

HELMHOLTZ Helmholtz-Institut Mainz

Light flavor vector mesons between 2 and 3 GeV at BESII Dong Liu on behalf of BESIII Collaboration Helmholtz Institute Mainz, Mainz, Germany

Hadron2023, Genova, Italy, 06/06/2023

Outline

- Motivation
- BESIII experiment
- Data sets
- Results

–
$$ho^*$$
, ω^* , ϕ^* related analyses

• Summary

Motivation

- Light flavor vector mesons
 - Tools to investigate property of non-perturbative QCD
 - mass, width, decay pattern, production rate ...
 - Contribution to hadron spectroscopy
 - Analogy to heavy flavor vector meson, exotic hadron
 - Charmonium, bottomonium, strangeonium?
 - Directly produced in electron-positron annihilation

2023/6/1

- Possible states:
 - ρ^* : ho(2000), ho(2150), ho(2270)
 - ω*: ω(2205), ω(2290), ω(2330)
 - φ*: φ(2170)

, ω^* and ϕ^* states

Many vector states between $\sqrt{s} = [2.0, 3.0]$ GeV

 $-\rho^*, \omega^*, \phi^*$, exotic states, mixture?

- **Couplings to different channels** help to reveal their nature
- Common decay patterns: $\rho^* \omega^* \phi^*$ mixing?
- Identification of exotic particle with nonexotic quantum numbers
- Well-established experimental meson spectrum is required to
 - Eliminate conventional quarkonia
 - Study the possibility of a complicated pattern of mixing between exotica and conventional mesons

TABLE XII. Decay amplitudes squared (excluding the decay strength constants).

Decay	Products	Squared amplitude	
$\rho^* \rightarrow PP$	^{<i>K̃</i>} PRD79 , 014036 ⁴		
-* · VD	1111		
$\rho \rightarrow v P$	ΛΛ	2	
	$\rho\eta$	$2\cos^2\phi_P$	
	$ ho \eta'$	$2\sin^2\phi_P$	
	$\omega\pi$	$2\sin^2\phi_V$	
	$\phi \pi$	$2\cos^2\phi_V$	
$\omega^* \rightarrow PP$	$K\bar{K}$	$12\sin^2\theta_V^*$	
$\omega^* \rightarrow VP$	$\phi \eta$	$2(\sqrt{2}\cos\phi_V^*\sin\phi_V\sin\phi_P+\sin\phi_V^*\cos\phi_V\cos\phi_P)^2$	
	$\phi \eta'$	$2(\sqrt{2}\cos\phi_V^*\sin\phi_V\cos\phi_P - \sin\phi_V^*\cos\phi_V\sin\phi_P)^2$	
	ωη	$2(\sqrt{2}\cos\phi_V^*\cos\phi_V\sin\phi_P-\sin\phi_V^*\sin\phi_V\cos\phi_P)^2$	
	$\omega \eta'$	$2(\sqrt{2}\cos\phi_V^*\cos\phi_V\cos\phi_P+\sin\phi_V^*\sin\phi_V\sin\phi_P)^2$	
	$\rho\pi$	$6\sin^2\phi_V^*$	
	$K^*ar{K}$	$2(\sin\phi_{V}^{*}+\sqrt{2}\cos\phi_{V}^{*})^{2}$	
$\phi^* \rightarrow PP$	KĀ	$12\cos^2\theta_V^*$	
$\phi^* \rightarrow VP$	$\phi \eta$	$2(-\sqrt{2}\sin\phi_V^*\sin\phi_V\sin\phi_P + \cos\phi_V^*\cos\phi_V\cos\phi_P)^2$	
	$\phi \eta'$	$2(\sqrt{2}\sin\phi_V^*\sin\phi_V\cos\phi_P + \cos\phi_V^*\cos\phi_V\sin\phi_P)^2$	
	ωη	$2(\sqrt{2}\sin\phi_V^*\cos\phi_V\sin\phi_P + \cos\phi_V^*\sin\phi_V\cos\phi_P)^2$	
	ωn^*	$2(-\sqrt{2}\sin\phi_V^*\cos\phi_V\cos\phi_P + \cos\phi_V^*\sin\phi_V\sin\phi_P)$	
	, 0π	$6\cos^2 d^*$	
	ייק ע*ע	$2(z - z + t^*)^2$	

BESIII experiment

- electron-position collision
- √*s*: 2 4.95 GeV
- \mathcal{L} : 1x10³³ cm⁻²s⁻¹ at 3.77 GeV
- Sub-detectors
 - MDC: multilayer drift chamber σ_p/p=0.5% @1 GeV, σ_{dE/dx}=6%
 - TOF: Time-of-Flight
 barrel: σ_T=68 ps P.S.; endcaps:
 MRPC, 60 ps
 - EMC: Electromagnetic calorimeter,
 ΔE/E = 2.5% @1 GeV, σ_x ~ 6mm @1GeV _E
 - MG: superconductor magnet
 - MUC: Muon Counter, efficiency 96%

2023/6/1

Data sets

- Data below J/ψ
- $\sqrt{s}: 2.0 3.08 \text{ GeV}$
- *L*: ~650 pb⁻¹
- ρ^{*}, ω^{*}, φ^{*}: Excited Light flavor vector meson directly produced
- Line shape scan to study properties of light flavor vector mesons

φ(2170)

- Strangeonium spectrum
 - Based on potential model
 - Many unobserved
 - Hard to distinguish from others
- Strangeonium-like state
 - Analogy to charmonium-like
 - ϕ (2170): possible one
 - Strength of coupling to different final states

ϕ (2170) in $K^+K^-\pi^0\pi^0$

- $K^+K^-(\phi)\pi^0\pi^0$
 - Improved precision of cross section
 - Partial wave analysis (PWA) to extract internal processes

ϕ (2170) in $K^+K^-\pi^0\pi^0$

- $K^+K^-(\phi)\pi^0\pi^0$
 - Resonance in internal processes: 6.3σ
 - $M = 2126.5 \pm 16.8 \pm 12.4 \text{ MeV}/c^2$
 - $\Gamma = 106.9 \pm 32.1 \pm 28.1 \text{ MeV}$
 - Internal processes in PWA
 - $K^+(1460)K^-: 4.4\sigma$
 - $K_1^+(1400)K^-: 4.8\sigma$
 - $K_1^+(1270)K^-: 1.4\sigma$
 - *K*^{*+}(892)*K*^{*-}(892): 1.2σ

√s (GeV)

[PRL124, 112001(2020)]

elmholtz-Institut Mainz 9

√s (GeV)

ϕ (2170) in $K^+K^-\pi^0\pi^0$

- $K^+K^-(\phi)\pi^0\pi^0$
 - Resonance in internal processes: 6.3σ
 - $M = 2126.5 \pm 16.8 \pm 12.4 \text{ MeV}/c^2$
 - $\Gamma = 106.9 \pm 32.1 \pm 28.1 \text{ MeV}$
 - Internal processes in PWA
 - $K^+(1460)K^-: 4.4\sigma$
 - $K_1^+(1400)K^-: 4.8\sigma$
 - $K_1^+(1270)K^-: 1.4\sigma$
 - $K^{*+}(892)K^{*-}(892)$: 1.20

None of $3^{3}S_{1}$, $2^{3}D_{1} s\bar{s}$ states and $s\bar{s}g$ state agree well with the result

[PRL124, 112001(2020)]

$\phi(2170)$ in $K^+K^-\pi^0$

- $K^+K^-(\phi)\pi^0$
 - PWA to extract internal processes
 - Resonance in internal processes: 7.1σ
 - $M = 2190 \pm 19 \pm 37 \text{ MeV}/c^2$
 - $\Gamma = 191 \pm 28 \pm 60 \text{ MeV}$
 - $-K^{+}K^{-}\pi^{0}$
 - $\phi \pi^0$
 - *K*^{*+}(892)*K*⁻: **3.7**σ
 - $K_2^{*+}(1430)K^-$: 6.1 σ

 $\frac{Br(\phi(2170) \to K_2^{*+}(1430)K^-)}{Br(\phi(2170) \to K^{*+}(892)K^-)} = 12.6 \pm 4.5$ (22.7 ± 4.1)

2

2.2

2.4

2.6

√s (GeV)

2.8

400

350

300

250

200

150

100

50

(140) (140) (140) (120

20

0<u>⊦</u> 1.5

(a)

🕂 BaBar

3

2.5

2

(a)

SND

(qd)

ц ц

σ(e⁺(

ϕ (2170) in $\phi \pi^{+} \pi^{-}$

- $\phi \pi^+ \pi^-$
 - Resonances at 2.1, 2.4 GeV
 - Possible contribution from ϕ (2170)

$\phi(2170)$ in $\phi\eta/\phi\eta'$

- $\phi\eta$ and $\phi\eta'$
 - Resonance around 2.2 GeV
 - $\text{Br}(\phi \eta)/\text{Br}(\phi \eta') = 0.03^{+0.02}_{-0.01}, (1.42^{+0.56}_{-0.46}), \text{ disfavor } s\bar{s}g$ interpretation [PRD59, 034016; PLB650, 390]

[PRD104.032007(2021)]

2.5

√s [GeV]

з

HELMHOLTZ

(2170) contribution

3

3.5

φ(2170) in *ω*<u>η</u>

- ωη
 - Resonance around 2.2 GeV
 - $-\omega\eta$ is consistent with ϕ (2170)
 - also can be a ω^*

$e^+e^- \rightarrow \omega \eta$ dressed cross section.				
Parameters	Solution I	Solution II		
$m_{\rm Y(2180)}~({\rm MeV}/c^2)$	2176 ± 24			
$\Gamma_{Y(2180)}$ (MeV)	89 ± 50			
$\Gamma^{ee} \cdot B^{\omega\eta}$ (eV)	0.43 ± 0.15	1.25 ± 0.48		
φ	2.6 ± 0.3	1.9 ± 0.2		
significance	6.2σ			

Resonance parameters of the Y(2180) as obtained in the fit to the

[PLB 813 (2021) 136059]

14

2023/6/1

 $\sigma(e^+e^- \rightarrow \omega \eta)(nb)$

Other vector mesons

- ho^* and ω^*
 - Members above 2 GeV, controversies about their nature
 - Pure state or mixture?
 - Decay patterns can be used to identify them

KK

• K^+K^-, K_SK_L

Discrepancy: mass higher, width much larger than $\phi(2170)$

Resonance also exist in $\pi^+\pi^-$ process, maybe $\rho(2150)$, $\phi(2170)$, or mixture?

2023/6/1

$\omega\pi\pi$

- $\omega \pi^+ \pi^-$ and $\omega \pi^0 \pi^0$
 - Clear structure around 2.2 GeV in both channels
 - Combined ωππ: m = 2232±19±27 MeV/c², Γ = 93±53±20 MeV
 - Structure also in subprocesses $\omega f_0(500)$, $\omega f_0(800)$, $\omega f_0(1370)$, $\omega f_2(1270)$, $b_1(1235)\pi \rightarrow \omega^*$

Other channels

- $\omega \pi^0$
 - Resonance around 2.1 GeV
 - m = 2034 \pm 13 \pm 9 MeV/c²
 - Γ = 234 ± 30 ± 25 MeV
 - Isospin 1, ρ^* , ρ (2000) or ρ (2150)?
- $\eta'\pi^+\pi^-$
 - Resonance around 2.1 GeV
 - m = $2111 \pm 43 \pm 25 \text{ MeV/c}^2$
 - Γ = 135±34±30 MeV
 - ρ*?

Helmholtz-Institut Mainz

Summary

- Many results on light flavor vector mesons from BESIII between 2 to 3 GeV
 - Exclusive channels
 - Partial wave analyses: $K^+K^-\pi^0\pi^0$, $K^+K^-\pi^0$ and $\omega\pi\pi$
- ϕ (2170)
 - Its nature is still controversial
 - Efforts from theoretical and experimental sides are desirable
- The nature of ρ^* , ω^* , ϕ^* call for further studies, like couple-channel analysis or partial wave analysis.

