HADR N 2023

> Recent Measurements of e^+e^- Annihilation into Hadrons at Low Energies with the *BABAR* Detector

On behalf of *BABAR* Collaboration)

ORCID: 0000-0003-2943-9343 email: dxlin@impcas.ac.cn

Università di Genova, Italia Jun. 05 - Jun. 09, 2023

D. X. Lin (dxlin@impcas.ac.cn)

Hadronic Cross Section

Jun. 05 - Jun. 09, 20

(0) (0) (3) (3) (3)

1/18

- Motivation and Introduction
- 2 Introduction of *BABAR* Experiment
- Hadronic Cross Section via ISR Process

•
$$e^+e^- \rightarrow 3\pi$$
 Process

•
$$e^+e^- \rightarrow 2K3\pi$$
 Processes

Motivation: The Muon *g*-2 Puzzle

- Muon anomalous magnetic moment: $a_{\mu} \equiv \frac{g_{\mu}-2}{2}$
- Precise test of the Standard Model:

 $a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm Had}$

- Long-standing discrepancy (4.2 σ) between theory and experiment for muon *g*-2,
- Main uncertainty of a_{μ}^{SM} rising from hadronic (quark and gluon) loop contributions a_{μ}^{Had} .

Motivatior

Motivation: Evaluating the Hadronic Contribution

D. X. Lin (dxlin@impcas.ac.cn)

BABAI

Introduction: The BABAR Experiment

- Designed primarily for the research of CP-violation in B-meson decays,
- General-purpose design of detector and high quality of data suit for a large variety of studies,
- Ten years data taking to collect 531 fb⁻¹ luminosity mainly at $\Upsilon(4S)$.

イロト イポト イヨト イヨト

BABAR

Introduction: Initial-State Radiation Technique

- High energy photon emitted via the initial-state radiation by the beam particle,
- To decrease the center-of-mass (c.m.) energy, $\sqrt{s'}$, allowing a distribution of energies for remaining system.

$$x \equiv 1 - \frac{s'}{s} = \frac{2E_{\gamma}^*}{\sqrt{s}}$$

- Most ISR photons are emitted along the beam directions,
- Large luminosity needed due the suppression with a factor of π/α : $W(s, x) = \frac{\alpha}{\pi x} \left(\frac{2-2x+x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$
- High acceptance, even at threshold,
- A large number of hadronic final states measured at *BABAR*.

BABAR

Hadronic Cross Sections from BABAR ISR Contributions

• The LO hadronic VP contribution calculated via dispersion relations from correspoding hadronic cross section measurements:

$$a_{\mu}^{\text{Had}}[\text{LO}] = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R_{\text{Had}}(s)$$

$$R_{\text{Had}}(s) \equiv \frac{\sigma(e^+e^- \to \gamma^* \to \text{hadrons})}{\sigma(e^+e^- \to \gamma^* \to \mu^+\mu^-)}$$

- Perturbative QCD (pQCD) can be used by theory for the energy region above ~2 GeV,
- Need experiment inputs for the energy region below that, and *BABAR* provides significant contributions.

7/18

R Physics $e^+e^- \rightarrow 3\pi$ Process

The Process of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ at *BABAR*

- The 2nd largest contribution mode, $e^+e^- \rightarrow 3\pi$, ~7% to $a_{\mu}^{\text{Had}}[\text{LO}]$ and ~19% to its uncertainty, (EEPI C80 (2020) 814)
- The relative uncertainty on the 3π channel is over 3%, almost 5 times relative uncertainty on the 2π channel,
- Measuring $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ to improve the precision is important for $a_{\mu}^{\text{Had}}[\text{LO}]$ calculation.

- The 3π channel was analyzed with the full *BABAR* dataset, 469 fb⁻¹,
- ISR photon: with highest energy over 3 GeV,
- Require only 2 "good" tracks with opposite charge,
- At least 2 additional good photons, with $m_{\gamma\gamma} \in (0.10, 0.17) \text{ GeV/c}^2$,
- Kinematic fit, and further cuts to suppress background.

Expected Mass Spectrum for Resonances

- Sharp structure of mass spectrum from resonances, over 4 orders of magnitude below 1.1 GeV,
- It is essential to unfold the detect efficiency effects,
- Fit to the 3π mass spectrum with four models, allowing or not for Lorentzian smearing and leaving the $\rho \rightarrow 3\pi$ branching fraction as a free parameter or forced to zero,
- To extract $P_V = \Gamma(V \to e^+e^-)\mathcal{B}(V \to \pi^+\pi^-\pi^0)$.

< 口 > < 同2

Mass Spectrum in Different Invariant Mass region

SR Physics $e^+e^- \rightarrow 3\pi$ Process

Cross Section for $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ Measured at *BABAR*

• Cross section for $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ has been measured at *BABAR* from threshold up to 3.5 GeV,

- Systematic uncertainties are 1.3% and 4-15% for the region below and above 1.1 GeV, respectively,
- Reasonable agreement between SND (blue triangles) and *BABAR* (black points), except a sizable difference observed near 1.25 and 1.5 GeV/c².

D. X. Lin (dxlin@impcas.ac.cn)

Hadronic Cross Section

Contribution to the Muon g-2

PRD 104 (2021) 112003

TABLE VI. Values of $a_{\mu}^{3\pi}$ for different mass intervals. The first three rows represent the *BABAR* result, while the last three are the calculations [1,49–51] based on previous $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ measurements.

$M_{3\pi} \text{ GeV}/c^2$	$a_\mu^{3\pi} imes 10^{10}$
0.62-1.10	$42.91 \pm 0.14 \pm 0.55 \pm 0.09$
1.10-2.00	$2.95 \pm 0.03 \pm 0.16$
<2.00	$45.86 \pm 0.14 \pm 0.58$
<1.8 [1]	$46.21 \pm 0.40 \pm 1.40$
<1.97 [49]	46.74 ± 0.94
<2 [50]	44.32 ± 1.48
<1.8 [51]	$46.2 \pm 0.6 \pm 0.6$

TABLE VII. Contributions to the systematic uncertainty in $a_{\mu}^{3\pi}(0.62 < M_{3\pi} < 1.1 \text{ GeV}/c^2)$ from different effects.

Effect	Uncertainty (%)
Luminosity	0.4
Radiative correction	0.5
Detection efficiency	1.1
MC statistics	0.15
Background subtraction	0.073
Gaussian smearing	0.0007
Lorentzian smearing	0.003
Unfolding procedure	0.045
Total	(1.3)

 $a_{\mu}^{3\pi} = (45.86 \pm 0.14 \pm 0.58) \times 10^{-10}$

- LO hadronic contribution to muon anomaly magnetic moment is calculated with the measured cross section below 2.0 GeV,
- Agreement with calculation based on previous measurements, more precise by a factor of ~2,
- Previous relative uncertainty on the 3π mode is over 3%.

The Processes of $e^+e^- \rightarrow 2K3\pi$ at *BABAR*

- Three channels for the $2K3\pi$ mode measured at *BABAR* for the first time: $K^+K^-\pi^0\pi^0\pi^0$, $K_s^0K^\pm\pi^\pm\pi^0\pi^0$ and $K_s^0K^\pm\pi^\pm\pi^+\pi^-$,
- Only $K^+K^-\pi^+\pi^-\pi^0$ has been studied previously for the $2K3\pi$ mode,
- Similar technique used as $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{\rm ISR}$,
- Total integrated luminosity used is 468.6 fb⁻¹ (at $\Upsilon(4S)$: 424.7 fb⁻¹),
- Intermediate resonances (narrow), η , ρ and K^* , have been measured.

ISR Physics $e^+e^- \rightarrow 2K3\pi$ Processes

Observed Intermediate Structures at BABAR (I)

$e^+e^- \rightarrow 2K3\pi$ Processes

Observed Intermediate Structures at BABAR (II)

• Clear J/ψ and $\psi(2S)$ peaks in the $2K3\pi$ final states.

Cross Sections Measured for $e^+e^- \rightarrow 2K3\pi$

- Three channels of the $2K3\pi$ mode have been measured for the first time with ISR method at *BABAR*,
- The cross sections of $2K3\pi$ extracted in the invariant mass region below 4.5 GeV,
- The precision of the $2K3\pi$ cross section is around 10%.

Summary

- The muon *g*-2 puzzle is important for SM precise test, even a potential gateway to New Physics (NP),
- Precision studies of e^+e^- annihilation into hadrons in low energy at *BABAR* with ISR technique,
- These measurements provide important experimental input for a_{μ}^{Had} calculation,
- The new measurement of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ improved the precision of a_{μ}^{Had} calculation from this channel by a factor of ~2, \mathbb{PRD} **104** (2021) 112003
- Measurements of the cross section and substructure associated with $e^+e^- \rightarrow 2K3\pi$ modes help to improve knowledge of the hadronic contributions to a_{μ}^{Had} , \mathbb{PRD} **107** (2023) 072001.

