

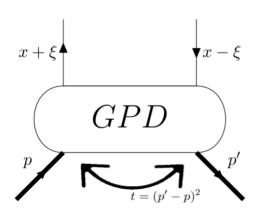
Deeply Virtual Compton Scattering on proton and neutron from deuterium with CLAS12 at Jefferson Lab

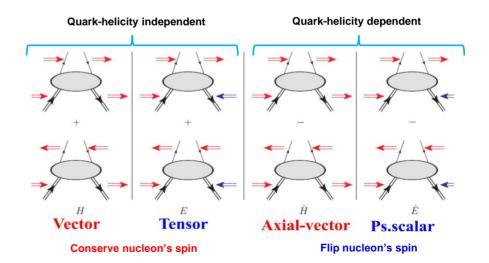
Adam HOBART, Silvia Niccolai on behalf of the CLAS collaboration

HADRON2023 5-9 June 2023, Genova, Italy

GPDs

Belitsky, Radyushkin, Physics Reports, 2005


- QCD at low energies: non perturbative regime
 - Need structure functions to describe nucleon structure

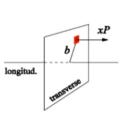

GPDs

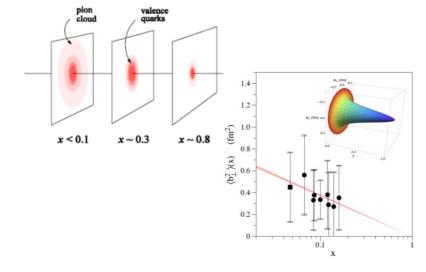
07/06/2023

Correlation of transverse position and longitudinal momentum of partons in the nucleon & the spin structure - through Ji's sum rule x. Ji, Phy.Rev.Lett.78,610(1997)

- GPDs can be accessed through exclusive leptoproduction reactions
- At leading order QCD, chiral-even (quark helicity is conserved), quark sector: 4 GPDs for each quark flavor H, \widetilde{H}, E and \widetilde{E}
- GPDs depend on x, ξ and t = $(p' p)^2$

Why are GPDs important?


• GPDs: Fourier transforms of non-local, non-diagonal QCD operators


Nucleon tomography

M. Burkardt, PRD 62, 71503 (2000)

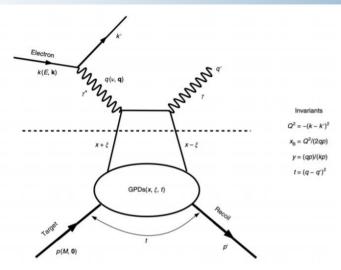
$$q(x, \mathbf{b}_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp} \mathbf{b}_{\perp}} H(x, 0, -\Delta_{\perp}^{2})$$

$$\Delta q(x, \mathbf{b}_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp} \mathbf{b}_{\perp}} \widetilde{H}(x, 0, -\Delta_{\perp}^{2})$$

R. Dupré, M. Guidal, M. Vanderhaeghen, PRD95, 011501 (2017)

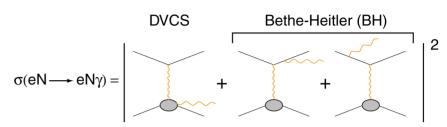
Quark angular momentum

X. Ji, Phy.Rev.Lett.78,610(1997)


$$\frac{1}{2} \int_{-1}^{1} x dx (H(x, \xi, t = 0) + E(x, \xi, t = 0)) = J = \frac{1}{2} \Delta \Sigma + \Delta L$$

Nucleon spin: $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta L + \Delta G$

- The intrinsic spin of the quarks can not explain the origin of the spin of the nucleon (nucleon Spin Crisis)
- Intrinsic spin of the gluons
- GPDs: quantify the contribution of orbital angular momentum of quarks to the nucleon spin


Deeply Virtual Compton Scattering of leptons off nucleons

- DVCS allows access to 4 complex GPDs-related quantities:
 - Compton Form Factors (x, ξ, t) (CFFs)

$$\mathcal{H} = \sum_{q} e_{q}^{2} \left\{ i \pi \left[H^{q}(\xi, \xi, t) - H^{q}(-\xi, \xi, t) \right] + \mathcal{P} \int_{-1}^{1} dx H^{q}(x, \xi, t) \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right] \right\}$$

x can not be accessed experimentally by DVCS:
 Models needed to map the x dependence

BH is purely electromagnetic and parametrised by FFs

- Experimentally measured observables:
 - Sensitive to the DVCS-BH interference part (linear in CFFs)
 - Should have: Beam polarized and/or target polarized
 - Access to a combinations of CFFs
 - The separation of CFFs requires the measurement of several observables
 - Depending on the target (proton or neutron): different sensitivity to the CFFs (GPDs)
 - The flavor separation of GPDs requires measurements on both nucleons

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \left[4(H,E)_{p}(\xi,\xi,t) - (H,E)_{n}(\xi,\xi,t) \right]$$

$$(H,E)_{d}(\xi,\xi,t) = \frac{9}{15} \left[4(H,E)_{n}(\xi,\xi,t) - (H,E)_{p}(\xi,\xi,t) \right]$$

Deeply Virtual Compton Scattering: physics observables and their link to CFFs

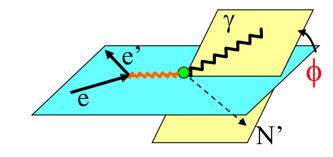
Different contributions from F_1 and F_2 for the different nucleons

Observable	Proton	Neutron
$\Delta\sigma_{LU}$	$\Im\{\boldsymbol{H_p},\widetilde{H}_p,E_p\}$	$\Im\{H_n,\widetilde{H}_n, \pmb{E_n}\}$
$\Delta\sigma_{UL}$	$\Im\{H_p,\widetilde{H}_p\}$	$\Im\{\boldsymbol{H_n}, E_n\}$
$\Delta\sigma_{LL}$	$\Re\{H_p,\widetilde{H}_p\}$	$\Re\{\boldsymbol{H_n}, E_n\}$
$\Delta\sigma_{UT}$	$\Im\{H_p, E_p\}$	$\Im\{H_n\}$

Polarized beam, unpolarized taget

$$\Delta \sigma_{LU} \sim \sin(\phi) \Im \{F_1 \mathbf{H} + \xi (F_1 + F_2) \widetilde{\mathbf{H}} - k F_2 \mathbf{E} + \dots \}$$

Unpolarized beam, polarized target


$$\Delta \sigma_{UL} \sim \sin(\phi) \Im \left\{ F_1 \widetilde{\boldsymbol{H}} + \xi (F_1 + F_2) \left(\boldsymbol{H} + \frac{x_b}{2} \boldsymbol{E} \right) - \xi k F_2 \widetilde{\boldsymbol{E}} \right\}$$

polarized beam, longitudinal polarized target

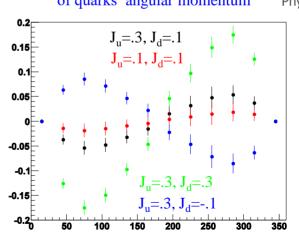
$$\Delta \sigma_{LL} \sim (A + B \cos(\phi)) \Re \{F_1 \widetilde{\boldsymbol{H}} + \xi (F_1 + F_2) \left(\boldsymbol{H} + \frac{x_b}{2} \boldsymbol{E}\right) + \dots \}$$

unpolarized beam, transverse polarized target

$$\Delta \sigma_{UT} \sim \cos(\phi) \sin(\phi_s - \phi) \Im\{k(F_2 \mathbf{H} - F_1 \mathbf{E}) + ...\}$$

Deeply Virtual Compton Scattering: physics observables and their link to CFFs

Different contributions from F_1 and F_2 for the different nucleons

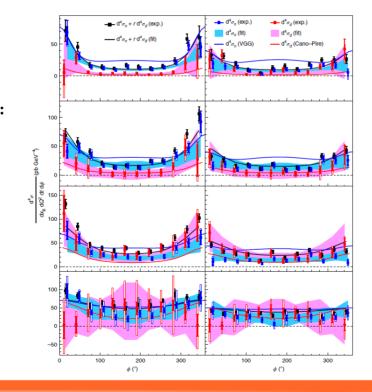

- DVCS with an unpolarized deuterium target :
- Scattering off neutron (nDVCS): GPD E
 - Determination of Ji sum rule
 - Contribution of orbital angular momentum of quarks to the nucleon spin

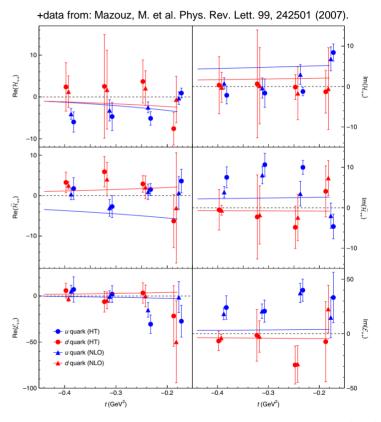
$$\boxed{\frac{1}{2} \int_{-1}^{1} x dx (H(x, \xi, t = 0) + E(x, \xi, t = 0)) = J = \frac{1}{2} \Delta \Sigma + \Delta L}$$

- Scattering off proton (pDVCS): GPD H
 - Quantify medium effects
 - Essential for the extraction of BSA of a "free" neutron (deconvoluting medium effect via comparison with DVCS on hydrogen target)
- The BSA for nDVCS:
 - is complementary to the TSA for pDVCS on transverse target, aiming at E
 - depends strongly on the kinematics → wide coverage needed
 - is smaller than for pDVCS → more beam time needed to achieve reasonable statistics

Observable	Proton	Neutron
$\Delta\sigma_{LU}$	$\Im\{\pmb{H_p},\widetilde{H}_p,E_p\}$	$\Im\{H_n,\widetilde{H}_n,\pmb{E_n}\}$
$\Delta\sigma_{UL}$	$\Im\{H_p,\widetilde{H}_p\}$	$\Im\{H_n, E_n\}$
$\Delta\sigma_{LL}$	$\Re\{H_p,\widetilde{H}_p\}$	$\Re\{\boldsymbol{H_n}, E_n\}$
$\Delta\sigma_{UT}$	$\Im\{H_p, E_p\}$	$\Im\{H_n\}$

Model predictions (VGG) for different values of quarks' angular momentum Phys. Rev. D **60**, 094017

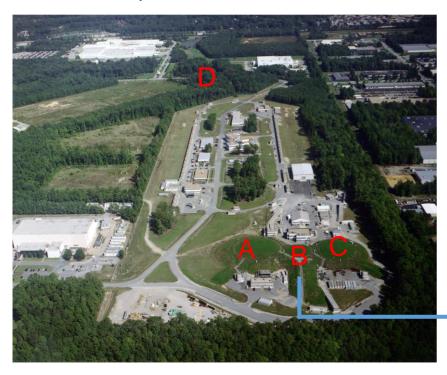


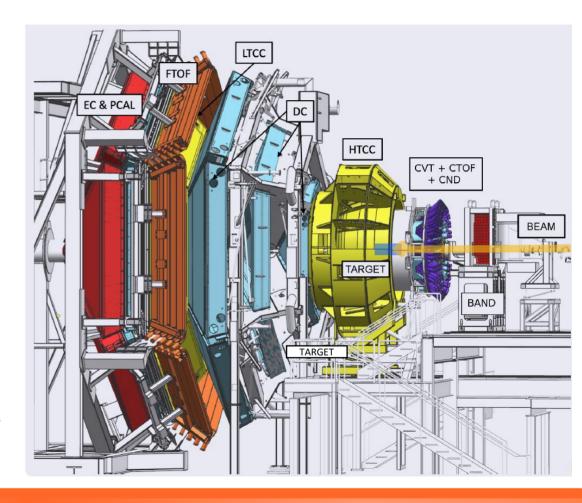

Deeply Virtual Compton Scattering with an unpolarized deuterium target

- Previous pioneering measurement of nDVCS (Jlab Hall A @ 6 GeV)
 - Beam-energy « Rosenbluth » separation of nDVCS CS using an LD2 target and two different beam energies
 - First observation of non-zero nDVCS CS

No neutron detection
$$D(e, e'\gamma)X - H(e, e'\gamma)X = n(e, e'\gamma)n + d(e, e'\gamma)d + \dots$$

One measured kinematical point: $Q^2=1.9 \text{ GeV}^2 \text{ and } x_R=0.36$

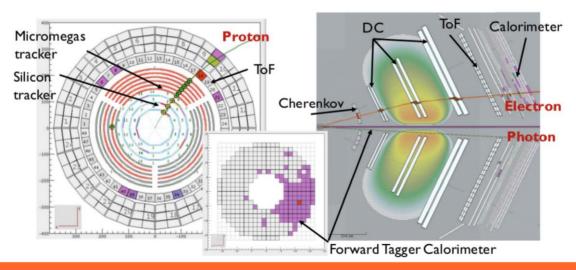

Benali, M., Desnault, C., Mazouz, M. et al. Nat. Phys. 16, 191–198 (2020)



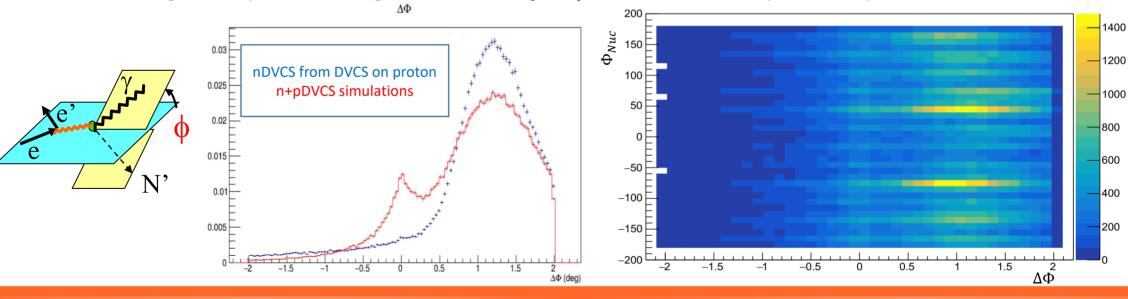
The CEBAF and CLAS12 at Jefferson Laboratory

Continuos Electron Beam Accelerator Facility

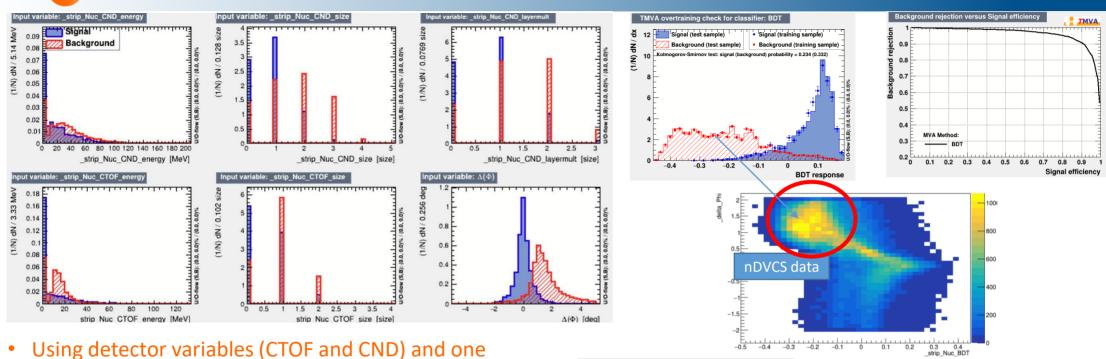
- Up to 12 GeV electrons
- Two anti-parallel linacs, with recirculating arcs on both ends
- 4 experimental halls

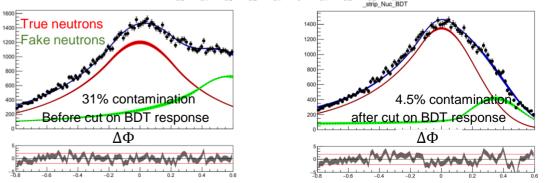


CLAS12: DVCS with an unpolarized deuterium target


- A 10.6/10.4/10.2 GeV electron beam
 - With an average polarization of 86%
 - Scattering off an unpolarized Liquid Deuterium target of 5 cm length
- The exclusivity of the event is ensured by:
 - Electron detection: Cerenkov detector, drift chambers and electromagnetic calorimeter
 - Photon detection: sampling calorimeter or a small PbWO4-calorimeter close to the beamline
 - Proton detection: Silicon and Micromegas detector OR Neutron detection: Central Neutron Detector
- For Neutron Detection:
 - Machine Learning techniques are applied to improve the Identification and reduce charged particle contamination

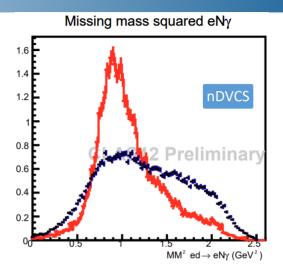
Improving the neutron selection with ML techniques

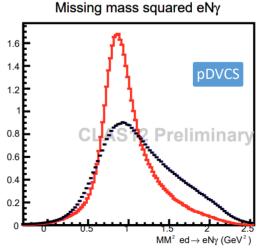

- The tracking of the CVT is neither 100% efficient nor uniform
- In the dead regions of the CVT protons have no associated track and thus can be misidentified as neutrons
- Protons roughly account for more than >40% contamination in the "nDVCS" signal sample
- Current approach, based on Machine Learning & Multi-Variate Algorithms:
 - We reconstruct nDVCS from DVCS experiment on proton requiring neutron PID: selected neutron are misidentified protons
 - We use this sample to determine the characteristics of fake neutrons in low- and high-level reconstructed variables
 - Based on those characteristics we subtract the fake neutrons contamination from nDVCS
 - As a « signal » sample in the training of the ML we use $ep \to ep\pi^+$ events from DVCS experiment on proton



Improving the neutron selection with ML techniques

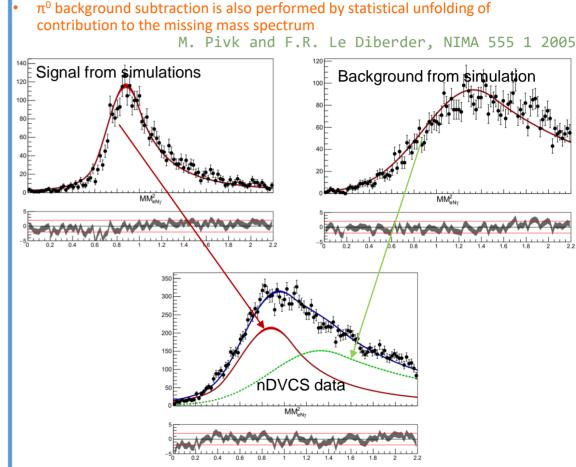
Under internal review


- Using detector variables (CTOF and CND) and one exclusivity variable ($\Delta\Phi$)
- Directly trained on data
- Better optimization of signal to background ratio than straight cuts
- Few percent irreducible contamination is to be taken as a systematic on the BSA



CLAS12: DVCS with an unpolarized deuterium target

- The nDVCS (pDVCS) final state is selected with the following exclusivity criteria: (N:nucleon)
 - Missing mass
 - ed \rightarrow eN γ X
 - $e N \rightarrow e N \gamma X$
 - $e N \rightarrow e N X$
 - Missing momentum
 - $ed \rightarrow eNvX$
 - ΔΦ, Δt, θ(γ,X)
 - Difference between two ways of calculating Φ and t
 - Cone angle between measured and reconstructed photon
- Exclusivity selection is optimized with a 4-D χ^2 -like distribution including $\Delta\Phi$, Δt , $\theta(\gamma, X)$ and missing mass $e N \rightarrow e N X$

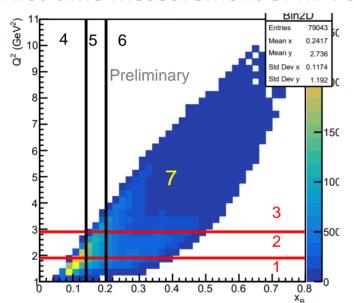

 π^0 background contamination is estimated using simulations

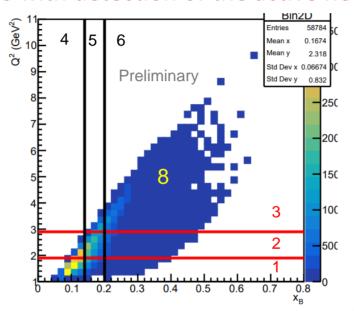
π^0 background subtraction

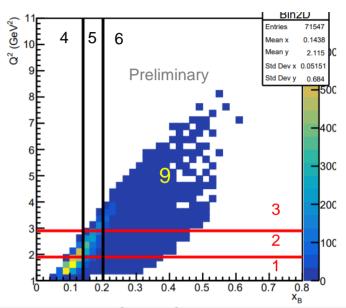
- Subtraction using simulations of the background channel
 - Monte Carlo simulations:
 - GPD-based event generator for DVCS/pi0 on deuterium
 - DVCS amplitude calculated according to the BKM formalism
 - Fermi-motion distribution evaluated according to Paris potential
- 1. Estimate the ratio of partially reconstructed eN $\pi^0(1 \text{ photon})$ decay to fully reconstructed eN π^0 decays in MC
- 2. This is done for each kinematic bin to minimize MC model dependence
- 3. Multiply this ratio by the number of reconstructed eN π^0 in data to get the number of eN $\pi^0(1$ photon) in data
- 4. Subtract this number from DVCS reconstructed decays in data per each kinematical bin

Simulations:
$$R = \frac{N(eN\pi_{1\gamma}^0)}{N(eN\pi^0)}$$

Data: $N(eN\pi_{1\gamma}^0) = R * N(eN\pi^0)$
 $N(DVCS) = N(DVCS_{recon}) - N(eN\pi_{1\gamma}^0)$




The difference between the estimations of background from both methods is considered as a systematic

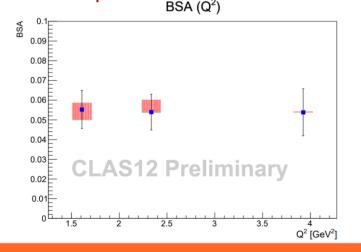


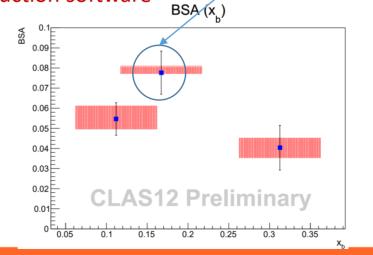
CLAS12: nDVCS with an unpolarized deuterium target

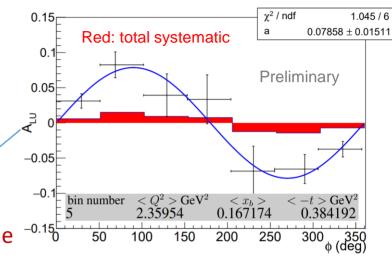
First-time measurement of nDVCS with detection of the active neutron

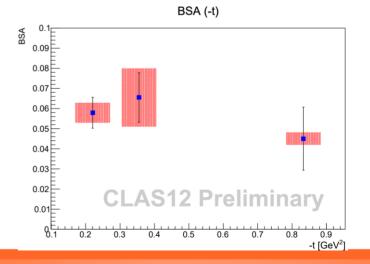
bin number $\langle Q^2 \rangle \text{GeV}^2$ $\langle x_h \rangle$ $< -t > \text{GeV}^2$ 1.60973 0.132015 0.388061 2.33568 0.199322 0.467386 0.314797 3.92472 0.667296 1.70901 0.111932 0.324567 2.35954 0.167174 0.384192 3.29066 0.312552 0.70405 0.277885 2.91918 0.832902 2.44265 0.185242 0.355265 2.16854 0.149355 0.22063

- Compared to the previous experiment, CLAS12 provides:
 - The possibility to scan the BSA of nDVCS on a wide phase space
 - The possibility to reach the high Q^2 high x_b region of the phase space
 - Exclusive measurement with the detection of the active neutron
- Hall A @ CLAS: one measured kinematical point at $Q^2=1.9$ GeV² and $x_B=0.36$

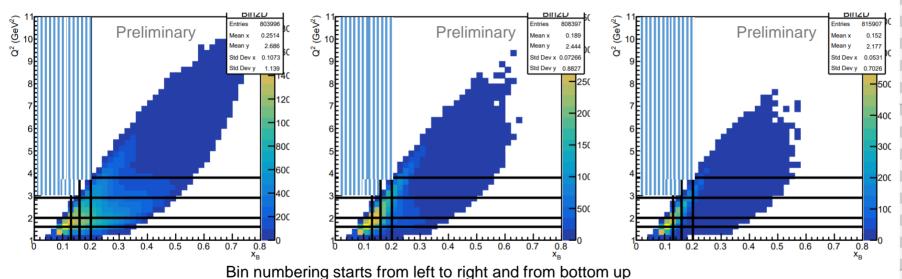



CLAS12: nDVCS with an unpolarized deuterium target


Under internal review


- Observation of positive BSA for nDVCS
- Systematic errors include:
 - Error due to beam polarization
 - Error due to selection cuts
 - Error due to residual proton contamination
 - Error due to merging of data sets with different energies
 - Error due to π^0 background subtraction

 Statistics is expected to double with remaining scheduled beam time and improvements of the reconstruction software

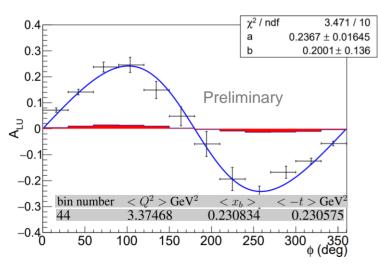


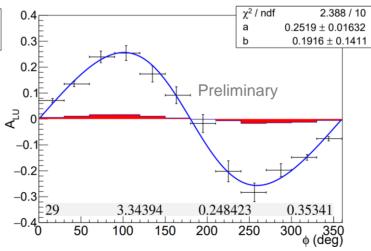
CLAS12: pDVCS with an unpolarized deuterium target

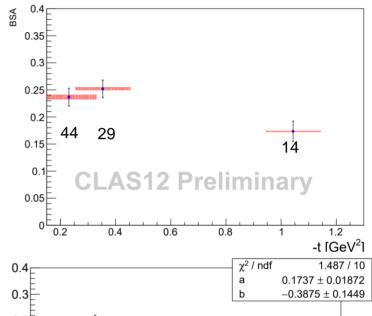
Under internal review

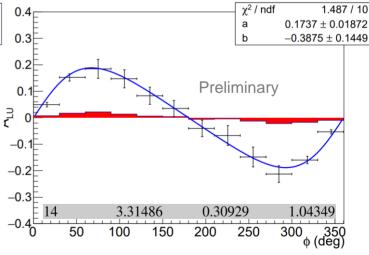
First-time measurement of incoherent pDVCS on deuteron

- Complementary to previous experiment on proton target:
 - Quantify medium effects on GPDs

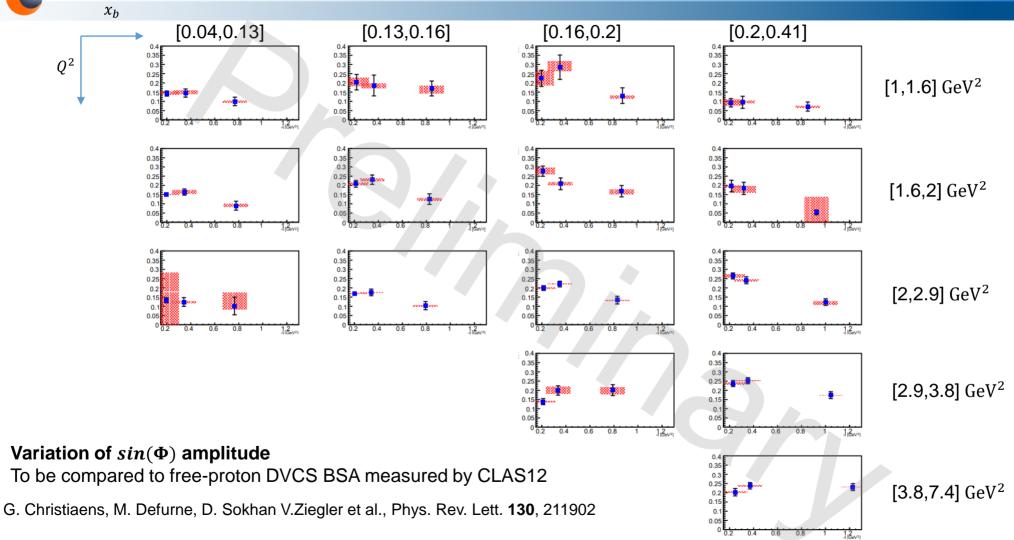

bin number	$< Q^2 > {\rm GeV^2}$	$\langle x_b \rangle$	$< -t > \text{GeV}^2$
1	1.43794	0.10069	0.767361
2	1.48186	0.144366	0.844629
3	1.4914	0.178824	0.87073
4	1.50756	0.2373	0.851789
5	1.76792	0.114657	0.777427
6	1.8051	0.144373	0.825599
7	1.80447	0.179402	0.863781
8	1.81536	0.258406	0.923301
9	2.0849	0.124705	0.764681
10	2.26532	0.146577	0.793068
11	2.4122	0.179697	0.827414
12	2.43479	0.287563	1.00085
13	3.0799	0.188297	0.790217
14	3.31486	0.30929	1.04349
15	4.83889	0.380624	1.228
16	1.43915	0.100179	0.356721
17	1.49262	0.142616	0.362959
18	1.4954	0.176071	0.350067
19	1.50509	0.249393	0.309281
20	1.77057	0.114679	0.34701
21	1.81394	0.143668	0.348841
22	1.82669	0.175209	0.355866
23	1.81383	0.263491	0.318227
24	2.08646	0.124711	0.342502
25	2.26728	0.146758	0.340636
26	2.46209	0.17752	0.348786
27	2.45997	0.26518	0.340427
28	3.08043	0.188274	0.334151
29	3.34394	0.248423	0.35341
30	4.46623	0.295696	0.370628
31	1.43626	0.0986234	0.200339
32	1.50515	0.13983	0.218898
33	1.49559	0.17749	0.195675
34	1.50618	0.241843	0.211988
35	1.77032	0.114665	0.198266
36	1.83854	0.140417	0.212787
37	1.82375	0.176723	0.20719
38	1.81611	0.248591	0.216637
39	2.08516	0.124803	0.198108
40	2.27128	0.145977	0.203877
41	2.55103	0.174046	0.21458
42	2.44112	0.256179	0.228055
43	3.07532	0.187944	0.210093
44	3.37468	0.230834	0.230575
45	4.30035	0.274016	0.247191




CLAS12: pDVCS with an unpolarized deuterium target

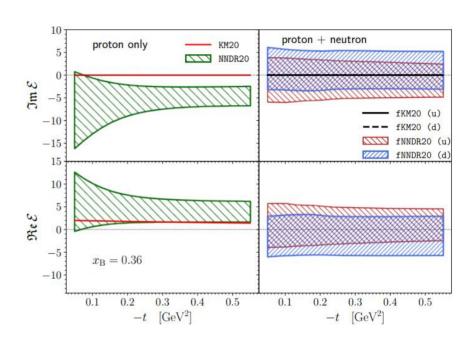

Under internal review

- Systematic errors include:
 - Error due to beam polarization
 - Error due to selection cuts
 - Error due to merging of data sets with different energies
 - Error due to π^0 background subtraction
- Statistics is expected to triple with remaining scheduled beam time and improvements of the reconstruction software



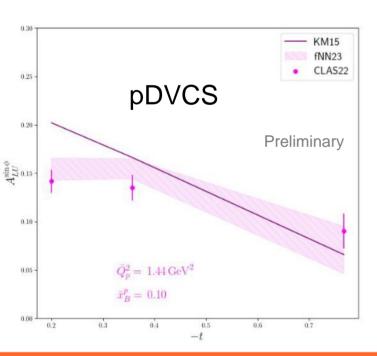
CLAS12: pDVCS with an unpolarized deuterium target

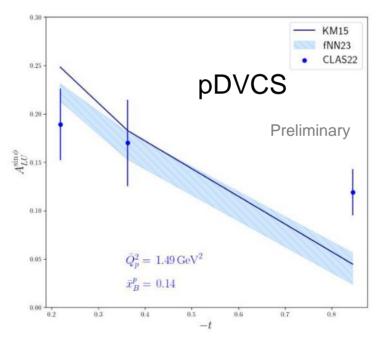

Under internal review

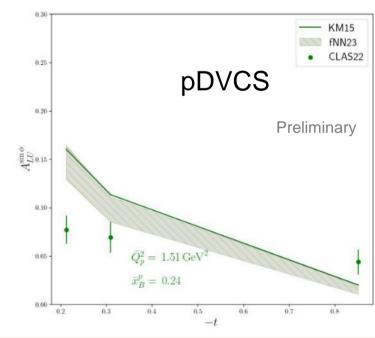


Impact of new data

- Previous attempt at flavor separation by Marija Čuić and Krešimir Kumerički arxiv 2007.00029
- Data from CLAS6 and Hall A at JLab

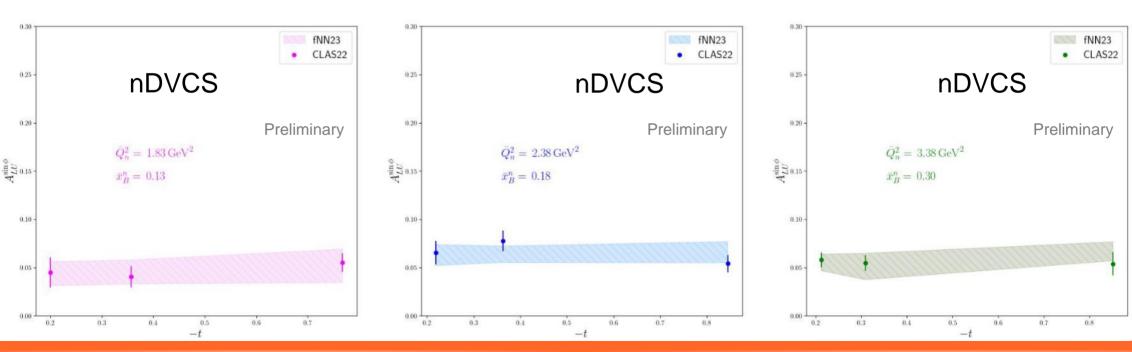


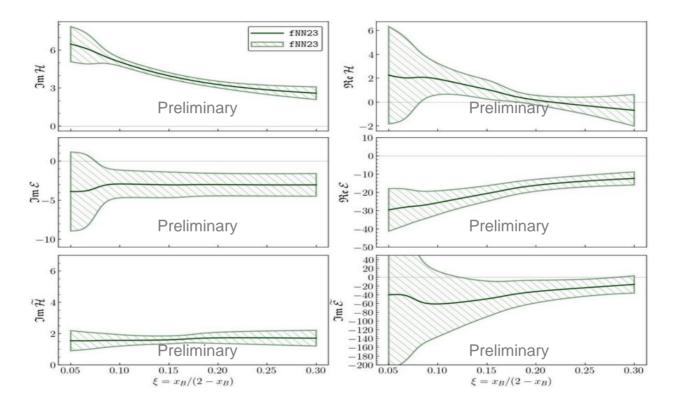

up and down contributions to CFF H cleanly separated



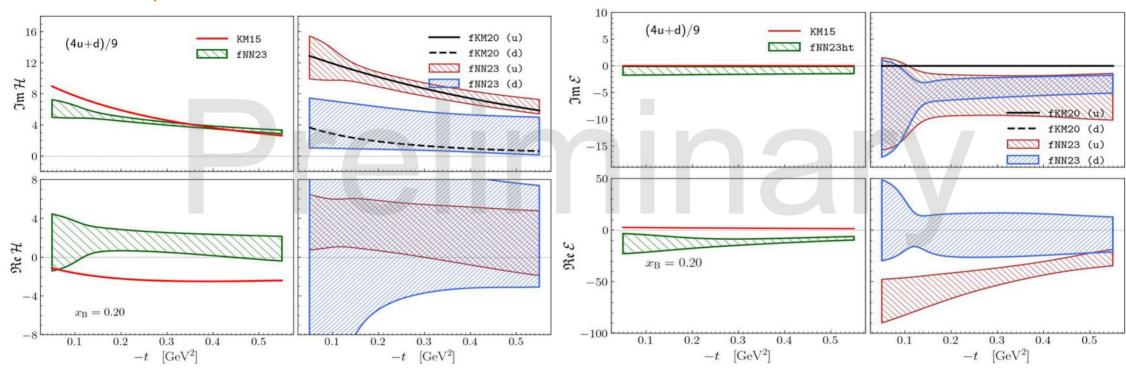
CFF E cannot be separated

- Testing previously trained NN fits on new data was not appropriate
 - Reweighting procedure where only subset of neural nets that describes the new data well is kept in the model did not succeed
 - New data falls outside of the kinematics region of the trained models
- Solution: train new models with old CLAS6 and new CLAS12 data included in the training





- Testing previously trained NN fits on new data was not appropriate
 - Reweighting procedure where only subset of neural nets that describes the new data well is kept in the model did not succeed
 - New data falls outside of the kinematics region of the trained models
- Solution: train new models with old CLAS6 and new CLAS12 data included in the training


Extraction of 6 out of 8 CFFs

Unlike before, CFF E is now cleanly extracted, with no sign ambiguity in ReE

• Flavor separation of CFFs H and E

Flavor separation of ImH is slightly better than before, while ReH is worse

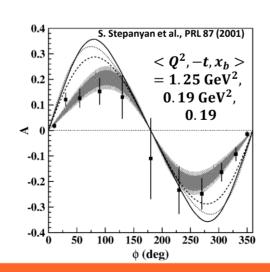
we can now perform flavor separation of CFF E, especially ReE

Conclusions

- GPDs are a powerful tool to explore the structure of the nucleons and nuclei
 - Nucleon tomography, quark angular momentum, distribution of forces in the nucleon
- Exclusive reactions can provide important information on nucleon structure
 - DVCS via the extraction of GPDs
- CLAS12 offers a wide kinematical reach over which the GPDs dependence on different kinematical variables can be scanned
 - Data to add constraints on GPDs in unexplored regions of the phase space
 - Possibilities to measure new observables using different experimental configurations
 - Flavor separation of GPDs
- Promising results from incoherent DVCS on deuteron (n and p channels) from CLAS12 data
 - First BSA measurement from neutron-DVCS with tagged neutron
 - First measurement of BSA for proton-DVCS with deuterium target
 - To be compared to free-proton DVCS BSA measured by CLAS12

G. Christiaens, M. Defurne, D. Sokhan V.Ziegler et al., Phys. Rev. Lett. 130, 211902

backups

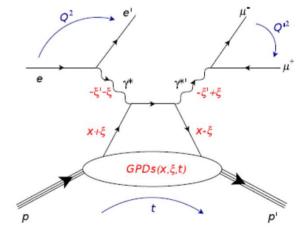


GPD-aimed experiments at JLAB

JLAB

- Hall A:
 - Cross sections
 - Beam-polarised cross section differences
- Hall B (CLAS/CLAS12):
 - Beam and target spin asymmetries
 - Cross section measurements over large phase-space acceptance

 $ep \rightarrow epX$, from CLAS data: First observation of DVCS-BH interference



CLAS12, what else?

Observable (target)	CFF sensitivity	Status
ITSA(p), IDSA(p)	$\Im\{H_p, \widetilde{H}_p\}, \Re\{H_p, \widetilde{H}_p\}$	Data taking ended
ITSA(n), IDSA(n)	$\Im\{H_n\},\Re\{H_n\}$	Data taking ended
tTSA(p)	$\Im\{H_p\},\Im\{E_p\},$	Experiment foreseen for ~2025

- JLab future energy and luminosity upgrades
 - Increase the phase space in which the GPDs are to be scanned
 - And more important: scan x dependence of GPDs: Double-DVCS
 - Full kinematics mapping of GPDs: unique direct access to GPDs at $x \neq \pm \xi$
 - Improved detection of muons
- And with a positron beam
 - Study beam charge asymmetries

Decomposition and **abstraction** renders the understanding of a complex system much easier, however, the true nature of the composite system might still be unresolved

In the process of **decomposition** and **abstraction** one usually arrives to the conclusion that most constructing statements of a given theory are **irrational**