Sivers function of sea quarks in the light-cone model

We calculate the Sivers function of \bar{u} and \bar{d} quarks using the overlap representation within the light cone formalism. The light-cone wave functions of the proton are obtained in terms of the $|q\bar{q}B\rangle$ Fock states motivated by the meson-baryon fluctuation model. We consider the final-state interaction at the level of one gluon exchange. In a simplified scenario, the Sivers function of \bar{u} and \bar{d} can be expressed as the convolution of the Sivers function of the unpolarized distribution of \bar{q} inside the pion. The model parameters are fixed by fitting the unpolarized sea quark distributions to the known parameterizations. We present the numerical results for $f_{1T}^{\bar{u}/P}(x)$.

boldsymbolk_T²) and $f_{1T}^{\bar{d}/P}(x,$

 $boldsymbolk_T^2$). The first transverse moment of the sea quark Sivers functions in our model are find to be negative and the magnitude is about 0.004 at most.

Primary author: LUAN, Xiaoyan (Southeast University)Presenter: LUAN, Xiaoyan (Southeast University)Session Classification: Exotic hadrons and candidates

Track Classification: QCD and hadron structure