C^{q\overline{q}})$$
$$T_{q',h,q} \equiv T_{q',h,q} \otimes 1_{\overline{q}}$$

emission of a vector meson h=VM more involved (but similar steps) \rightarrow see backup

The recursive recipe for simulating e^+e^- annihilation

The recursive recipe for simulating e^+e^- annihilation

Evaluate the spin density matrix $\rho(q'\bar{q})$

$$\rho(q', \bar{q}) = \mathbf{T}_{q',h,q} \,\rho(q, \bar{q}) \mathbf{T}_{q',h,q}^{\dagger}$$
includes the information on the emission of h

Emit a hadron H, e.g. H = PS, from the antiquark $\rightarrow \eta(\bar{q}) = T_{\bar{q}',H,\bar{q}}^{\dagger} \eta(\bar{q}') T_{\bar{q}',H,\bar{q}} \quad (\text{no info to } \bar{q}' \rightarrow \eta(\bar{q}') = 1_{\bar{q}'})$ which gives the emission probability density $\frac{dP(\bar{q} \rightarrow H + \bar{q}'; q'\bar{q})}{dZ_{-}Z_{-}^{-1}d^{2}P_{T}} = Tr_{q'\bar{q}'}T_{\bar{q}',H,\bar{q}} \rho(q',\bar{q}) T_{\bar{q}',H,\bar{q}}^{\dagger} = F_{\bar{q}',H,\bar{q}} (Z_{-}, P_{T}; \bar{k}_{T}, C^{q'\bar{q}})$ conditional probability of emitting H, having emitted h $\rightarrow \text{ correlations between their transverse momenta}$ [Collins NPB, 304:794–804, 1988, Knowles NPB, 310:571–588, 1988] The recursive recipe for simulating e^+e^- annihilation: exit condition

After several emissions hadronize the last pair $q_l \overline{q}_L$ joint spin-density matrix $\rho(q_l, \overline{q}_L)$

Emit the hadron $h = q_1 \overline{q}'$ from q_l and project $\overline{q}_L q'$ to the state H

 $dP(q_{l} \rightarrow h + q'; q_{l}\bar{q}_{L}) = Tr_{q'\bar{q}_{L}} \left[T_{q',h,q_{l}} \otimes \Gamma_{H,s_{H}} \right] \quad \rho(q_{l},\bar{q}_{L}) \quad \left[T_{q',h,q_{l}}^{\dagger} \otimes \Gamma_{H,s_{H}}^{\dagger} \right]$

or emit the hadron $H = q' \bar{q}_L$ from \bar{q}_L and project $q_l \bar{q}'$ to the state *h*

Application of the recipe to the first two hadrons produced

Application of the recipe to $e^+e^- \rightarrow h H X$ h = PS and H = PS being the first two hadrons produced

$$dP(e^+e^- \to h H X) = \widehat{\sigma}^{-1} \frac{d\widehat{\sigma}}{d\cos\theta} \times F_{q',h,q}(Z_+, \mathbf{p}_T; \mathbf{k}_T, C^{q\overline{q}}) \times F_{\overline{q}',H,\overline{q}}(Z_-, \overline{\mathbf{p}}_T; \overline{\mathbf{k}}_T, C^{q'\overline{q}})$$

$$Prob(e^+e^- \to q\overline{q}) \quad Prob(q \to h + q') \qquad Prob(\overline{q} \to H + \overline{q}'; q \to h + q')$$

$$\propto (1 + \cos^2 \theta) \times (...) \times \left[1 + \frac{\sin^2 \theta}{1 + \cos^2 \theta} \frac{2 \mathrm{Im}(\mu) \mathrm{p}_{\mathrm{T}}}{|\mu|^2 + \mathrm{p}_{\mathrm{T}}^2} \frac{2 \mathrm{Im}(\mu) \mathrm{P}_{\mathrm{T}}}{|\mu|^2 + \mathrm{P}_{\mathrm{T}}^2} \cos(\phi_{\mathrm{h}} + \phi_{\mathrm{H}})\right]$$

expected form for the azimuthal distribution of back-to-back hadrons!

For quantitative results and phenomenology \rightarrow implementation of the model in Pythia 8.3 for of $e^+e^- \rightarrow$ hadrons

we are extending the StringSpinner package (currently for SIDIS) to simulate also e^+e^-

ongoing work in collaboration with L. Lönnblad and A. Martin

Example of simulation results with Pythia 8.3

Collins asymmetry for back-to-back π^+ and π^- in $e^+e^- \rightarrow u\bar{u} \rightarrow \pi^+\pi^-X$ at $\sqrt{s} = 10$ GeV only PS mesons in simulations

Conclusions

We generalized the string+³P₀ model of hadronization to $e^+e^- \rightarrow q\bar{q} \rightarrow hadrons$ recursive quantum mechanical recipe

The recipe is general, independent on the production mechanism of the $q\bar{q}$ pair

The implementation in Pythia 8.3 is ongoing preliminary Collins asymmetry for back-to-back pions is as expected

(More) phenomenological studies ongoing the goal is to publish the results in few months..

Backup

Relevant free parameters for string fragmentation used in simulations

(see AK, L. Lönnblad, arXiv: 2305.05058)

Pythia parameters		
StringZ:aLund	defa	ult
StringZ:bLund	defa	ult
StringPT:sigma	defa	ult
StringPT:enhancedFraction	0.0	
StringPT:enhancedWidth	0.0	GeV/c

String+³P₀ parameters Re(μ)

$\operatorname{Re}(\mu)$		
$Im(\mu)$		
f_L		
θ_{LT}		

0.42 GeV/c² 0.76 GeV/c² 0.93 0

The recursive recipe for simulating e^+e^- annihilation: VM emission

For a vector meson h=VM

$$\rightarrow \eta(q) = \mathbf{T}_{q',h=VM,q}^{a\prime\dagger} \,\eta(q') \,\mathbf{T}_{q',h=VM,q}^{a} \mathcal{D}_{a'a'} \,\eta(q') = \mathbf{1}_{q'} \text{ and } \eta(\bar{q}) = \mathbf{1}_{\bar{q}}$$

Steps:

i) Emission probability density (summing over decay information, i.e. $D_{a'a} = \delta_{a'a}$) $\frac{dP(q \rightarrow h = VM + q'; q\bar{q})}{dM^2 dZ_+ Z_+^{-1} d^2 p_T} = Tr_{q'\bar{q}} T_{q',h,q}^a \ \rho(q,\bar{q}) \ T_{q',h,q}^{a\dagger} = F_{q',h,q}(M^2, Z_+, p_T; k_T, C^{q\bar{q}})$ ii) Calculate the spin density matrix of h=VM, and decay the meson $\rho_{aa'}(h) = Tr_{q'\bar{q}} T_{q',h,q}^a \ \rho(q,\bar{q}) \ T_{q',h,q}^{a'\dagger}$ iii) Decay the meson $p \rightarrow p_1 p_2$.. $dN(p_1, p_2..)/d\Omega \propto M_{dec.}^a(p \rightarrow p_1 p_2..) \ \rho_{aa'}(h)M_{dec}^{\dagger a'}(p \rightarrow p_1 p_2..)$

iv) Build the decay matrix $D_{a'a}(p_1, p_2, ...) = M_{dec.}^{\dagger a'}(p \rightarrow p_1 p_2...) M_{dec.}^a(p \rightarrow p_1 p_2...)$

Genova, June 8, 2023