ELECTROWEAK STRUCTURE OF THE NUCLEON

Fernando Alvarado (falvar@ific.uv.es) Luis Alvarez-Ruso Di An Stefan Leupold

June 7, 2023

HADR 2023 20th International Conference on Hadron Spectroscopy and Structure

 $\begin{array}{l} \cdot \ F_{V(\mathbf{EM})} \rightarrow \text{charge distribution and magnetism} \\ F_{A} \rightarrow \text{spin distribution} \\ \text{Weak interaction is } V - A \\ \cdot \ V^{\mu} = \bar{q}Q\gamma^{\mu}q, \langle N(p')|V^{\mu}(0)|N(p)\rangle = \bar{u}' \left[\gamma^{\mu}F_{1}^{N}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{N}}F_{2}^{N}(q^{2})\right]u, \\ \cdot \ A^{\mu} = \bar{q}\gamma^{\mu}\gamma_{5}q, \langle N(p')|A^{\mu}(0)|N(p)\rangle = \bar{u}' \left\{\gamma_{\mu}F_{A}(q^{2}) + \frac{q_{\mu}}{2m_{N}}G_{P}(q^{2})\right\}\gamma_{5}u \\ q = p' - p \quad N = p,n \end{array}$

ELECTROMAGNETIC FORM FACTOR

· Experimental determinations

· Proton radius puzzle [Pohl et al., Nature 466, 213 (2010)]

· Lattice QCD

- · Nucleon f.f. is a benchmark for LQCD
- \cdot Uncertainties reduced for unphysical large M_{π}
- $\cdot~$ Technical difficulties \rightarrow recent progress (cite)
- \cdot Experimental and lattice q^2 parametrisation:

- dipole ansatz

```
    z-expansion
```

```
\rightarrow \Rightarrow different \langle r_1^2 \rangle, and F_{\rm EM} in general
```

ELECTROMAGNETIC FORM FACTOR

· Experimental determinations

· Proton radius puzzle [Pohl et al., Nature 466, 213 (2010)]

Lattice QCD

- · Nucleon f.f. is a benchmark for LQCD
- \cdot Uncertainties reduced for unphysical large M_{π}
- \cdot Technical difficulties \rightarrow recent progress (cite)
- · Experimental and lattice q^2 parametrisation:

- dipole ansatz \rightarrow ==> different $\langle r_1^2 \rangle$, and $F_{\rm EM}$ in general - z-expansion

· Chiral Perturbation Theory (χ PT)

- $\cdot\,$ EFT for QCD at low energy
- · QCD based parametrization of q^2 and M_{π} dependencies \implies extrapolate lattice results to the phys. point and extract $\langle r_i^2 \rangle$ and κ from the lattice simulations
- $\cdot\,$ Account for finite volume, lattice spacing and excited states
- $\cdot\,$ Determining $\chi {\sf PT}$ LECs from the lattice \Longrightarrow predicting other observables

· Dispersion theory

- \cdot Enlarge the q^2 range of plain χ PT
- **Goal**: Disp+ χ PT = good q^2 and M_{π} description

DISPERSION THEORY

- \cdot Enlarge the q^2 range of χ PT (ho dynamics)
- 1. Disp. rel. (Cauchy)

$$F(q^2) = \int_{4M_{\pi}^2}^{\infty} \frac{ds}{\pi} \frac{\mathrm{Im}\,F(s)}{s - q^2 - i\varepsilon}$$

- 2. Unitarity $\Rightarrow \operatorname{Im} F = \frac{1}{2} \sum_{n} T_{\gamma^* n} T^{\dagger}_{n\overline{N}N}, n = \pi^+ \pi^-, ...$ $\cdot \ell = 1, \pi\pi \text{ must be iso-vector}$ $\Rightarrow F_i = \frac{1}{2} F_i^{(s)} + F_i^{(v)} \frac{\sigma^3}{2}$
- 3. Using full $N\bar{N}\pi\pi$ and $\gamma^*\pi\pi$ vertices with M_{π} dep.

$$F(q^2) = \frac{1}{12\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds}{\pi} \frac{T \, p_{\rm cm}^3 \, F_{\pi}^{V_*}}{s^{1/2} (s - q^2 - i\varepsilon)} \; ,$$

[Granados et al, EPJ A 53 (2017)]

DISPERSION THEORY

• Our two vertices, T and F_{π}^{V} , include nonperturbatively the $\pi\pi$ scattering amplitude, t

$$\mathcal{A}(s) = \frac{8}{\pi} \sum_{\ell} (2\ell + 1) P_{\ell}(\cos\theta) t_{\ell}(s)$$

$$\ell = 1, t = \frac{\sqrt{s}}{2\rho_{\rm CM}} \sin \delta e^{i\delta}$$

$$\Omega(s) = \exp\left\{s \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\delta(s')}{s'(s'-s-i\epsilon)}\right\}$$

- We fit t_{IAM} to δ from [Garcia-Martin PRD 83(2011)]
- We check that the M_{π} dependence is realistic

$$F_{\pi}^{V}(s) = [1 + \alpha_{v}s] \Omega(s)$$

$$T_i(s) = K_i(s) + \Omega(s) P_i + I_i(s) ,$$

$$\cdot I_{i}(s) = \Omega(s) s \int_{4M_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{K_{i}(s') \sin \delta(s')}{|\Omega(s')| (s'-s-i\varepsilon)s'}$$

• K and P from
$$N\overline{N} \to \pi\pi$$
 in χ PT
 $\mathscr{M} = A\overline{v}u - \frac{1}{2}B\overline{v}ku \longleftrightarrow K, P$

$$\Rightarrow F(q^2) = \frac{1}{12\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds}{\pi} \frac{T p_{\rm cm}^3 F_{\pi}^{V*}}{s^{1/2}(s - q^2 - i\varepsilon)}$$

DISPERSION THEORY

- Our two vertices, *T* and F_{π}^{V} , include nonperturbatively the $\pi\pi$ scattering amplitude, *t*

$$\mathcal{A}(s) = \frac{8}{\pi} \sum_{\ell} (2\ell + 1) P_{\ell}(\cos\theta) t_{\ell}(s)$$

$$\ell = 1, t = \frac{\sqrt{s}}{2\rho_{\rm CM}} \sin \delta e^{i\delta}$$

$$\Omega(s) = \exp\left\{s \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\delta(s')}{s'(s'-s-i\epsilon)}\right\}$$

- We fit t_{IAM} to δ from [Garcia-Martin PRD 83(2011)]
- $\cdot\,$ We check that the ${\it M}_{\pi}$ dependence is realistic

$$F_{\pi}^{V}(s) = [1 + \alpha_{v}s] \Omega(s)$$

$$T_i(s) = K_i(s) + \Omega(s) P_i + I_i(s)$$

$$\cdot I_{i}(s) = \Omega(s) s \int_{4M_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{K_{i}(s') \sin \delta(s')}{|\Omega(s')| (s'-s-i\varepsilon) s'}$$

• K and P from
$$N\overline{N} \to \pi\pi$$
 in χ PT
 $\mathcal{M} = A\overline{v}u - \frac{1}{2}B\overline{v}ku \longleftrightarrow K, P$

$$\Rightarrow F(q^2) = \frac{1}{12\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds}{\pi} \frac{T \, p_{\rm cm}^3 \, F_{\pi}^{V*}}{s^{1/2} (s - q^2 - i\varepsilon)}$$

· $+\chi$ PT diagrams

· **Disp**+ χ PT= $F_{\rm EM}^{\rm disp}$ + diagrams without 2π cut from χ PT · $F_{\rm EM}^{\rm disp}$

- · $+\chi$ PT diagrams
 - \cdot Relativistic and with explicit Δ (1232) [Bauer et al., PRC 86 (2012)]
 - green: $F_1 F_1(0)$ (the charge is trivial)
 - blue: $F_2 \rightarrow$ we add the $\mathcal{O}(p^4) \not \Delta$ terms

· **Disp**+ χ PT= $F_{\rm EM}^{\rm disp}$ + diagrams without 2π cut from χ PT · $F_{\rm EM}^{\rm disp}$

- · + χ PT diagrams
 - \cdot Relativistic and with explicit Δ (1232) [Bauer et al., PRC 86 (2012)]
 - green: $F_1 F_1(0)$ (the charge is trivial)
 - blue: $F_2 \rightarrow$ we add the $\mathcal{O}(p^4) \not \Delta$ terms
- \cdot Disp and χ PT differ in the renormalization (UV)
 - · At $\mathscr{O}(p^3)$ disp and χ PT agree on the M_π nonanalyticities
 - Example: the dispersive contribution from $T^{\text{point}} \sim \frac{1}{F^2}$ agrees with χ PT $F_1^{\text{point}} \sim F_1^{(9)} \sim q^2 \log M_{\pi}$
 - · differences absorbed in LECs

- Dirac f.f., F_1 $\cdot \langle N | V^{\mu} | N \rangle = \overline{u}' \left[\gamma^{\mu} F_1^N(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_N} F_2^N(q^2) \right] u, F_1 = F_E + \frac{Q^2}{4m^2} \frac{(F_M - F_E)}{(1 + Q^2/(4m^2))}, Q^2 = -q^2.$ $\cdot F_1 = 1 + \frac{q^2}{6} \left[-12d_6 + \langle r_1^{2(\log M_\pi)} \rangle \log M_\pi \right] + \mathscr{O}(p^4)$
- · Comparison with LQCD data [Djukanovic PRD 103(2021)] ← controlled FV and discret. effects
- · In the χ PT and disp+ χ PT F_1 , d_6 is fitted to LQCD
- · Disp $\longrightarrow q^2$ curvature

- Dirac f.f., F_1 $\cdot \langle N | V^{\mu} | N \rangle = \overline{u}' \left[\gamma^{\mu} F_1^N(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_N} F_2^N(q^2) \right] u, F_1 = F_E + \frac{Q^2}{4m^2} \frac{(F_M - F_E)}{(1 + Q^2/(4m^2))}, Q^2 = -q^2.$ $\cdot F_1 = 1 + \frac{q^2}{6} \left[-12d_6 + \langle r_1^{2(\log M_\pi)} \rangle \log M_\pi \right] + \mathscr{O}(p^4)$
- · Comparison with LQCD data [Djukanovic PRD 103(2021)] ← controlled FV and discret. effects
- · In the χ PT and disp+ χ PT F_1 , d_6 is fitted to LQCD
- · Disp $\longrightarrow q^2$ curvature

(i) N302 $M_{\pi} = 0.353$ GeV

Disp+ χ PT describes well the M_{π} dep.

- $\cdot \,$ good d_6 fit for $Q^2 < 0.6 \; {\rm GeV^2}$ and $M_\pi \lesssim 350 \;$ MeV
- \cdot outperforms the pure dispersive and plain $\chi {\rm PT}$ descriptions

	Disp (prediction)	χpt	Disp+χPT
$d_6(\mu = m_{\rho}) (\text{GeV}^{-2})$	-	0.074 ± 0.010	0.416 ± 0.010
$d_6(\mu = m_N)$ (GeV ⁻²)	-	-0.422 ± 0.010	0.155 ± 0.010
$\chi^2/ m dof$	108.9/47 = 2.32	73.9/(47 – 1) = 1.61	24.6/(47-1) = 0.53
$\langle r_1^2 \rangle_{\rm phys}$ (fm ²)	0.4541	0.3626 ± 0.0047	0.4838 ± 0.0047

$$F_1^{(\nu)} = 1 + \frac{1}{6} \langle r_1^2 \rangle^{(\nu)} q^2 + \mathcal{O}(q^4),$$

$$\langle r_1^2 \rangle^{\text{PDG}} = 0.577 \text{ fm}^2$$

· Heavy baryon fit to LQCD from [Djukanovic PRD 103(2021)]: $\langle r_1^2 \rangle^{\text{HB}} = 0.554 \pm 0.035 \text{ fm}^2$

		Disp (prediction)	χpt	Disp+ <i>χ</i> PT
	$d_6(\mu=m_ ho)$ (GeV $^{-2}$)	-	0.074 ± 0.010	0.416 ± 0.010
• •	$d_6(\mu=m_N)$ (GeV $^{-2}$)	-	-0.422 ± 0.010	0.155 ± 0.010
	$\chi^2/{ m dof}$	108.9/47 = 2.32	73.9/(47 – 1) = 1.61	24.6/(47-1) = 0.53
	$\langle r_1^2 \rangle_{ m phys}$ (fm ²)	0.4541	0.3626 ± 0.0047	0.4838 ± 0.0047

 \cdot Pauli f.f., F_2

 $\begin{array}{l} \cdot \implies \mathsf{include} \ensuremath{\Delta} \ensuremath{\mathcal{O}}(p^4) \\ \cdot \ensuremath{\,\mathrm{disp}}_2 + \chi \mathrm{PT} \ensuremath{\mathcal{O}}(p^4) \colon F_2 = F_2^{\mathrm{disp}} + F_2^{\mathrm{tree}} + F_2^{\chi \mathrm{PTloop}}, \\ F_2^{\mathrm{tree}} = c_6 - 16e_{106} m_N M_\pi^2 + 2q^2 (d_6 + 2e_{74} m_N) \end{array}$

 \cdot F₂ fit to LQCD

 \cdot In F_2^{disp} free c_6

 \cdot In $F_2^{\chi PT}$ and $F_2^{disp+\chi PT}$, free c_6 , e_{106} , e_74

 $\cdot \chi$ PT $\mathscr{O}(p^4)$ and disp separately are good enough to describe the data

11

 \cdot F₂ fit to LQCD

 \cdot In F_2^{disp} free c_6

 \cdot In $F_2^{\chi PT}$ and $F_2^{disp+\chi PT}$, free c_6 , e_{106} , e_74

 $\cdot \chi$ PT $\mathscr{O}(p^4)$ and disp separately are good enough to describe the data

 $F_{2}^{(\mathbf{v})} = \kappa^{(\mathbf{v})} \left[1 + \frac{1}{6} \langle r_{2}^{2} \rangle^{(\mathbf{v})} q^{2} + \mathcal{O}(q^{4}) \right]$ $\cdot \kappa_{PDG} = 3.706,$ $\kappa_{HB} = 3.71 \pm 0.17,$ $\langle r_{2}^{2} \rangle_{PDG} = 0.7754 \text{ fm}^{2},$ $\langle r_{2}^{2} \rangle_{HB} = 0.690 \pm 0.042 \text{ fm}^{2}.$

	Disp+c ₆	χPT	Disp+χPT
$\chi^2/{ m dof}$	$\frac{49.95}{47-2} = 1.11$	$\frac{44.18}{47-4} = 1.027$	$\frac{56.08}{47-4} = 1.304$
$\chi_0^2/{ m dof}$	1.09	1.027	1.283
$\kappa_{ m phys}$	3.64	3.42	3.61
$\langle r_2^2 \rangle_{\rm phys}$ (fm ²)	0.673	0.619	0.668

• $F_A \rightarrow$ spin distribution Weak interaction is V - A

$$\cdot A^{i\mu} = \bar{q} \gamma^{\mu} \gamma_{5} \frac{\tau^{i}}{2} q, \langle N | A^{\mu} | N \rangle = \bar{u}' \left[\gamma_{\mu} F_{A}(q^{2}) + \frac{q_{\mu}}{2m_{N}} G_{P}(q^{2}) \right] \gamma_{5} \frac{\tau^{i}}{2} u$$

· Nucleon axial isovector form factor

- $\cdot F_{A}(q^{2}) = g_{A}\left[1 + \frac{1}{6}\langle r_{A}^{2}\rangle q^{2} + \mathcal{O}(q^{4})\right]$
- g_A and F_A dependence in q^2 are necessary in v oscillations experiments
- $\cdot \ \mu$ capture, eta-decay
- $\cdot \chi$ PT calculation of F_A
 - \implies extract $\langle r_A^2 \rangle$ from lattice QCD without ad-hoc parametrization
- $g_A(M_\pi)$: test of πN scatt. in χ PT <u>Alvarado & Alvarez-Ruso PRD 105 (2021)</u>
- $\mathcal{O}(p^4)$ F_A in relativistic χ PT
 - $\cdot F_{A} = \mathring{g}_{A} + 4d_{16}M_{\pi}^{2} + d_{22}q^{2} + \text{loops}(M_{\pi}, q^{2})$
 - Difference between orders \simeq theoretical uncertainty

Figure: $\mathcal{O}(p)$ and $\mathcal{O}(p^3)$ (w. f. renormalisation not shown)

Figure: $\mathcal{O}(p^4)$

· FA: Meta-analysis of large set of recent LQCD results

- \cdot Many recent works \Rightarrow substantial improvements
- · RQCD^[1] + PNDME^[2] + "Mainz"^[3] + PACS^[4] + ETMC^[5]
- \cdot Reasonably good fit: χ^2 plateau

$$\implies M_{\pi}^{\rm cut} \simeq 400 \text{ MeV}, Q_{\rm cut}^2 = 0.36 \text{ GeV}^2$$

[1] Bali et al. JHEP 05 (2020)

- [2] Park et al. 2103.05599
- [3] Meyer et al. Modern Phys. A 34 (2019)

[4] Shintani et al. PRD 102 (2020)

[5] Alexandrou et al. PRD 103 (2021)

$F_A = g_A \left(1 + \frac{1}{6} \left[\langle r_A^2 \rangle \right] q^2 \right)$ axial radius

• Our $\mathcal{O}(p^4) \chi$ PT extraction:

- \cdot M $_{\pi}$ slope driven by loops with Δ
- $d_{22} = 0.29 \pm 1.69$ GeV⁻² (no assumptions on $\Delta\Delta\pi$ coupling enlarges error)
 - d_{22} compatible with $\mathcal{O}(p^3) \pi$ electroprod. <u>Guerrero et al. PRD, 102 (2020)</u>
- $\langle r_A^2 \rangle (M_{\rm phys}) = 0.293 \pm 0.044 \ {\rm fm}^2$
- · Empirical determinations (model dependent) are in tension with ours and with most of LQCD extractions
- $\cdot\,$ Tipically the extracted $\langle r_A^2\rangle^{\rm phys}$ value varies depending on the parametrisation
- $\,\cdot\,$ Our QCD based parametrisation leads to a value in line with most of the individual LQCD extractions

CONCLUSIONS

$\cdot F_{\rm EM}$

- · Dirac f.f., F1
 - \cdot The dispersive calculation supplemented with χ PT contributions outperforms the pure dispersive and plain χ PT descriptions
 - \cdot it fits well the LQCD F₁ at least for $Q^2 < 0.6~{
 m GeV}^2$ and $M_\pi \lesssim 350~{
 m MeV}$
 - $\langle r_1^2 \rangle_{\rm phys} = 0.4838 \pm 0.0047 \, {\rm fm}^2$
 - value close to the LQCD HB [Djukanovic PRD 103(2021)] extraction and to the experimental one
- Pauli f.f., F₂
 - · Disp, $\mathscr{O}(p^4) \chi$ PT and disp+ χ PT describe the data well
 - $\kappa_{\mathbf{phys}} = 3.61 \text{ and } \langle r_2^2 \rangle_{\mathbf{phys}} = 0.668 \text{ fm}^2$
 - values in line with the HB and the experimental ones

$\cdot F_A$

- · Succesful description of LQCD $F_A(q^2)$ using $\mathscr{O}(p^4)$ relativistic χ PT
 - $\cdot~$ Fit describes data in $M^{\rm cut}_{\pi} \simeq$ 400 MeV, $Q^2_{\rm cut} = 0.36~\text{GeV}^2$
- · There is tension between the experimental and lattice extraction of $\langle r_A^2 \rangle$
- · We extract $\langle r_A^2 \rangle^{\rm phys} = 0.291 \pm 0.052 \ {\rm fm}^2$ without ad hoc parametrisations
- \cdot (Useful LEC values extracted from both calculations)

	Disp (prediction)	χPT	Disp+χPT
$d_6(\mu=m_ ho)$ (GeV $^{-2}$)	-	0.074 ± 0.010	0.416 ± 0.010
$d_6(\mu=m_N)$ (GeV $^{-2}$)	-	-0.422 ± 0.010	0.155 ± 0.010
$\chi^2/{ m dof}$	108.9/47 = 2.32	73.9/ (47 – 1) = 1.61	24.6/(47-1) = 0.53
$\langle r_1^2 \rangle_{ m phys}$ (fm ²)	0.4541	0.3626 ± 0.0047	0.4838 ± 0.0047

	Ø(p ³) ∆	Ø(p ⁴) ∕∆	$\mathcal{O}(p^3) \Delta$	$\mathcal{O}(p^4) \Delta$
ĝ _A (free)	1.1782 ± 0.0073		1.2041 ± 0.0074	1.274 ± 0.041
d ₁₆ (GeV ⁻²) (free)	-1.021 ± 0.048		0.983 ± 0.062	-1.46 ± 1.00
d_{22} (GeV ⁻²) (free)	1.275 ± 0.086		3.77 ± 1.96	0.29 ± 1.69 (free g_1)
hA	-	-	1.35	1.35
g ₁ (free)	-	-	-0.69 ± 0.69	0.66 ± 0.56
c ₁ (GeV ⁻¹)	-	-0.89 ± 0.06	-	-1.15 ± 0.05
$c_2 (\text{GeV}^{-1})$	-	3.38 ± 0.15	-	1.57 ± 0.10
c_{3}^{-} (GeV ⁻¹)	-	-4.59 ± 0.09	-	-2.54 ± 0.05
$c_4 (\text{GeV}^{-1})$	-	3.31 ± 0.13	-	2.61 ± 0.10
a_1 (GeV ⁻¹)	-	-	-	0.90
b ₁ (GeV ⁻²) (free)	-	-	-	-0.27 ± 4.96
b_2 (GeV ⁻²) (free)	-	-	-	2.27 ± 2.28
\tilde{b}_{4}^{-} (GeV ⁻²) (free)	-	-	-	-12.48 ± 1.28
x ₁ (fm ⁻²) (free)	-8.4 ± 5.8	-	-5.6 ± 5.9	-0.25 ± 16.5 (consistent)
x_2 (fm ⁻²) (free)	-8.6 ± 2.6	-	-7.1 ± 2.6	-6.36 ± 4.20
x ₃ (fm ⁻¹) (free)	-0.25 ± 0.21	-	-0.08 ± 0.22	0.36 ± 0.47
y_1 (fm ⁻² GeV ⁻²) (free)	-100 ± 40	-	-76 ± 44	-64 ± 121
y_2 (fm ⁻² GeV ⁻²) (free)	-31 ± 21	-	-21 ± 22	-15 ± 46
y ₃ (fm ⁻¹ GeV ⁻²) (free)	-0.63 ± 1.49	-	0.36 ± 1.63	2.54 ± 3.98
<i>ṁ</i> (GeV)	0.874	0.874	0.855	0.855
\dot{m}_{Δ} (GeV)	-	-	1.166	1.166

	Ø(p ³) ∆	Ø(p ⁴) Å	$\mathcal{O}(p^3) \Delta$	$\mathcal{O}(p^4) \Delta$
ġ _A (free)	1.1782 ± 0.0073		1.2041 ± 0.0074	1.274±0.041
d ₁₆ (GeV ⁻²) (free)	-1.021 ± 0.048		0.983 ± 0.062	-1.46 ± 1.00
d_{22} (GeV ⁻²) (free)	1.275 ± 0.086		3.77 ± 1.96	0.29 ± 1.69 (free g_1)
hA	-	-	1.35	1.35
g_1 (free)	-	-	-0.69 ± 0.69	0.66 ± 0.56
c ₁ (GeV ⁻¹)	-	-0.89 ± 0.06	-	-1.15 ± 0.05
c ₂ (GeV ⁻¹)	-	3.38 ± 0.15	-	1.57 ± 0.10
c_{3}^{-} (GeV ⁻¹)	-	-4.59 ± 0.09	-	-2.54 ± 0.05
$c_4 (\text{GeV}^{-1})$	-	3.31 ± 0.13	-	2.61±0.10
a_1 (GeV ⁻¹)	-	-	-	0.90
b_1 (GeV ⁻²) (free)	-	-	-	-0.27 ± 4.96
b_2 (GeV ⁻²) (free)	-	-	-	2.27±2.28
\tilde{b}_4^- (GeV ⁻²) (free)	-	-	-	-12.48 ± 1.28
x ₁ (fm ⁻²) (free)	-8.4 ± 5.8	-	-5.6 ± 5.9	-0.25 ± 16.5 (consistent)
x_2 (fm ⁻²) (free)	-8.6 ± 2.6	-	-7.1 ± 2.6	-6.36 ± 4.20
x_3 (fm ⁻¹) (free)	-0.25 ± 0.21	-	-0.08 ± 0.22	0.36 ± 0.47
$y_1 ({\rm fm}^{-2} {\rm GeV}^{-2}) ({\rm free})$	-100 ± 40	-	-76 ± 44	-64 ± 121
y_2 (fm ⁻² GeV ⁻²) (free)	-31 ± 21	-	-21 ± 22	-15 ± 46
y_3^2 (fm ⁻¹ GeV ⁻²) (free)	-0.63 ± 1.49	-	0.36 ± 1.63	2.54 ± 3.98
<i>m</i> (GeV)	0.874	0.874	0.855	0.855
\dot{m}_{Δ} (GeV)	-	-	1.166	1.166
χ_0^2/dof	857.31/(127-9) = 7.27		533.87/(127-10) = 4.45	196.58/(127-13) = 1.724