20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023)

Lowest-lying odd parity open heavy-flavor hyperons

<u>Juan M. Nieves</u>, A. Feijoo, M. Albaladejo IFIC (CSIC & U. Valencia)

School of Physics, University of Chengdu (China)

M.-L. Du

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

 $\Sigma_{c}(2520)$

 $egin{aligned} &\Lambda_c^+ = udc \ , \ \Sigma_c^{++} = uuc \ , \ \Sigma_c^+ = udc \ , \ \Sigma_c^0 = ddc \ , \ &\Xi_c^+ = usc \ , \ \Xi_c^0 = dsc \ , \ \Omega_c^0 = ssc \end{aligned}$

$arLambda_c^+$	$1/2^+$	****
$arLambda_c(2595)^+$	$1/2^{-}$	***
$arLambda_c(2625)^+$	$3/2^-$	***
$arLambda_c(2765)^+$ or $arLambda_c(2765)$		*
$arLambda_c(2860)^+$	$3/2^+$	***
$\Lambda_c(2880)^+$	$5/2^{+}$	***
$\Lambda_c(2940)^+$	$3/2^-$	***
$\Sigma_c(2455)$	$1/2^+$	****

 $3/2^{+}$

Lowest-lying open heavy-flavor baryons

$b_b = aao, ab_b = abo, ab_b = abo, ab_b = bbo$			
10	$1/2^{+}$	***	
$\left(b_b (5912)^0 ight)^{0}$	$1/2^-$	***	
$\left(b_b(5920)^0 ight)^{0}$	$3/2^-$	***	
$I_b(6070)^0$	1/2+	***	
${ m A}_b(6146)^0$	$3/2^+$	***	
$\left l_b(6152) ight ^0$	$5/2^{+}$	***	
Z _b	$1/2^+$	***	
ר אר עג	3/2+	***	

 $\Lambda^0_b=udb$, $arpi^0_b=usb$, $arpi^-_b=dsb$, $\Omega^-_b=ss$

BOTTOM BARYONS (B = -1)

 $\Lambda_b(5920)^0$

Quantum numbers are based on quark model expectations.

 $I(J^P)$ = $0(3/2^-)$

${\it \Lambda}_b{(5920)}^0$ MASS	5920.09 ± 0.17 MeV	bottom sector
$arLambda_b {\left(5920 ight)}^0$ width	< 0.19 MeV CL=90.0%	\sim
${arLambda}_b{\left(5920 ight)}^0$ Decay Modes	Saula Francia PlMeV	
$egin{aligned} \mathcal{M} ode \ \Gamma_1 & & arLambda_b^0 \pi^+ \pi^- \end{aligned}$	Fraction (Γ_i / Γ) Conf. Level seen 10	08
	${arLambda}_b (5912)^0$ Quantum numbers are based on quark model expectations.	$I(J^P)$ = $0(1/2^-)$
	$\Lambda_b(5912)^0$ MASS	5912.19 ± 0.17 MeV \checkmark
	$arLambda_b (5912)^0$ WIDTH	< 0.25 MeV CL=90.0%
	${arLambda}_b{(5912)}^0$ Decay Modes	
	$egin{array}{ccc} {\cal M} ode \ \Gamma_1 & \Lambda_b^0 \pi^+ \pi^- \end{array}$	$\begin{array}{ccc} & Scale \ Factor/ & P(MeV/c) \\ \hline Fraction \ (\Gamma_i \ / \ \Gamma) & Conf. \ Level \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$

 $\Lambda_c(2625)^+$

 $I(J^P)$ = $0(3/2^-)$

< 0.97 MeV CL=90.0%

The spin-parity has not been measured but is expected to be $3/2^-$: this is presumably the charm counterpart of the strange arLambda(1520) .

$2628.11\pm0.19~\text{MeV}~\text{(S=1.1)}$	\checkmark	A (2
341.65 ± 0.13 MeV (S = 1.1)		$T_{C}(2)$

$\Lambda_c(2625)^+$ Decay Modes

 $\Lambda_c(2625)^+ - \Lambda_c^+$ MASS DIFFERENCE

 $\Lambda_c(2625)^+$ MASS

 $\Lambda_c(2625)^+$ WIDTH

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

	Mode	Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level
Γ_1	$arLambda_c^+\pi^+\pi^-$	pprox 67%	
Γ_2	$\Sigma_c(2455)^{++}\pi^-$	< 5	CL=90
Γ_3	$\Sigma_c(2455)^0\pi^+$	< 5	CL=90
Γ_4	$arLambda_c^+\pi^+\pi^-$ 3-body	large	
Γ_5	$\Lambda_c^+\pi^0$	^[1] not seen	
Γ_6	$\Lambda_c^+\gamma$	not seen	

 $(595)^+$ $I(J^P) = 0(1/2^-)$

The $L_c^+\pi^-\pi^-$ mode is largely, and perhaps entirely, $\Sigma_c\pi$, which is j J^P here is almost certainly $1/2^-$. This ensult is in accord with the the counterpart of the strange $\Lambda(1405)$.	ust at threshold; since the \varSigma_c has $J^P=1/2^+$, the eoretical expectation that this is the charm	
$arLambda_c(2595)^+$ MASS	2592.25 ± 0.28 MeV	\sim
$\Lambda_c(2595)^+ - \Lambda_c^+$ MASS DIFFERENCE	$305.79\pm0.24\text{MeV}$	\sim
$arLambda_c(2595)^+$ width	$2.6\pm0.6~{ m MeV}$	\sim

charm sector

$\left(\Lambda_{c}(2595)^{+} ight)$ Decay Modes

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma_c(2455)\pi$ – the latter just barely – are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

-	Mode	Fraction (P. / T.)	Scale Factor/	P(MeV/c)	
Γ_1	$\Lambda_c^+\pi^+\pi^-$	[1]	Com. Lever	117	\sim
Γ_2	$\Sigma_c(2455)^{++}\pi^-$	$24\pm7\%$		3	\sim
Γ_3	$\Sigma_c(2455)^0\pi^+$	$24 \pm 7\%$		3	\sim
Γ_4	$\Lambda_c^+\pi^+\pi^-$ 3-body	$18 \pm 10\%$		117	\sim
Γ_5	$\Lambda_c^+\pi^0$	^[2] not seen		258	\sim
Γ_6	$\Lambda_c^+\gamma$	not seen		288	\sim

<u>Outline</u>

- 1. Low-lying odd-parity baryon states: PDG and CQM
- 2. Chiral and heavy-quark symmetries. CQM and Golstone bosonbaryon (ϕB) degrees of freedom
- 3. Odd parity charm and bottom Λ_Q baryons: chiral $\Sigma_Q^{(*)}\pi$ and CQM exchange potentials
- 4. The $\Lambda_b(5912)$, $\Lambda_b(5920)$, $\Lambda_c(2595)$ and $\Lambda_c(2625)$ states
- 5. The $\Lambda_b(6070)$ and $\Lambda_c(2765)$ heavy quark flavor sibling resonances
- 6. Conclusions

Heavy guark mass [GeV]

 λ mode: excitations between the Q and the ldof ρ mode.: excitations in the inner structure of the ldof

Chiral symmetry EFT: Chiral perturbation theory

effective field theory constructed with a Lagrangian consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as well as the other symmetries of parity and charge conjugation. ChPT is a theory which allows one to study the low-energy dynamics of QCD: take explicitly into account the relevant degrees of freedom, i.e. those states with m << Λ , while the heavier excitations with $M >> \Lambda$ are integrated out from the action. One gets in this way a string of non-renormalizable interactions among the light states, which can be organized as an expansion in powers of energy/ Λ . The information on the heavier degrees of freedom is then contained in the couplings of the resulting low-energy Lagrangian. Although EFTs contain an infinite number of terms, renormalizability is not an issue since, at a given order in the energy expansion, the low-energy theory is specified by a finite number of couplings; this allows for an order-by-order renormalization.

Goldstone boson $(K, \pi, \eta, \overline{K})$ interactions with other hadrons could be described using a perturbartive chiral $[SU(3)_L \times SU(3)_R]$ EFT: <u>ChPT</u>

Heavy quark spin-flavor symmetry

The light degrees of freedom in the hadron orbit around the heavy quark, which acts as a source of color moving with the hadrons's velocity. On average, this is also the velocity of the "brown muck".

HQSS predicts that all types of spin interactions vanish for infinitely massive quarks: the dynamics is unchanged under arbitrary transformations in the spin of the heavy quark Q. The spin-dependent interactions are proportional to the chromomagnetic moment of the heavy quark, hence are of the order of $1/m_0$.

The total angular momentum \vec{j}_{ldof} of the brown muck, which is the subsystem of the hadron apart from the heavy quark, is conserved and hadrons with $J = j_{ldof} \pm 1/2$ form a degenerate doublet. For instance, $m_{\bar{B}^*}(J^P = 1^-) - m_{\bar{B}}(J^P = 0^-) = 45.22 \pm 0.21$ MeV ~ Λ_{QCD} , m_d , m_u <u>doublet</u> for $j_{ldof}^P = 1/2^-$

HQFS predicts that, besides de mass of the heavy quark, the single-heavy hadron mass is independent of the flavor of the heavy quark Q. The flavor-dependent interactions are proportional to $1/m_Q$, $M_H/m_Q \sim (1 + \frac{O(\Lambda_{QCD})}{M_Q})$ $[m_{\bar{B}^*}(J^P = 1^-) - m_{\bar{B}}(J^P = 0^-)] \sim [m_{D^*}(J^P = 1^-) - m_D(J^P = 0^-)] \sim \Lambda_{QCD}, m_d, m_u$

HQSFS $SU(2N_h)$ approximate symmetry seen in the hadron spectrum

PHYSICAL REVIEW D

Chiral perturbation theory for hadrons containing a heavy quark

consistent with the $1/m_0$ expansion: <u>HMChPT</u>

Goldstone bosons

Mark B. Wise

California Institute of Technology, Pasadena, California 91125 (Received 10 January 1992)

An effective Lagrangian that describes the low-momentum interactions of mesons containing a heavy quark with the pseudo Goldstone bosons π , K, and η is constructed. It is invariant under both heavyquark spin symmetry and chiral SU(3)_L×SU(3)_R symmetry. Implications for semileptonic B and D decays are discussed.

PACS number(s): 14.40.Jz, 11.30.Rd, 13.20.Fc, 13.20.Jf

 $\mathcal{L} = -i \operatorname{Tr} \overline{H}_a v_\mu \partial^\mu H_a + \frac{1}{2} i \operatorname{Tr} \overline{H}_a H_b v^\mu (\xi^\dagger \partial_\mu \xi + \xi \partial_\mu \xi^\dagger)_{ba}$

+
$$\frac{1}{2}$$
 ig Tr $\overline{H}_a H_b \gamma_v \gamma_5 (\xi^{\dagger} \partial^{\nu} \xi - \xi \partial^{\nu} \xi^{\dagger})_{ba} + \cdots$, (12)

For instance, for heavy mesons: super-field including the $j_{ldof}^{P} = 1/2^{-}$ doublet

 $\frac{1+\nu}{2}(P_{a\mu}^*\gamma^{\mu}-P_a\gamma_5)$

hadron velocity

Odd parity charm and bottom Λ_Q baryons: general remarks

HQSFS: ground states

The light degrees of freedom in the hadron orbit around the heavy quark, which acts as a source of color moving with the hadrons's velocity. On average, this is also the velocity of the "brown muck".

HQSFS: odd parity excited states

chiral molecules

$$\underbrace{\Sigma_c^{(*)}\pi}_{ldof:\ 1^+\otimes\ 0^-=1^-} \Rightarrow J^P = 1/2^-, 3/2^-$$

NLO SU(3) ChPT: J.-X. Lu, Y. Zhou, H.-X. Chen, J.-J. Xie, and L.-S. Geng, PRD92 (2015) 014036 obtains the $\Lambda_c(2625) \left[J^P = \frac{3}{2}^{-1}\right]$ using a moderately large UV cutoff ~ 2.1 GeV

✓ CQM degrees of freedom ✓ <u>Analogy</u> $\Lambda(1520)$, $\Lambda(1405)$ $\Sigma^{(*)} \leftrightarrow \Sigma_c^{(*)}$, $\overline{K}^{(*)} \leftrightarrow D^{(*)}$ L. Tolos, J. Schaner-Bielich, and A. Mishra, PRC70 (2004) 025203 ; J. Hofmann and M. Lutz, NPA763 (2005) 90; 766 (2006) 7 ; T. Mizutani and A. Ramos, PRC74 (2006) 065201 existence of some relevant degrees of freedom (CQM states and/or $ND^{(*)}$ components) that are not properly accounted for ?

F.-K. Guo, U.-G. Meissner, and B.-S. Zou, Commun. Theor. Phys. 65 (2016) 593 M. Albaladejo, JN, E. Oset, Z.-F. Sun, and X. Liu, PLB757 (2016) 515

HQSFS: odd parity excited states hadron molecules

key issue: $ND^{(*)} \rightarrow ND^{(*)}$, $\Sigma_c^{(*)}\pi$ coupled-channels interaction consistent with /<u>HQSS</u> and its breaking pattern. In addition renormalization of BSE amplitudes & short distance (UV) physics

 Σ_c and Σ_c^* or D and D^* are related by a charm quark spin rotation, which commutes with H_{QCD} , up to Λ_{QCD}/m_c corrections.

Odd parity charm and bottom Λ_Q baryons: interplay between CQM and chiral $\Sigma_Q^{(*)} \pi$ degrees of freedom

$$T^{J}(s) = \frac{1}{1 - V^{J}(s)G^{J}(s)} V^{J}(s), \qquad V^{J=1/2}_{\chi} - V^{J=3/2}_{\chi} - 4 \frac{\sqrt{s} - M}{2f^{2}}$$

$$G_{i}(s) = i2M_{i} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2} - m_{i}^{2} + i\epsilon} \frac{1}{(P - q)^{2} - M_{i}^{2} + i\epsilon}$$

$$= \overline{G}_{i}(s) + G_{i}(s_{i+}) \qquad s_{i+} = (M_{i} + m_{i})^{2}$$
finite UV divergent different UV cutoffs for each meson-baryon channel subtraction at a common scale $\mu \sim \sqrt{m_{\pi}^{2} + M_{\Sigma_{c}}^{2}}$:
$$G^{\mu}_{i}(s_{i+}) = -\overline{G}_{i}(\mu^{2})$$
common UV cutofff $A^{\Lambda}(s_{i+}) = \frac{1}{4\pi^{2}} \frac{M_{i}}{m_{i} + M_{i}} \left(m_{i} \ln \frac{m_{i}}{\Lambda + \sqrt{\Lambda^{2} + m_{i}^{2}}} + M_{i} \ln \frac{M_{i}}{\Lambda + \sqrt{\Lambda^{2} + M_{i}^{2}}}\right)$
renormalization scheme consistent with HQS

$$V_{ex}^{J=1/2} \sim V_{ex}^{J=3/2} = 2M_{CQM} \frac{d_Q^2}{s - M_{CQM}^2}$$

<u>LEC</u> d_Q^2 (up to Λ_{QCD}/m_Q corrections):

- HQSS: independent of heavy quark spin (J=1/2 or J=3/2)
- HQFS: independent of heavy quark flavor (bottom or charm)

$$\underbrace{\frac{1/2^{+}}{S_{Q}^{P}}}_{S_{Q}^{P}} \otimes \underbrace{1^{-}}_{j_{ldof}^{P}} = \underbrace{\frac{1/2^{-}}{\Lambda_{b}(5912)}}_{\Lambda_{b}(5912)}, \underbrace{\frac{3/2^{-}}{\Lambda_{b}(5920)}}_{\Lambda_{c}(2595)}$$

$$\chi^{2}(|d_{Q}|,\Lambda) = \left[\frac{M_{\Lambda_{b}(5912)} - M_{R-BSE}^{J^{P}=1/2^{-}}(|d_{Q}|,\Lambda)}{\sigma(\Sigma_{b})}\right]^{2} + \left[\frac{M_{\Lambda_{b}(5920)} - M_{R-BSE}^{J^{P}=3/2^{-}}(|d_{Q}|,\Lambda)}{\sigma(\Sigma_{b}^{*})}\right]^{2}$$

we determine $|d_Q|$ for different UV cutoffs Λ from the pole position of the $\Lambda_b(5912) [J^P = (1/2)^-]$ and $\Lambda_b(5920) [J^P = (3/2)^-]$

_					$\Lambda_b(5)$	912)			$\Lambda_b(5$	5920)	
					$\Sigma_b \pi J^h$	$P = \frac{1}{2}^{-1}$			$\Sigma_b^* \pi J$	$P = \frac{3}{2}^{-1}$	
	$\Lambda \ [\text{GeV}]$	χ^2	$ d_Q $	$M \; [{ m MeV}]$	$ g_{\Sigma_b\pi} $	$P_{\Sigma_b\pi}$	$\Gamma^R_{\Lambda_b\pi\pi}$ [keV]	$M \; [{ m MeV}]$	$ g_{\Sigma_b^*\pi} $	$P_{\Sigma_b^*\pi}$	$\Gamma^R_{\Lambda_b\pi\pi}$ [keV]
	0.4	0.02	1.79 ± 0.11	5912.4 ± 2.0	1.67 ± 0.06	0.35 ± 0.02	18 ± 5	5919.8 ± 1.6	1.66 ± 0.07	0.31 ± 0.03	37 ± 5
	0.65	0.32	1.06 ± 0.06	5913.1 ± 2.0	1.34 ± 0.04	0.23 ± 0.01	13 ± 4	5919.1 ± 1.7	1.26 ± 0.05	0.18 ± 0.01	19 ± 3
	0.9	0.16	0.75 ± 0.04	5912.9 ± 1.7	1.23 ± 0.03	0.19 ± 0.01	10 ± 3	5919.5 ± 1.6	1.11 ± 0.04	0.14 ± 0.01	16 ± 3
	1.15	0.00	0.55 ± 0.04	5912.1 ± 2.0	1.21 ± 0.02	0.18 ± 0.01	9 ± 3	5920.2 ± 1.9	1.04 ± 0.03	0.12 ± 0.01	15 ± 3
_	1.85 ± 0.04	12	0	5905.5 ± 1.7	1.27 ± 0.02	0.19 ± 0.01	2.5 ± 1.2	5924.9 ± 1.7	1.27 ± 0.02	0.19 ± 0.01	39 ± 8

2.0

		$\Lambda_b(5912)$				$\Lambda_b(5)$	920)			
				$\Sigma_b \pi J^I$	$r^{2} = \frac{1}{2}^{-1}$			$\Sigma_b^* \pi \ J^F$	$r = \frac{3}{2}^{-1}$	
$\Lambda \; [\text{GeV}]$	χ^2	$ d_Q $	$M [{ m MeV}]$	$ g_{\Sigma_b\pi} $	$\tilde{P}_{\Sigma_b\pi}$	$\Gamma^R_{\Lambda_b\pi\pi}$ [keV]	$M [{ m MeV}]$	$ g_{\Sigma_b^*\pi} $	$\tilde{P}_{\Sigma_b^*\pi}$	$\Gamma^R_{\Lambda_b\pi\pi}$ [keV]
0.4	0.02	1.79 ± 0.11	5912.4 ± 2.0	1.67 ± 0.06	0.35 ± 0.02	18 ± 5	5919.8 ± 1.6	1.66 ± 0.07	0.31 ± 0.03	37 ± 5
0.65	0.32	1.06 ± 0.06	5913.1 ± 2.0	1.34 ± 0.04	0.23 ± 0.01	13 ± 4	5919.1 ± 1.7	1.26 ± 0.05	0.18 ± 0.01	19 ± 3
0.9	0.16	0.75 ± 0.04	5912.9 ± 1.7	1.23 ± 0.03	0.19 ± 0.01	10 ± 3	5919.5 ± 1.6	1.11 ± 0.04	0.14 ± 0.01	16 ± 3
1.15	0.00	0.55 ± 0.04	5912.1 ± 2.0	1.21 ± 0.02	0.18 ± 0.01	9 ± 3	5920.2 ± 1.9	1.04 ± 0.03	0.12 ± 0.01	15 ± 3
1.85 ± 0.04	12	0	5905.5 ± 1.7	1.27 ± 0.02	0.19 ± 0.01	2.5 ± 1.2	5924.9 ± 1.7	1.27 ± 0.02	0.19 ± 0.01	39 ± 8

small 3-body decay widths (tens of keV)

$ d_{Q} = 1.79$ $ d_{Q} = 1.06$ $FRS \& T_{\Sigma_{b}\pi}(1)$ $A_{b}(6070)$	SRS = x + iy)		
$ d_Q = 0.75$ $ d_Q = 0.55$	BOTTOM BARYONS (B = -1) Λ_b^0 = udb , Ξ_b^0 = usb , Ξ_b^- = dsb , Ω_b^- = ssb	6100	INSPIRE Q
	$\Lambda_b(6070)^0$ Quantum numbers are based on quark model exp	$\begin{array}{c} \Lambda_b(6070)\\ M=6072 \pm 3 \\ \Gamma=72 \pm 12 \end{array}$	MeV MeV
	Δ _b (6070) ⁰ MASS	6072.3 ± 2.9 меV	~
5900 5900 40	$\Lambda_b(6070)^0$ Decay Modes	72 ± 11 MeV	
60000 6100 6100	Mode	$egin{array}{cc} Scale Factor/Pl. \ Fraction (\Gamma_i / \Gamma) & Conf. Level \end{array}$	'MeV/c)
noles in the SRS	$\Gamma_1 \qquad \Lambda_b^{\nu} \pi^+ \pi^-$	seen	343
$\Sigma_b \pi \left[J^P = 1/2^- \right]$	$\Sigma_b^* \pi$	$[J^P = 3/2^-]$	
$\Lambda [\text{GeV}] d_Q M [\text{MeV}] \Gamma [\text{MeV}] g_{\Sigma_b \pi} \qquad \phi_{\Sigma_b \pi}$	$M [MeV] \Gamma [MeV]$	$ g_{\Sigma_b^*\pi} \qquad \phi_{\Sigma_b^*}$	π
0.4 1.79 ± 0.11 6053 ± 6 85.2 ± 0.4 1.60 ± 0.03 -0.70 ± 0.01	$.01 \ 6066 \pm 6 \ 90.0 \pm 0.$	$5\ 1.65 \pm 0.03\ -0.67 \pm$	= 0.01
0.65 1.06 ± 0.06 6008 ± 3 49.6 ± 0.5 1.46 ± 0.02 -0.53 ± 0	$.01 6021 \pm 3 52.9 \pm 0.$	$4 \ 1.54 \pm 0.02 \ -0.50 \pm$	- 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$.01 5995 \pm 2 25.9 \pm 0.$	$8\ 1.35 \pm 0.01\ -0.38 \pm$	= 0.01
1.15 0.55 ± 0.04 5966 ± 3 9.5 ± 1.1 0.97 ± 0.01 -0.30 ± 0	$.01 5976 \pm 3 = 7 \pm 2$	$1.15^{+0.06}_{-0.02}$ $-0.30^{+0.06}_{-0.02}$	+0.01

- LHCb reported a broad excess of events in the $\Lambda_b \pi^+ \pi^-$ spectrum in region of 6040 6100 MeV.
- The spin and parity quantum-numbers of the $\Lambda_b(6070)$ were not established by LHCb.
- In the RPP, it is assumed to be the radial excitation $\Lambda_b(2S)$, which would have $J^P = (1/2)^+$
- We naturally find <u>for UV cutoffs around 500 MeV</u> two resonances $(J^P = (1/2)^- \text{ and } J^P = (3/2)^-)$ which should be observed in the $\Lambda_b \pi^+ \pi^-$ in the region of 6050 MeV
- Hence, we can fix the UV cutoffs and the strength d_Q of the coupling of the $\Sigma_c^{(2)}\pi$ pair to the CQM lowest-lying λ –mode excitation, which are now fully determined by the pole position of the $\Lambda_b(5912)$ and $\Lambda_b(5920)$ resonances
- Now using Heavy Quark Flavor Symmetry we can make predictions in the charm sector

charm sector

For each UV cutoff, the grey band shows the range of values for $|d_Q|$ obtained in the bottom sector, enhanced by HQFS breaking corrections

Reasonable simultaneous description of the $\Lambda_c(2595)$ and $\Lambda_c(2625)$ resonances considering chiral $\Sigma_c^{(*)}\pi$ pairs and their coupling to lowest-lying λ -mode CQM states fixed in the bottom sector from $\Lambda_b(5912)$, $\Lambda_b(5920)$ and $\Lambda_b(6070)$

Three body $\Lambda_c\pi\pi$ decay width and the $g_{\Lambda_c^*\Sigma_c^{(*)}\pi}$ coupling

poles in the SRS

$$\begin{split} \Sigma_c \pi ~ [J^P = 1/2^-] & \Sigma_c^* \pi ~ [J^P = 3/2^-] \\ \hline \Lambda ~ [\text{GeV}] ~ |d_Q| & \underline{M} ~ [\text{MeV}] ~ \Gamma ~ [\text{MeV}] ~ |a_{\Sigma_c \pi}| & \phi_{\Sigma_c \pi} & \underline{M} ~ [\text{MeV}] ~ \Gamma ~ [\text{MeV}] ~ |g_{\Sigma_c^* \pi}| & \phi_{\Sigma_c^* \pi} \\ \hline 0.4 ~ 1.79 \pm 0.11 & 2714 \pm 6 ~ 85.7 \pm 0.6 ~ 1.60 \pm 0.02 ~ -0.92 \pm 0.01 & 2754 \pm 6 ~ 107.7 \pm 0.3 & 1.80 \pm 0.03 ~ -0.77 \pm 0.01 \\ \hline 0.65 ~ 1.06 \pm 0.06 & 2674 \pm 4 ~ 45.2 \pm 1.1 ~ 1.33 \pm 0.01 ~ -0.75 \pm 0.01 & 2711 \pm 3 ~ 62.5 \pm 0.5 & 1.66 \pm 0.02 ~ -0.57 \pm 0.01 \end{split}$$

- The CLEO collaboration investigated the spectrum of charmed baryons which decay into $\Lambda_c \pi^+ \pi^-$ spectrum and found a evidence of a broad state ($\Gamma \approx 50$ MeV) which would have an invariant mass roughly 480 MeV above that of the Λ_c ground state baryon
- This is collected in the RPP as the $\Lambda_c(2765)$ or $\Sigma_c(2765)$ and it is explicitly stated that nothing at all is known about its quantum numbers, including whether it is a Λ_c , or a Σ_c , or whether the width might be due to <u>overlapping states</u>
- For UV cutoffs in the range 400-650 MeV, we obtain broad resonances around 2675-2755 MeV in both the $J^P = (1/2)^-$ and $J^P = (3/2)^-$ sectors, which will provide a natural explanation for the excess of events in the $\Lambda_c \pi^+ \pi^-$ spectrum reported by CLEO.
- These resonances will be heavy quark <u>flavor siblings</u> of those related to the $\Lambda_b(6070)$ in the bottom sector.

poles in the SRS

CONCLUSIONS

- Unitarized chiral $\Sigma_Q^{(*)}\pi$ + CQM exchange interaction: heavy quark symmetry consistent description of lowest lying S-wave bottom and charm resonances: $\Lambda_b(5912)$, $\Lambda_b(5920)$, $\Lambda_c(2595)$ and $\Lambda_c(2625)$
 - ✓ The $\Lambda_b(5912)$ and the $\Lambda_b(5920)$ are HQSS partners and largely CQM states ✓ The $\Lambda_c(2595)$ and the $\Lambda_c(2625)$ might not be HQSS partners (Λ_c^* –puzzle)
 - The $J^P = 3/2^-$ resonance should be viewed mostly as a <u>quark-model state</u> naturally predicted to lie very close to its nominal mass
 - The $\Lambda_c(2595)$ is predicted to have a predominant chiral $\Sigma_c \pi$ molecular structure, which threshold is located much more closer than the mass of the bare three-quark state
 - ✓ At higher energies, we find heavy quark flavor sibling resonances (bottom and charm sectors) with spin-parities $J^P = (1/2)^-$ and $(3/2)^-$ which would contribute to the broad excesses of events in the $\Lambda_{b,c}\pi^+\pi^-$ spectra associated to the Λ_b (6070) and Λ_c (2765) resonances.

Final remark: dynamics of the $\Lambda_c(2595)$ and the $\Lambda_c(2625)$ is complicated

- $\circ \Lambda_c^*$ –puzzle and HQSS
- $\circ\;$ role played by the CQM degrees of freedom
- \circ role played by the chiral $\Sigma_c^{(*)}\pi$ thresholds

... LQCD seems to support our findings!

PHYSICAL REVIEW D 94, 114518 (2016)

Flavor structure of Λ baryons from lattice QCD: From strange to charm quarks

Philipp Gubler,1,* Toru T. Takahashi,2 and Makoto Oka3,4

Thanks to all my collaborators!

Back up

strategy: combining effective field theory methods with LQCD results to describe data!

increasing by 15 MeV the mass of the bare CQM state the agreement is excellent!

<u>LO HQSS does not fix</u> $ND^{(*)} \rightarrow ND^{(*)}$, $\Sigma_c^{(*)}\pi$ coupled-channels interaction; There exist several models in the literature consistent with LO HQSS constraints. Moreover, renormalization parameters can be fine tuned to reproduce the position of the $\Lambda_c(2595)$ and $\Lambda_c(2625)$ resonances.... (see detailed discussion in JN+R.Pavao, PRD101 (2020) 014018

Extended local hidden gauge (ELHG) model W. Liang, T. Uchino, C. Xiao, E. Oset, EPJ A**51** (2015) 16

A <u>different approach</u>: $SU(6)_{lsf} \times SU(2)_{HQSS}$ extension of the Weinberg-Tomozawa $N\pi$ interaction

 $\checkmark \pi - \text{octet}, \rho - \text{nonet},$ $D_{(s)}^{(*)}, \overline{D}_{(s)}^{(*)}$ $\checkmark N - \text{octet}, \Delta - \text{decuplet},$ $\Lambda_{c}, \Sigma_{c}^{(*)}, \Xi_{c}^{(*,\prime)}, \Omega_{c}^{(*)}$

light spin-flavor (mesons and baryons)

- consistent with HQSS and chiral symmetry
- ✓ dependence of renormalization scheme [see also JN+R.Pavao, PRD101 (2020) 014018]
- C = 1, C. Garcia-Recio, V.K. Magas, T. Mizutani, JN, A. Ramos, L.L. Salcedo, L. Tolos, PRD79 (2009), 054004; O. Romanets, L. Tolos, C. Garcia-Recio, JN, L.L. Salcedo and R.G.E. Timmermans, PRD85 (2012) 114032.
- *C* = -1, D. Gamermann, C. Garcia-Recio, JN, L.L. Salcedo and L. Tolos, PRD81 (2010) 094016.
- beauty Λ_b(5912) and Λ_b(5920), C. Garcia-Recio, JN, O. Romanets, L.L. Salcedo and L. Tolos, PRD 87 (2013) 034032.
- LHCb Ω_c^* states, $\Xi_{c,b}$ JN, R. Pavao and L. Tolos, EPJC78 (2018) 114; EPJC80 (2020) 22

matrix

the

0

of the determinant

Absolute value

 $J^{P} = 3/2^{-}$

subtraction at a common scale (no fit!)

✓ main features of $3/2^-$ pole do not depend much on the RS: M = 2660 - 2680 MeV and $\Gamma = 55 - 65$ MeV: **difficult to assign it to the narrow** $\Lambda_c(2625)$.

 ✓ spectrum in the 1/2[−] sector depends strongly on the adopted RS

common UV cutoff 650 MeV (no fit!)

 $J^{P} = 3/2^{-}$

2.0

3.9

1.9

6.2

and C	CQM prediction	s:	$ \boldsymbol{\ell}_{\lambda} = 1, $	ℓ _ρ = 0, <i>S=0, I=0</i> (sym)	λ –mode excitations
Sj T. Yosh	$\frac{1/2^{+}}{S_{Q}^{P}}$ PHYSICAL REVIE pectrum of heavy ba ida, ^{1,*} E. Hiyama, ^{2,1,3} A. H	$\bigotimes \left(\begin{array}{c} 1 \\ i_{ldof} \\ i_{ldof} \\ M \\ D \\ 92, 114029 \\ (20) \\ ryons in the que \\ Hosaka, 4,3 \\ M. \\ Oka, 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\frac{1/2^{-}}{2595}$, (2595) A (15) (ark model) (13) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	$\frac{3/2^{-}}{2^{(2625)}}$	
	Λ_c			ho –MODE	E λ-MODE
J^P	Theory (MeV)	Experiment (MeV)		Λ_c	
$\frac{1}{2}^{+}$	2285 2857	2285	J^P	Theory (MeV)	Experiment (MeV)
$\frac{3}{2}$ +	3123 2920		$\frac{3}{2}$	2630	2628
$\frac{5}{2}^{+}$	3175 3191 2922 3202 3230	2881	$\frac{5}{2}$	2917 bare CC 2956 explicit 2960 the dyr 3444 the A _c	QM state should be ly taken into account in namics, in particular for (2625) resonance: for
$\frac{1}{2}$	2628 2890 2933	2595		³⁴⁹¹ these e rapidly depend	energies it produces a changing energy dent interaction

✓ In addition, a second broad pole is predicted in the region of 2.7 GeV.

- ✓ The mass and the width of the narrow state at 2800 MeV (common UV cutoff 650 MeV) or 2610 MeV (subtraction at a common scale) are practically unaltered by the coupling between meson-baryon and CQM degrees of freedom. This is a trivial consequence of the largely dominant $j_{ldof}^P = 0^-$ configuration of these states, since HQSS forbids their coupling to the $(j_{ldof}^P = 1^-)$ –CQM bare state.
- ✓ in both renormalization schemes we obtain the dressed CQM pole at masses around 2640-2660 MeV and with a width of the order of 30-50 MeV, depending on the chosen regulator and on the details of coupling meson-baryon and CQM degrees of freedom.

✓ The $\Lambda_c(2595)$ and the $\Lambda_c(2625)$ might not be HQSS partners. (Λ_c^* –puzzle)

- ✓ The $J^P = 3/2^-$ resonance should be viewed mostly as a quark-model state naturally predicted to lie very close to its nominal mass. In addition, there will exist a molecular baryon, moderately broad, with a mass of about 2.7 GeV and sizable couplings to both $\Sigma_c^* \pi$ and ND^* that will fit into the expectations of being $\Sigma_c^* \pi$ molecule generated by the chiral interaction of this pair.
- ✓ The $\Lambda_c(2595)$ is predicted, however, to have a predominant molecular structure. This is because, it is either the result of the chiral $\Sigma_c \pi$ interaction [J.-X. Lu, Y. Zhou, H.-X. Chen, J.-J. Xie, and L.-S. Geng, PRD92 (2015) 014036; but this contradicts the conclusions of T. Hyodo in PRL 111 (2013) 132002], which threshold is located much more closer than the mass of the bare three-quark state, or because the *ldof* in its inner structure are coupled to the unnatural 0⁻ quantum-numbers, depending on the RS. In the latter case, the resonance would have dominant $ND^{(*)}$ components.
- ✓ The relative importance of 0⁻ and 1⁻ components in the $\Lambda_c(2595)$ can be extracted from the ratio between the widths of the semileptonic decays $\Lambda_b[gs] \rightarrow \Lambda_c(2595)$ and $\Lambda_b[gs] \rightarrow \Lambda_c(2625)$ [W.-H. Liang, E. Oset, Z.-S. Xie, PRD95 (2017) 014015; JN, R. Pavao and S. Sakai, EPJC79 (2019) 417]