

Recent charmed baryon results from BESIII

2023.06.07 HADRON2023, Genova, Italy Jiaxiu Teng (on behalf of BESIII Collaboration)

University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics

Contents

> Introduction of Λ_c^+ physics

- > BESIII experiment, data taking and double-tag method
- Recent charmed baryon results from BESIII
 - 1. Partial wave analysis of $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$
 - 2. The observations of Cabibbo-suppressed Λ_c^+ decays, including $\Lambda_c^+ \rightarrow n\pi^+$
 - 3. Study of Λ_c^+ semi-leptonic decays
 - a) Form factor measurement in $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$
 - b) The observation of $\Lambda_c^+ \rightarrow p K^- e^+ \nu_e$
 - c) Inclusive semi-leptonic decay: improved measurement of $\Lambda_c^+ \rightarrow X e^+ \nu_e$

> Summary

Introduction of Λ_c^+ physics

- The lightest charmed baryon, most of the charmed baryons and many *b*-baryons decay to Λ_c^+ .
- Naive quark model picture of Λ_c^+ : a heavy quark (c) with an unexcited spin-zero diquark (u d).

Diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark (HQET).

- Excellent ground to study the dynamics of light quarks in the environment of a heavy quark.
- Reveal information of strong- and weak-interactions in charm region, complementary to charmed mesons.
- Excellent platform for understanding QCD with transitions involving the charm quark.
- Total measured BF is \sim 70%.
- Experimental results provide precise test for low-energy non-perturbative QCD phenomenological model and LQCD calculations, promote the understanding of the mechanism of strong interaction in charm region.

Beijing Electron and Positron Collider (BEPCII) and Beijing Spectrometer(BESIII) Detector

Λ_c^+ data taking at BESIII

• BESIII, $\tau - c$ energy region experiment:

Large samples collected near the $\Lambda_c^+ \overline{\Lambda}_c^-$ production threshold \rightarrow clean environment, low background. High tagging efficiency. Precision measurement.

- For 4.6~4.7 GeV, $\Lambda_c^+ \overline{\Lambda}_c^-$ produced in pairs with no additional accompany hadrons. This unique data offer ideal opportunities to study Λ_c^+ decays.
- Double-tag (DT) method can be used:
 - ✓ Lower backgrounds.
 - ✓ Most systematic uncertainties in tag side can be cancelled.
 - ✓ Measure absolute BFs.
 - ✓ Kinematic relation to constrain missing particle.

Double-tag method

Model-independent

$$N_{i\,ST} = 2N_{\Lambda_c^+ \overline{\Lambda}_c^-} \times \mathcal{B}_i \times \varepsilon_{i\,ST}$$

 $N_{i\,DT} = 2N_{\Lambda_c^+ \overline{\Lambda}_c^-} \times \mathcal{B}_i \times \mathcal{B}_i \times \varepsilon_{i\,DT}$

$$\mathcal{B}_{S} = \frac{\Sigma N_{i DT}}{N_{i ST} \times \varepsilon_{i DT} / \varepsilon_{i ST}}$$

i for each tag mode

	decay modes of ST $\overline{\Lambda}^c$	absolute BR(%)
1	$\overline{p}K^+\pi^-$	6.28 ± 0.32
2	$\overline{p}K_S^0$	1.59 ± 0.08
3	$\overline{\Lambda}\pi^{-}$	1.30 ± 0.07
4	$\overline{p}K^+\pi^-\pi^0$	4.46 ± 0.30
5	$\overline{p}K_S^0\pi^0$	1.97 ± 0.13
6	$\overline{\Lambda}\pi^{-}\pi^{0}$	7.1 ± 0.4
7	$\overline{p}K_{S}^{0}\pi^{+}\pi^{-}$	1.60 ± 0.12
8	$\overline{\Lambda}\pi^{-}\pi^{+}\pi^{-}$	3.64 ± 0.29
9	$\overline{\Sigma}{}^{0}\pi^{-}$	1.29 ± 0.07
10	$\overline{\Sigma}^-\pi^+\pi^-$	4.50 ± 0.25
11	$\overline{\Sigma}^{-}\pi^{0}$	1.25 ± 0.10
12	$\overline{\Sigma}{}^{0}\pi^{-}\pi^{0}$	3.5 ± 0.4
13	$\overline{p}\pi^+\pi^-$	0.46 ± 0.03
14	$\overline{\Sigma}{}^{0}\pi^{-}\pi^{+}\pi^{-}$	1.11±0.30

~**40**%

 $\Lambda_c^+ \rightarrow \Lambda \rho^+$ consists of both factorizable(a) and non-factorizable(b-d) contributions.

 $\Lambda_c^+ \rightarrow \Sigma(1385)\pi$ consists of pure non-factorizable(e) contribution.

• BFs: related to the modulus squared of the sum of different topological amplitudes.

Decay asymmetry parameters: relevant to the interference of the internal partial wave amplitudes.

Non-factorizable contribution is more difficult to treat than factorizable in theoretical calculations.
 Provide important inputs to the theoretical calculations.

- $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)$ measured by BESIII with high precision¹
- $\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda \rho(770)^+) < 6\%$ by CLEO2²
- No previous BF measurement of $\Lambda_c^+ \rightarrow \Sigma(1385)\pi$.
- PWA intermediate processes in $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$ are interesting in theoretical calculations.
 - ✓ Fit fractions (FFs) and the partial wave amplitudes of intermediate resonances are derived.
 - ✓ Combining the FFs with the $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0) = (7.1 \pm 0.4)\%$ from PDG, determine $\mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$ and $\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)\pi)$ using the partial wave amplitudes.
 - ✓ **Decay asymmetry parameters** are determined, test theoretical calculations of the partial waves interference effects.

¹Phys.Rev.Lett.116.052001, ²Phys.Lett.B.325.257

J. High Energ. Phys. 2022, 33 (2022)

 Use new-developed TensorFlow based package TF-PWA* to perform the PWA fit.

(*BESIII Preliminary: <u>https://github.com/jiangyi15/tf-pwa</u>)

- Helicity amplitude.
- PWA is able to extract the intermediate processes explicitly.
- Single tag method, ~10k signal candidates, purities > 80%

<u>J. High Energ. Phys. 2022, 33 (2022)</u>

Fit results on invariant mass spectra:

J. High Energ. Phys. 2022, 33 (2022)

- First PWA performed in charmed baryon hadronic decay
- Using $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0) = 7.1 \pm 0.4 \%$, $\mathcal{B}(\Sigma(1385) \to \Lambda \pi) = (87.0 \pm 1.5)\%$ from PDG Combined with FFs from PWA:

	Theoretical calculation		This work	PDG
$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	$4.0\ [14,\ 15]$	4.06 ± 0.52	< 6
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0.80	
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	$-0.32 \ [14, \ 15]$	-0.763 ± 0.070	
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91\substack{+0.4\\-0.1}$	${}^{45}_{10} \left[17 ight]$	-0.917 ± 0.089	
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91\substack{+0.4\\-0.1}$	${}^{45}_{10} [17]$	-0.79 ± 0.11	

 α extracted through results of internal partial wave amplitudes

Ref. [13]: Phys. Rev. D 101 (2020) 053002. Ref. [14,15]: Phys. Rev. D 46 (1992) 1042; Phys. Rev. D 55 (1997) 1697. Ref. [16]: Eur. Phys. J. C 80 (2020) 1067. Ref. [17]: Phys. Rev. D 99 (2019) 114022

First observation of the SCS Decay $\Lambda_c^+ \rightarrow n\pi^+$

- Singly-Cabbibo-Suppressed (SCS) decay, contains non-negligible non-factorizable contributions.
- Provide information about factorizable and non-factorizable interference; constrain non-factorizable contributions; precise experimental inputs; test different phenomenological models.
- DT method and missing technique.

$$M_{rec}^2 = (E_{\text{beam}} - E_{\pi^+})^2 / c^4 - \left| \rho \cdot \vec{p}_0 - \vec{p}_{\pi^+} \right|^2 / c^2$$

• E_{π^+} and \vec{p}_{π^+} : energy and momentum of π^+ candidate.

<u> Phys. Rev. Lett. 128, 142001 (2022)</u>

• $\rho = \sqrt{\left(E_{\text{beam}}^2\right)/c^2 - m_{\Lambda_c^+}^2 c^2}$

• $\vec{p}_0 = -\vec{p}_{\overline{\Lambda}_c} / |\vec{p}_{\overline{\Lambda}_c}|$ is the unit direction opposite to the ST $\overline{\Lambda}_c^-$.

First observation of the SCS Decay $\Lambda_c^+ \rightarrow n\pi^+$

First measurement of SCS decay involving a neutron in the final state

7.3*σ*!

13/32

First observation of the SCS Decay $\Lambda_c^+ \rightarrow n\pi^+$

Phys. Rev. Lett.	128, 142001 (2022)			
${\cal B}(\Lambda_c^+ o n \pi^+) imes 10^{-4}$	$R = \mathcal{B}(\Lambda_c^+ o n\pi^+)/\mathcal{B}(\Lambda_c^+ o p\pi^0)$	Reference	phenomenological models	
4	2	PRD 55, 7067 (1997)		
9	2	PRD 93, 056008 (2016)	SU(3) flavor symmetry model	
11.3 ± 2.9	2	PRD 97, 073006 (2018)		
8 or 9	4.5 or 8.0	PRD 49, 3417 (1994)	constituent quark model	
2.66	3.5	PRD 97, 074028 (2018)	a dynamical calculation based on pole model and current-algebra	
6.1 ± 2.0	4.7	PLB 790, 225 (2019)	SU(3) flavor symmetry including the contributions from $\mathcal{O}(\overline{15})$	
7.7 ± 2.0	9.6	JHEP 02 (2020) 165	topological-diagram approach	

Use $\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 0.8 \times 10^{-5}$ @90% C. L. from Belle <u>PRD 103, 072004 (2021)</u> $R = \mathcal{B}(\Lambda_c^+ \to n\pi^+) / \mathcal{B}(\Lambda_c^+ \to p\pi^0) > 7.2$ @90% C. L.

Disagree with most phenomenological model predictions

Improved results with larger data set, in particular concerning the $\mathcal{B}(\Lambda_c^+ \rightarrow p\pi^0)$, will come out soon.

- Its decay rate depends on $|V_{cs}|$ and strong interaction effects parametrized by form factors describing initial and final baryons hadronic transition.
- LQCD predicted both the differential decay rates and the form factors. However, no direct experimental comparisons.
- Test on Lattice calculations, important information on strong interactions in charm baryon sector.

Measurement of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

DT method and missing technique

🕂 data 300 1.14 Events/0.01 GeV total fit $M_{
m p\pi^-}$ (GeV/ c^2) $\cdots \Lambda_{c}^{+} \rightarrow \Lambda \mu^{+} \nu_{\mu}$ $\cdots \Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \pi^{0}$ 200 1.12 --- other bkgs 100**|**--0.2 -0.1 0.2 0.1 -0.2 -0.10 0.1 0.2 $U_{\rm miss}$ (GeV) $U_{\rm miss}$ (GeV)

$E_{\text{miss}} = E_{\text{beam}} - \Sigma_{\text{f}} E_{\text{f}}$ $\vec{p}_{\text{miss}} = \vec{p}_{\Lambda_{\text{c}}} - \Sigma_{\text{f}} \vec{p}_{\text{f}}$ $U_{\text{miss}} = E_{\text{miss}} - |\vec{p}_{\text{miss}}|$

Fit on U_{miss} to extract signal yields $N^{\text{DT}} = 1253 \pm 39$

precision improved by threefold

Phys. Rev. Lett. 129, 231803 (2022

Most precise measurement $\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e) = (3.56 \pm 0.11 \pm 0.07)\%$

	$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) ~(\%)$
Constituent quark model (HONR) [9]	4.25
Light-front approach [10]	1.63
Covariant quark model [11]	2.78 d
Relativistic quark model [12]	3.25
Non-relativistic quark model [13]	3.84
Light-cone sum rule [14]	3.0 ± 0.3
Lattice QCD [15]	3.80 ± 0.22
<i>SU</i> (3) [16]	3.6 ± 0.4
Light-front constituent quark model [17]	3.36 ± 0.87
MIT bag model [17]	3.48
Light-front quark model [18]	4.04 ± 0.75
This Letter	$3.56 \pm 0.11 \pm 0.07$

Phys. Rev. Lett. 129, 231803 (2022)

> 2σ deviation disfavors these predictions @ C. L. more than 95%

Measurement of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

Projections of the fitted kinematic variables

Comparisons between data and LQCD prediction

Form factor

Phys. Rev. Lett. 129, 231803 (2022)

LQCD prediction: <u>Phys. Rev. Lett. 118, 082001 (2017)</u>

Comparisons between data and LQCD prediction

Differential decay rate

LQCD prediction: Phys. Rev. Lett. 118, 082001 (2017)

<u> Phys. Rev. Lett. 129, 231803 (2022)</u>

Provide **first direct comparisons to LQCD** for differential decay rate

fair agreement throughout the q^2 region

Important inputs in understanding the Λ_c^+ SL decays. Help calibrate the calculation of SL decays of other charmed baryons and Λ_b .

Phys. Rev. Lett. 129, 231803 (2022)

- Combining $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ measured in this Letter, $\tau_{\Lambda_c^+}$, and the q^2 -integrated rate predicted by LQCD
 - $\rightarrow |V_{cs}| = 0.936 \pm 0.017_{\mathcal{B}} \pm 0.024_{\text{LQCD}} \pm 0.007_{\tau_{\Lambda_c}}$
- Consistent with $|V_{cs}| = 0.939 \pm 0.038$ measured in $D \rightarrow K \ell \nu_{\ell}$ decays within 1σ
- Measurement of $|V_{cs}| \operatorname{via} \Lambda_c^+ \to \Lambda \ell \nu_{\ell}$ is an important consistency test for the SM and a probe for new physics

The observation of $\Lambda_c^+ o p K^- \ e^+ \ u_e$

- Its decay rate depends on $|V_{cs}|$ and strong interaction effects parametrized by form factors describing initial and final baryons hadronic transition.
- $\mathcal{B}(\Lambda_c^+ \to \Lambda \ell^+ \nu_{\ell}) / \mathcal{B}(\Lambda_c^+ \to X \ell^+ \nu_{\ell}) \sim 1$, different with charm mesons.

Search for unknown exclusive SL Λ_c^+ decay to validate and understand this pattern.

- LQCD calculations of $J^P = 1/2^+ \rightarrow 3/2^-$ transition are limited. No experimental data.
- $\mathcal{B}(\Lambda_c^+ \to \Lambda^* e^+ \nu_e)$ comparison help check nonrelativistic quark model and constituent quark model.

The observation of $\Lambda_c^+ o p K^- e^+ \nu_e$

Phys. Rev. D 106, 112010 (2022)

DT method and missing technique. Fit to the U_{miss} distribution

The first SL Λ_c^+ decay without Λ in the final state **Observation with 8.2** σ considering systematic uncertainty $N_{DT}^{pK^-e^+\nu} = 33.5 \pm 6.3$ $\mathcal{B}(\Lambda_c^+ \to pK^-e^+\nu_e) = 0.88 \pm 0.17_{\text{stat}} \pm 0.07_{\text{syst}} \times 10^{-3}$

 $[\mathcal{B}(\Lambda_c^+ \to pK^- e^+ \nu_e)/\mathcal{B}(\Lambda_c^+ \to Xe^+ \nu_e)] = 2.1 \pm 0.4_{\text{stat}} \pm 0.2_{\text{syst}} \times 10^{-3}$ $\to \text{SL} \Lambda_c^+$ decays are not saturated by the $\Lambda \ell^+ \nu_\ell$ final state

The observation of $\Lambda_c^+ o pK^- \ e^+ \ \nu_e$

Phys. Rev. D 106, 112010 (2022)

Study with M_{pK^-} spectrum to understand the nature of excited Λ^* states 2D fit to M_{pK^-} vs. U_{miss}

The observation of $\Lambda_c^+ \rightarrow pK^- e^+ \nu_e$

• $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+ \nu_e) = 1.02 \pm 0.52_{\text{stat}} \pm 0.11_{\text{syst}} \times 10^{-3}$

- $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520) \to pK^-e^+ \nu_e) = 0.23 \pm 0.12_{\text{stat}} \pm 0.02_{\text{syst}} \times 10^{-3}$
- $\mathcal{B}(\Lambda_c^+ \to \Lambda(1405) \to pK^-e^+\nu_e) = 0.42 \pm 0.19_{\text{stat}} \pm 0.04_{\text{syst}} \times 10^{-3}$

Phys. Rev. D 106, 112010 (2022)

model predictions of BF differ by a factor of roughly 100 times

Constituent quark model [8]	1.01	3.04
Molecular state [9]		0.02
Nonrelativistic quark model [10]	0.60	2.43
Lattice QCD [12,13]	0.512 ± 0.082	
Measurement	$1.02 \pm 0.52 \pm 0.11$	$\frac{0.42 \pm 0.19 \pm 0.04}{\mathcal{B}(\Lambda(1405) \to pK^{-})}$

Extend the understanding of Λ_c^+ SL decays beyond $\Lambda_c^+ \to \Lambda \ell^+ \nu_{\ell}$

Prospects: With larger samples, amplitude analysis of pK^- mass spectrum, form factors, to understand the internal structure of the contributing Λ^* states.

Inclusive SL decay: improved measurement of $\Lambda_c^+ \rightarrow X e^+ v_e$

 \leftarrow WS π yields

RS proton yields

WS proton yields

Unfolding method to obtain true signal yields. The matrix obtained using control samples.

$$\begin{bmatrix} N_{e}^{\text{obs}} \\ N_{\pi}^{\text{obs}} \\ N_{K}^{\text{obs}} \\ N_{p}^{\text{obs}} \end{bmatrix} = \begin{bmatrix} P_{e \to e} & P_{\pi \to e} & P_{K \to e} & P_{p \to e} \\ P_{e \to \pi} & P_{\pi \to \pi} & P_{K \to \pi} & P_{p \to \pi} \\ P_{e \to K} & P_{\pi \to K} & P_{K \to K} & P_{p \to K} \\ P_{e \to p} & P_{\pi \to p} & P_{K \to p} & P_{p \to p} \end{bmatrix} \begin{bmatrix} N_{e}^{\text{true}} \\ N_{\pi}^{\text{true}} \\ N_{K}^{\text{true}} \\ N_{p}^{\text{true}} \end{bmatrix} \text{PID}$$

$$N_{\rm e}^{\rm true}(i) = \sum_{j} A_{\rm TRK}(e|i,j) N_{\rm e}^{\rm prod}(j)$$
 tracking

Correction (see text)	RS yields	WS yields
Observed yields	3706 ± 71	394 ± 31
PID unfolding yields	3865 ± 80	376 ± 33
WS subtraction	3489 ± 87	
Tracking unfolding yields	4333 ± 107	
Extrapolation	4692 ± 117	

Inclusive SL decay: improved measurement of $\Lambda_c^+ \rightarrow Xe^+\nu_e$

Inclusive SL decay: improved measurement of $\Lambda_c^+ \rightarrow Xe^+\nu_e$

<u> Phys. Rev. D 107, 052005 (2023)</u>

• Combining $\tau_{\Lambda_c^+}$ and the charge-averaged SL decay width of non-strange charmed mesons, obtain $\Gamma(\Lambda_c^+ \to Xe^+\nu_e) = (2.006 \pm 0.073) \times 10^{11} \text{ s}^{-1}$

	$\frac{\Gamma(\Lambda_c^+ \to X e^+ \nu_e)}{\overline{\Gamma}(D \to X e^+ \nu_e)}$	model Ref.		
heavy quark expansion	1.2	Phys. Rev. D 49, 1310 (1994)	☐ consistent	
effective-quark method	1.67	Phys. Rev. D 83, 034025 (2011) Phys. Rev. D 86, 014017 (2012)	☐⇒ disfavor	@ 95% C. L.
This work	1.28 ± 0.05			

Summary

- Using 4.5 fb⁻¹ data samples of $\Lambda_c^+ \overline{\Lambda}_c^-$ collected by BESIII, many significant measurements are performed.
- ✓ First PWA of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$ at BESIII
- ✓ The first observation of SCS Λ_c^+ decays, including $\Lambda_c^+ \to n\pi^+$
- ✓ Achievement on SL decays:

 $\checkmark \Lambda_c^+ \rightarrow \Lambda e^+ \nu$ with improved measurement of BF, first direct comparison of $\frac{d\Gamma}{dq^2}$ and Form factor with LQCD

- ✓ The first observation of $\Lambda_c^+ \rightarrow pK^-e^+\nu$, evidence of $\Lambda(1520)$ and $\Lambda(1405)$ in M_{*p*K⁻}
- ✓ Improved measurement of inclusive SL decay $\Lambda_c^+ \to X e^+ v$
- BESIII has made substantial progresses on the exploration of the charmed baryon Λ_c^+ decays!
- More results will be released in the future!

Thanks for your attention!

Backup

Inclusive SL decay: improved measurement of $\Lambda_c^+ \rightarrow Xe^+\nu_e^-$

- The track is required to have momentum above 200 MeV/c since PID is difficult at low momenta.
- The yield of positrons with $p_e \le 200 \text{ MeV}/c$ is obtained by fitting the efficiency-corrected positron momentum spectrum with the sum of the spectra of the exclusive decay channels. In the fit, the BF of each component is fixed to its central value.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	600	Ţ
$\frac{1}{\Lambda_c^+ \to \Lambda e^+ \nu_e} = 3.56 \pm 0.11 \pm 0.07 \text{References [6]} \\ \Lambda_c^+ \to p K^- (n \bar{K}^0) e^+ \nu_e 0.088 \pm 0.017 \pm 0.007 \text{PHSP [7]} \\ \Lambda_c^+ \to \Lambda (1405) e^+ \nu_e 0.24 \text{HQET [27,28]} $	400 -	
$\begin{array}{ccc} \Lambda_c^+ \to p K^-(nK^0) e^+ \nu_e & 0.088 \pm 0.017 \pm 0.007 & \text{PHSP} \ [7] \\ \Lambda_c^+ \to \Lambda(1405) e^+ \nu_e & 0.24 & \text{HQET} \ [27,28] \end{array}$		T 't
	200 -	4
$\Lambda_c^+ \to \Lambda(1520)e^+\nu_e \qquad 0.06 \qquad \text{HQET [27,28]} \\ \Lambda_c^+ \to ne^+\nu_e \qquad 0.20 \qquad \text{Ouark model [29]}$		

p (GeV/c)

Future charmed baryon plan on BESIII

□Upgrade of BEPCII (BEPCII-U)

- improve luminosity by 3 times higher at 4.7 GeV
- Extend the maximum energy to 5.6 GeV

Cover all the ground-state charmed baryons: studies on their production & decays, CPV search, to help developing more reliable QCD-derived models in charm sector

■Studies on the production and decays of excited charmed

baryons

• Energy thresholds $\checkmark e^+e^- \rightarrow \Lambda_c^+ \overline{\Sigma}_c^-$ 4.74 GeV $\checkmark e^+e^- \rightarrow \Lambda_c^+ \overline{\Sigma}_c \pi$ 4.88 GeV $\checkmark e^+e^- \rightarrow \Sigma_c \overline{\Sigma}_c$ 4.91 GeV $\checkmark e^+e^- \rightarrow \Xi_c \overline{\Xi}_c$ 4.94 GeV $\checkmark e^+e^- \rightarrow \Omega_c^0 \overline{\Omega}_c^0$ 5.40 GeV