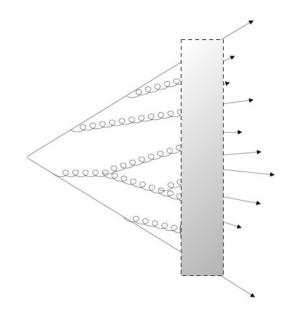
B-jet Fragmentation Measurements using the ATLAS Detector

Carlo Schiavi

on behalf of the ATLAS Collaboration



Abstract

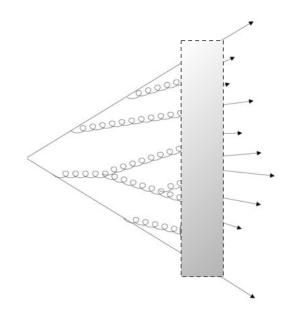
Accurate modelling of the *b*-jet fragmentation is a crucial measurements at the LHC

- interesting measurement per se,
 testing QCD predictions / MC models
- ★ systematics in b-jet identification, used by many analyses to select signal events and reject background

Results presented here (13 TeV / 139 fb⁻¹)

* measurement of fragmentation properties using $B^{\pm} \rightarrow J/\Psi + K^{\pm}$ decays

Measurement of *b*-quark fragmentation properties in jets using the decay $B^{\pm} \rightarrow J/\psi K^{\pm}$ in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector


JHEP 12 (2021) 131

DOI: 10.1007/JHEP12(2021)131

Abstract

Accurate modelling of the *b*-jet fragmentation is a crucial measurements at the LHC

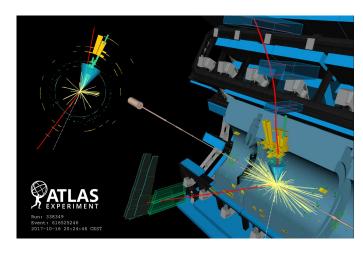
- interesting measurement per se,
 testing QCD predictions / MC models
- ★ systematics in b-jet identification, used by many analyses to select signal events and reject background

Results presented here (13 TeV / 36 fb⁻¹)

* charged-particle fragmentation observables measured in events with top quark pairs

Measurements of jet observables sensitive to b-quark fragmentation in $t\bar{t}$ events at the LHC with the ATLAS detector

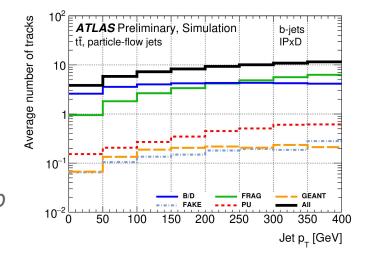
Phys.Rev.D 106 (2022) 032008 DOI: 10.1103/PhysRevD.106.032008

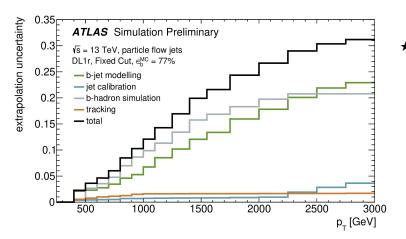

Physics Analysis point of view

Many physics analyses affected by heavy quark fragmentation modelling

- ⋆ Higgs boson, top quark, their associated production
- ★ Uncertainties on modelling can be a limiting factor for precision measurements (top mass)
- * Extends to future searches, e.g. $HH\rightarrow 4b$

Adapting MC description for LHC


- ★ Mostly tuned on measurements in e⁺e⁻ collisions
- ⋆ Differences at LHC
 - higher center-of-mass energy
 - no well-defined partonic center-of-mass or energy scale (focus on final state)
 - complex color flow in hadron-collider processes affects fragmentation observables
 - → crucial to investigate more with specific LHC measurements



Flavour Tagging point of view (where my heart beats)

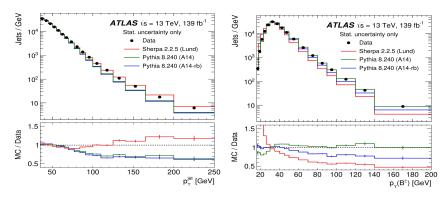
Flavour Tagging identifies jets from heavy quarks

- ★ largely based on charged particle tracks
 - → tracks from fragmentation play a key role
- * uses discriminants directly tied to fragmentation
 - \rightarrow e.g. fraction of jet energy carried by tracks from b

- * calibrations required at high p_{τ} (e.g. searches)
 - → no data available for direct calibration
 - → MC-based extrapolation uncertainty
 - → leading contributions from MC modelling (fragmentation plays a big role here)

The approach

- \star reconstruct jets with anti- k_{T} on PFlow objects and R=0.4 \to measure momentum p_{j}
- * find $B^{\pm} \rightarrow J/\Psi(\mu\mu) + K^{\pm}$ candidates in the jets \rightarrow measure momentum p_B


Muons: $p_{\rm T} > 6 \text{ GeV}$

 $2 \text{ GeV} < m_{\mu\mu} < 9 \text{ GeV}$

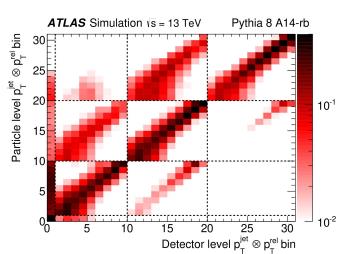
Kaon: $p_{\rm T} > 4 \, {\rm GeV}$

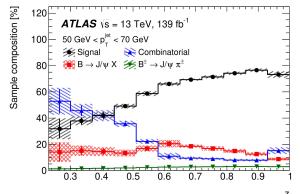
common vertex $\chi^2/N_{\rm dof} < 2.0$

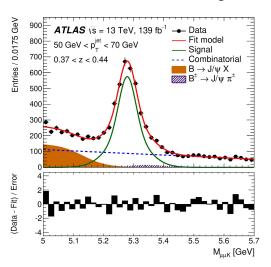
Cuts on masses and B pseudo-proper lifetime

* build longitudinal (z) and transverse (p_{τ}^{rel}) momentum profiles; compare with MC

$$z = \frac{\vec{p}_B \cdot \vec{p}_j}{|\vec{p}_i|^2} \qquad p_T^{\text{rel}} = \frac{|\vec{p}_B \times \vec{p}_j|}{|\vec{p}_i|}$$

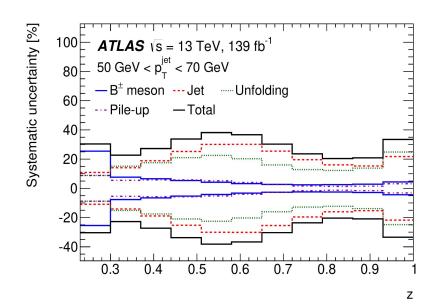

★ caveats: sensitive to fragmentation, but also other MC choices (e.g. ME and PS) and presence of gluon splitting (not always resolved into two different b-jets)

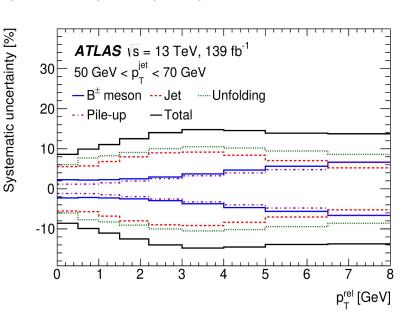

Binning


- ★ three jet p_T bins above 50 GeV
- * adjusted range / bins for z, p_T^{rel}

Handling backgrounds

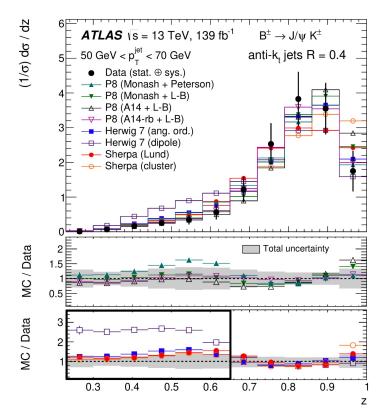
★ binned ML fit to the invariant $0^{\frac{1}{10.3}} \cdot \frac{1}{0.4} \cdot \frac{1}{0.5} \cdot \frac{1}{0.6} \cdot \frac{1}{0.7} \cdot \frac{1}{0}$ mass of B^{\pm} candidates \rightarrow extract sample composition




Unfolding B[±] candidates and jets at particle level

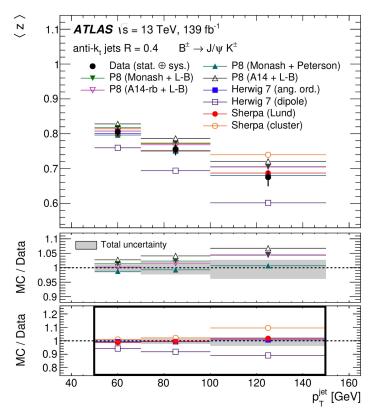
- * correct detector inefficiency and resolution
- ★ migration matrix obtained with bayesian unfolding to Pythia 8 samples
- * larger migrations observed for p_T^{rel}

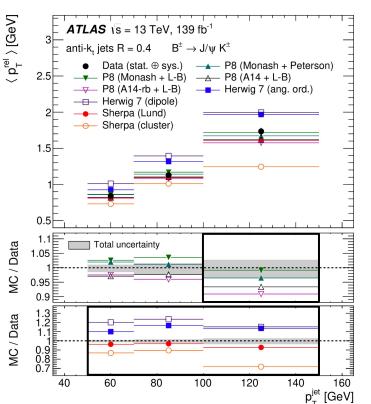
Systematics grouped in four categories


- \star identification of B^{\pm} mesons: includes muon reco calibration and fit for purity
- * jet reconstruction: includes JES, JER, angular resolution and jet vertex tagging
- * unfolding procedure: includes uncertainty and mismodelling for the MC reference
- * pile-up: includes effects due to the MC description of pile-up dependence

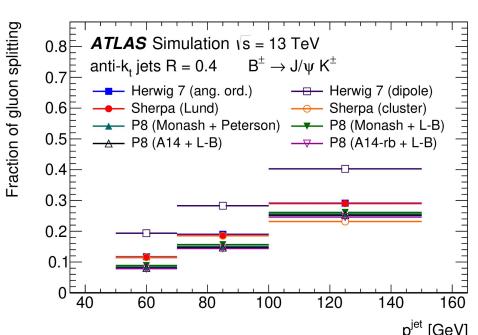


Differential measurements in z and p_{τ}^{rel}


* large deviations from data for Herwig 7 and Sherpa (cluster)



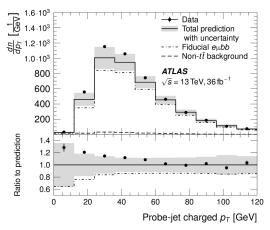
Average z and p_T^{rel} values as a function of jet p_T


 \star mismodelling as large as 10% in some bins for all generators, especially at high $p_{_T}$

Reminder: measurement affected by the presence of gluon splitting to beauty pairs

- \star fraction of gluon splittings very differently modelled and increasing with jet p_T
- * this affects fragmentation-sensitive variables, e.g. enhancing low z values
- ★ can at least partly explain the observed discrepancies (e.g. for Herwig 7 dipole)

The approach

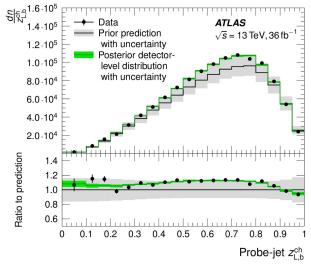

* use tt events, large source of b-jets \rightarrow b-tag anti- k_T jets using calo clusters and R=0.4

Di-leptonic tt events: require opposite sign μ and e + exactly two jets with $\Delta R > 0.5$ Two-way tag-and-probe: if one jet is b-tagged, apply cuts and measure properties on the other

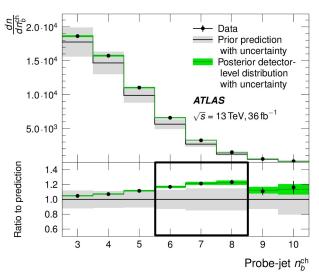
- * reconstruct secondary vertex in probe-jet → charged-component proxy for B-hadron
- ★ build variable-radius track jet within the probe-jet → charged-component of the jet
- \star measure charged momenta of jet and B-hadron \to extract fragmentation variables

$$z_{\mathrm{L},b}^{\mathrm{ch}} = \frac{\vec{p}_b^{\mathrm{ch}} \cdot \vec{p}_{\mathrm{jet}}^{\mathrm{ch}}}{|p_{\mathrm{jet}}^{\mathrm{ch}}|^2}$$

$$z_{\mathrm{T},b}^{\mathrm{ch}} = \frac{p_{\mathrm{T},b}^{\mathrm{ch}}}{p_{\mathrm{T,jet}}^{\mathrm{ch}}}$$

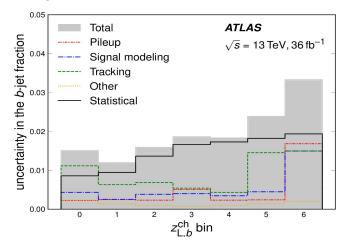


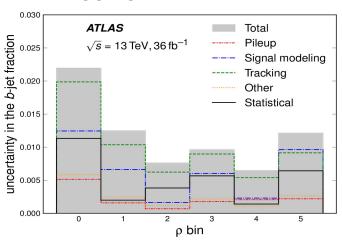
- ★ compare kinematic of B-hadron and tt system (leptons as proxy)
- ★ build variable sensitive to radiation in the top decay


$$\rho = \frac{2p_{\mathrm{T},b}^{\mathrm{cn}}}{p_{\mathrm{T}}^{e} + p_{\mathrm{T}}^{\mu}}$$

Correcting for detector effects, backgrounds and unfolding to particle level

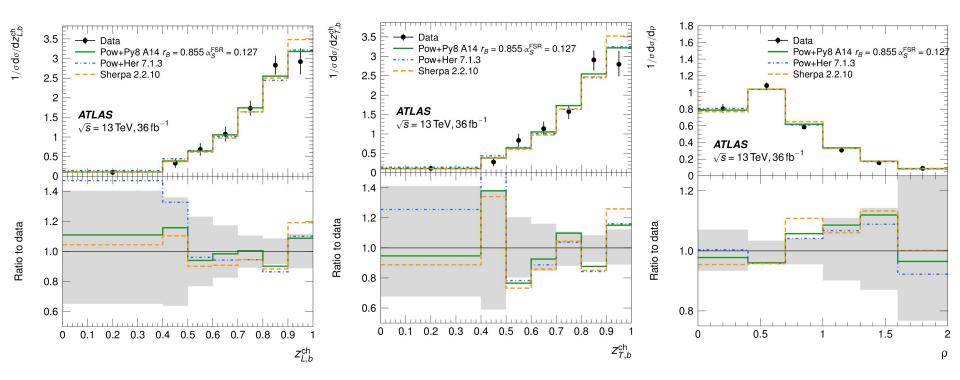
- * all tasks performed in a single pass, using Fully Bayesian Unfolding
- * also allows comparison of prior and posterior detector-level simulation w.r.t. data


reasonable agreement between posterior detector-level simulation and data for main variables of interest

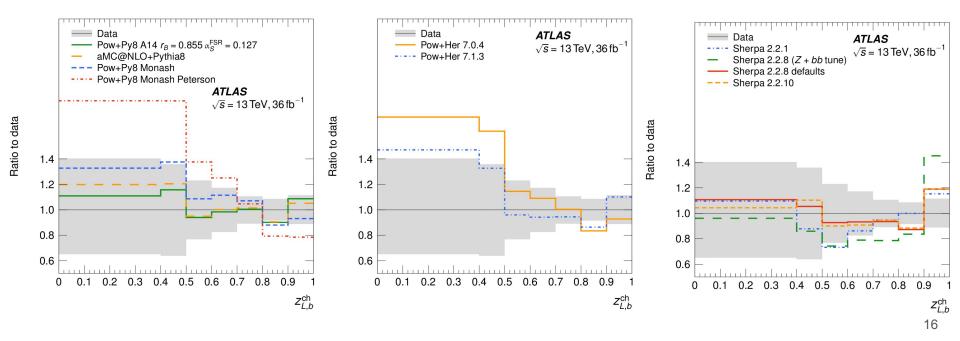

- ★ larger difference for number of tracks at the secondary vertex
- extra syst: reweight n_bch in MC to data 13

Systematics grouped in four categories

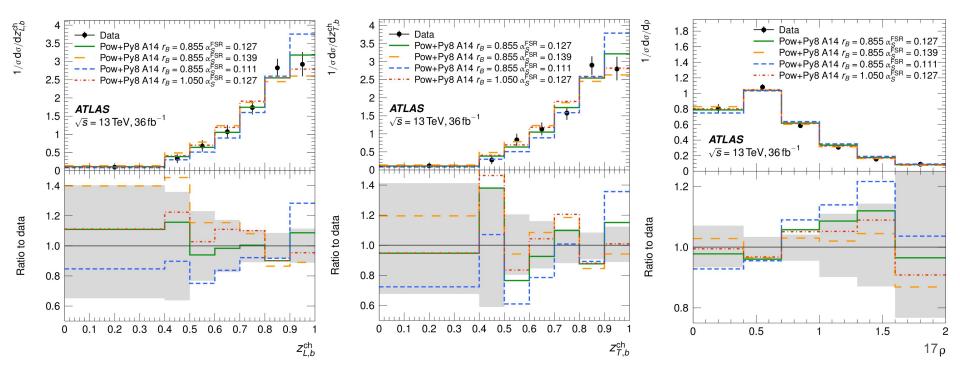
- * modelling: variations in PS, ISR, FSR, B species, data-MC scalings on jet p_T and n_B^{ch}
- * tracking: from data-MC differences in alignment, track efficiency, fakes, IP resolution
- * pile-up: includes effects due to the MC description of pile-up dependence
- * other experimental sources: includes jet and flavour tagging calibrations


statistical uncertainty dominates
 for fragmentation variables

tracking uncertainty dominates
 for event-level variables


Results for widely-used generator configurations

- * good agreement for all models on fragmentation-related and event-wide variables
- ⋆ largest (but still small) deviations observed for Powheg+Herwig


Results for different generator versions and tunes

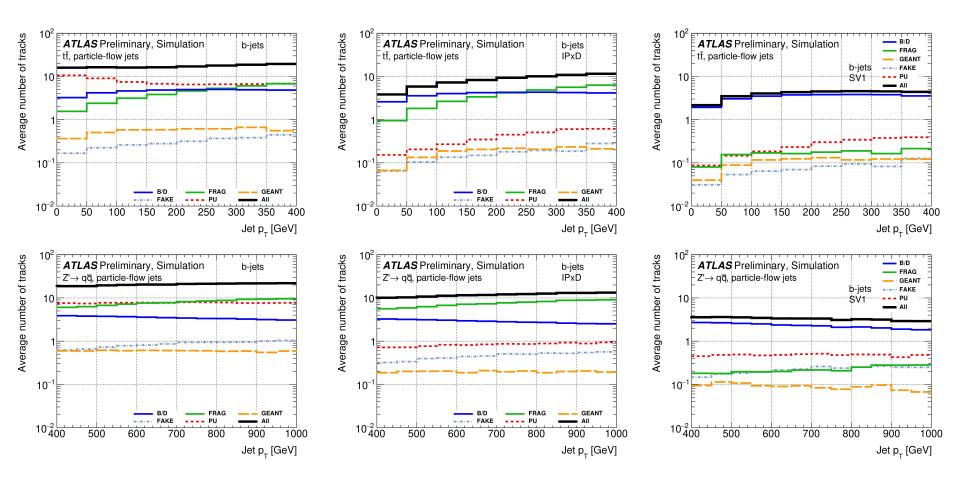
- ⋆ good agreement with data for different Powheg+Pythia configs, except Peterson tune
- ⋆ general improvements in newer versions for Powheg+Herwig and Sherpa

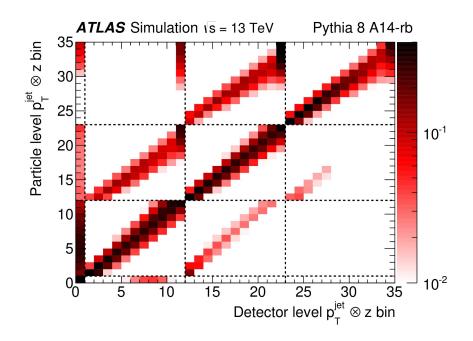
Results for different values of non-perturbative MC parameters in Pythia 8

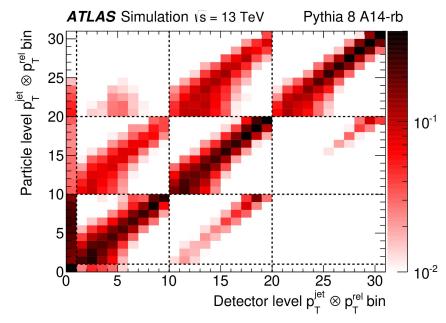
- \star test the effect of modifying $\alpha_{\rm s}^{\rm FSR}$ and b-quark mass re-scaling parameter $r_{\rm B}$
- * A14 Pythia 8 tune variations provide good uncertainty envelope for b fragmentation

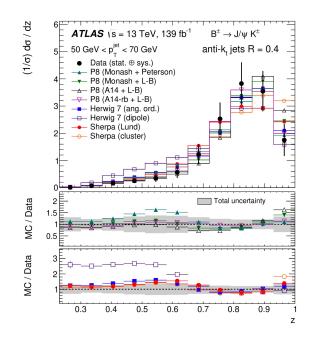
Summarizing

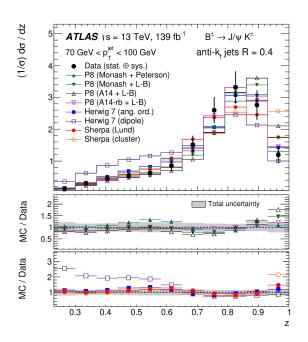
Exclusive and inclusive studies of fragmentation observables are a powerful tool

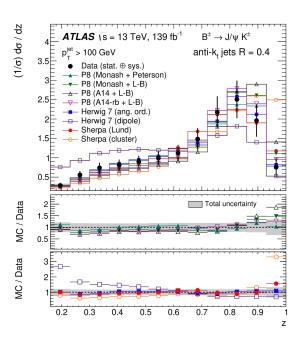

- * validate the application of measurements in e^+e^- collisions to LHC
- * enable to spot models and tunes leading to large discrepancies with data
- * allow to determine reasonable tune variations to build modelling systematics

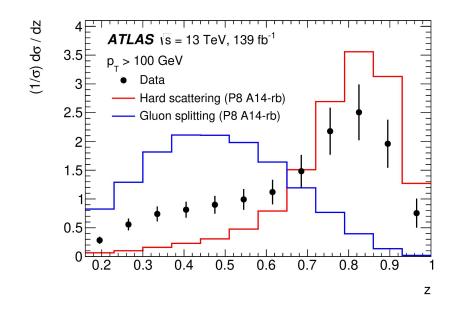

Feedback welcome

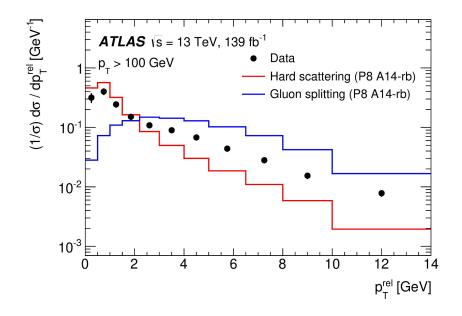

- ⋆ possibly more models to compare with observables measured in data
- * new ideas on **building observables** sensitive to fragmentation of heavy quarks


BACKUP


Fragmentation tracks







Generator	ME order	Scales $\mu_{\rm r}$, $\mu_{\rm f}$	Parton shower	PDF set	Tune	Hadronisation
Рутніа 8	2 → 2 @ LO	$(m_{\text{T3}} \cdot m_{\text{T4}})^{\frac{1}{2}}$	$p_{ m T}$ -ordered	CTEQ6L1	A14 A14-rb	Lund–Bowler Lund–Bowler
				NNPDF2.3	Monash	Lund–Bowler Peterson
Sherpa	2 → 2 @ LO	H(s,t,u)	CSS (dipole)	CT14	_	Cluster model Lund string model
Herwig 7	2 → 2 @ LO	$\sqrt{\frac{2stu}{s^2+t^2+u^2}}$	Angle-ordered Dipole	MMHT2014	_	Cluster model

tī events

	Events with $e\mu jj \ (\geq 1 \ b$ -tag)	Probe-jets			
Process	Predicted yields				
Fiducial <i>tī</i>	_	44000 ± 9000			
Nonfiducial <i>tt</i>	_	6700 ± 1500			
Total $t\bar{t}$	76000 ± 12000	51000 ± 9000			
Single top	4400 ± 1500	1580 ± 600			
Z+jets	125 ± 45	13.0 ± 5.1			
Diboson	90 ± 34	9.7 ± 3.9			
Total non-tī	4600 ± 1600	1600 ± 600			
<i>b</i> -jets	_	52000 ± 9000			
c-jets	_	180 ± 60			
Other jets	_	250 ± 70			
Total prediction	81000 ± 13000	53000 ± 9000			
	Observed yields				
Data	88511	57476			