Non-Strange Light-Meson Spectroscopy at COMPASS

Philipp Haas for the COMPASS Collaboration 06.06.2023 - HADRON 2023

Motivation

- The Constituent Quark Model predicts mesons as $|q \bar{q}\rangle$ states
- QCD allows meson configurations beyond $|q \bar{q}\rangle$-so-called exotics:
- Hybrids $|q \bar{q} g\rangle$, Glueballs |gg \rangle, Multiquarks $|q q \bar{q} \bar{q}\rangle$

Motivation

- The Constituent Quark Model predicts mesons as $|q \bar{q}\rangle$ states
- QCD allows meson configurations beyond $|q \bar{q}\rangle$-so-called exotics:
- Hybrids $|q \bar{q} \mathrm{~g}\rangle$, Glueballs |gg$\rangle$, Multiquarks $|q q \bar{q} \bar{q}\rangle$

Exotic mesons at COMPASS (talk by B. Ketzer, Tue. 15:00)

- Light non-strange $|q \bar{q}\rangle$ states cannot make up states with spin quantum numbers $J^{P C}=0^{--}$, even ${ }^{+-}$, odd ${ }^{-+}$
- "Spin-exotic" mesons
- Direct access to find states beyond $|q \bar{q}\rangle$ states

Spin-Exotic Light Mesons

- Lattice QCD predicts the lightest exotic in 1^{-+}
- Single pole around $1.6 \mathrm{GeV} / c^{2}$
- Dominant decay to $b_{1} \pi$

Spin-Exotic Light Mesons

- Lattice QCD predicts the lightest exotic in 1^{-+}
- Single pole around $1.6 \mathrm{GeV} / c^{2}$
- Dominant decay to $b_{1} \pi$
- 1^{-+}signals at $1.4 \mathrm{GeV} / c^{2}$ and 1.6 GeV / c^{2} seen at COMPASS and other experiments

Spin-Exotic Light Mesons

- Lattice QCD predicts the lightest exotic in 1^{-+}
- Single pole around $1.6 \mathrm{GeV} / c^{2}$
- Dominant decay to $b_{1} \pi$
- 1^{-+}signals at $1.4 \mathrm{GeV} / c^{2}$ and 1.6 GeV / c^{2} seen at COMPASS and other experiments
- JPAC found single pole - π_{1} (1600) sufficient for $\eta^{(\prime)} \pi$ COMPASS data

Spin-Exotic Light Mesons

- Lattice QCD predicts the lightest exotic in 1^{-+}
- Single pole around $1.6 \mathrm{GeV} / c^{2}$
- Dominant decay to $b_{1} \pi$
- 1^{-+}signals at $1.4 \mathrm{GeV} / c^{2}$ and $1.6 \mathrm{GeV} / c^{2}$ seen at COMPASS and other experiments
- JPAC found single pole - $\pi_{1}(1600)$ sufficient for $\eta^{(\prime)} \pi$ COMPASS data

- BNL claimed $\pi_{1}(2015)$ in $\omega \pi^{-} \pi^{0}$ and $f_{1} \pi$

Experimental Setup

- Located at CERN SPS
- $190 \mathrm{GeV} / \mathrm{c}$ negative hadron beam
- Various targets:
- Liquid-hydrogen
- Heavy solid-state targets
- $\mathrm{Pb}, \mathrm{Ni} \rightarrow$ Primakoff reactions (talk by D. Ecker, Thu. 17:20)
- Inelastic high-energy $\pi^{-} p$ scattering
- Isovector light mesons X^{-} (a_{J} and π_{J})

Light-Meson Spectroscopy at COMPASS

Analyzed channels:

- $\pi^{-} \pi^{-} \pi^{+} / \pi^{-} \pi^{0} \pi^{0}$
- $\eta \pi^{-} / \eta^{\prime} \pi^{-}$
- $K^{-} \pi^{-} \pi^{+} \longrightarrow$ Strange-meson spectroscopy
- $\omega \pi^{-} \pi^{0}$

Upcoming channels under study:

$K_{S} K^{-}$	Search for $a_{6}(2450)$
$K_{s} K_{s} \pi$	Investigate nature of $a_{1}(1420)$
$f_{1} \pi^{-}$	Search for π_{1} states
$K_{s} \pi^{-}$	
$\Lambda \bar{p}$	Strange mesons spectroscopy

Analysis of $\omega(782) \pi^{-} \pi^{0}$

- Overlapping and interfering X^{-}states
- m_{X} spectrum shows no clear peaks above
 $1.5 \mathrm{GeV} / c^{2}$
- Disentangling the different contributions requires partial-wave analysis

Talk by J. Beckers on Thu. 14:00: Progress in the PartialWave Analysis Methods at COMPASS

- Partial-wave decomposition splits the total amplitude in the different contributions

Partial-Wave Decomposition

- Exited meson X^{-}with quantum numbers $0^{-} 0^{+}$is produced

Partial-Wave Decomposition

- Exited meson X^{-}with quantum numbers $0^{-} 0^{+}$is produced
- Isobar model: X^{-}decays to $\omega \rho(770)$, where ρ (770) an unstable intermediate state - the isobar

Partial-Wave Decomposition

- Exited meson X^{-}with quantum numbers $0^{-} 0^{+}$is produced
- Isobar model: X^{-}decays to $\omega \rho(770)$, where ρ (770) an unstable intermediate state - the isobar
- P1 coupling between ω and ρ (770)

Partial-Wave Decomposition

- Exited meson X^{-}with quantum numbers $0^{-} 0^{+}$is produced
- Isobar model: X^{-}decays to $\omega \rho(770)$, where ρ (770) an unstable intermediate state - the isobar
- P1 coupling between ω and ρ (770)
- $\rho(770)$ decays to $\pi^{-} \pi^{0}$
- second $P 1$ coupling

- $i=0^{-} 0^{+}[\rho(770) P] \omega P 1$

Partial-Wave Decomposition

- Exited meson X^{-}with quantum numbers $J^{P} M^{\epsilon}$ is produced
- Isobar model: X^{-}decays to $\omega \xi^{-}$, where ξ^{-}is an unstable intermediate state - the isobar
- L, S coupling between ω and ξ^{-}
- ξ^{-}decays to $\pi^{-} \pi^{0}$
- second l, s coupling

- $i=J^{P} M^{\epsilon}[\xi l] \omega L S$

Partial-Wave Decomposition

- Further decay channels of X^{-}:
- $\pi^{0} \xi^{-}, \pi^{-} \xi^{0}$
- Both decays have the same amplitude
\Rightarrow Coherently sum over both isospin configurations $\pi^{0} \xi^{-}, \pi^{-} \xi^{0}$
- $i=J^{P} M^{\epsilon}[\xi l]$ bachelor $L S$
- ξ either decays to $\omega \pi$ or $\pi \pi$

Partial-Wave Decomposition

- Coherent superposition of partial-waves:
- $i=J^{P} M^{\epsilon}[\xi l]$ bachelor $L S$

$$
I\left(m_{X}, t^{\prime}, \tau\right)=\left|\sum_{i} \mathcal{T}_{i}\left(m_{X}, t^{\prime}\right) \psi_{i}\left(m_{X}, \tau\right)\right|^{2}
$$

with:
m_{X} : mass of the $\omega(782) \pi^{-} \pi^{0}$ system
t^{\prime} : squared four-momentum transfer
τ : phase-space variables of the final state

Phase-Space Variables

- τ : Total of 8 phase-space variables

Partial-Wave Decomposition

- Coherent superposition of partial-waves:
- $i=J^{P} M^{\epsilon}[\xi l]$ bachelor $L S$

$$
I\left(m_{X}, t^{\prime}, \tau\right)=\left|\sum_{i} \mathcal{T}_{i}\left(m_{X}, t^{\prime}\right) \psi_{i}\left(m_{X}, \tau\right)\right|^{2}
$$

- Decay amplitude $\psi_{i}\left(m_{X}, \tau\right)$: calculated using the isobar model

Partial-Wave Decomposition

- Coherent superposition of partial-waves:
- $i=J^{P} M^{\epsilon}[\xi l]$ bachelor $L S$

$$
I\left(m_{X}, t^{\prime}, \tau\right)=\left|\sum_{i} \mathcal{F}_{i}\left(m_{X}, t^{\prime}\right) \psi_{i}\left(m_{X}, \tau\right)\right|^{2}
$$

- Decay amplitude $\psi_{i}\left(m_{X}, \tau\right)$: calculated using the isobar model
- Transition amplitude $\mathcal{T}_{i}\left(m_{X}, t^{\prime}\right)$:
$\Rightarrow \mathcal{T}_{i}\left(m_{X}, t^{\prime}\right)$ contains production, propagation, and coupling of i
- No assumptions about the resonant content of X^{-}
\Rightarrow Extract $\mathcal{T}_{i}\left(m_{X}, t^{\prime}\right)$ by independent maximum-likelihood fits of $I(\tau)$ in bins of $\left(m_{X}, t^{\prime}\right)$

Partial-Wave Decomposition - Wave Set

- In principle: Infinite number of partialwaves i

$$
I\left(m_{X}, t^{\prime}, \tau\right)=\left|\sum_{i} \mathcal{J}_{i}\left(m_{X}, t^{\prime}\right) \psi_{i}\left(m_{X}, \tau\right)\right|^{2}
$$

Partial-Wave Decomposition - Wave Set

- In principle: Infinite number of partialwaves i

$$
I\left(m_{X}, t^{\prime}, \tau\right)=\left|\sum_{i} \mathcal{J}_{i}\left(m_{X}, t^{\prime}\right) \psi_{i}\left(m_{X}, \tau\right)\right|^{2}
$$

- Construct a wave pool of 893 allowed waves by systematic constraints
- $\xi \rightarrow \pi \pi: \rho(770), \rho(1450), \rho_{3}(1690)$
- $\xi \rightarrow \omega \pi: b_{1}(1235), \rho(1450), \rho_{3}(1690)$
- $J \leq 8, M \leq 2, L \leq 8$

Partial-Wave Decomposition - Wave Set

- In principle: Infinite number of partialwaves i

$$
I\left(m_{X}, t^{\prime}, \tau\right)=\left|\sum_{i} \mathcal{T}_{i}\left(m_{X}, t^{\prime}\right) \psi_{i}\left(m_{X}, \tau\right)\right|^{2}
$$

- Construct a wave pool of 893 allowed waves by systematic constraints
- $\xi \rightarrow \pi \pi: \rho(770), \rho(1450), \rho_{3}(1690)$
- $\xi \rightarrow \omega \pi: b_{1}(1235), \rho(1450), \rho_{3}(1690)$
- $J \leq 8, M \leq 2, L \leq 8$
- Wave set selected using regularizationbased model-selection
- Unique wave set for each $\left(m_{X}, t^{\prime}\right)$ cell

Results $J^{P C}=0^{-+}$

Results $J^{P C}=0^{-+}$

Results $J^{P C}=0^{-+}$

Results $J^{P C}=2^{++}$

States listed in PDG

$$
\begin{gathered}
a_{2}(1320) \\
m=1318.2 \pm 0.6 \mathrm{MeV} \\
\Gamma=105_{-1.9}^{+1.7} \mathrm{MeV}
\end{gathered}
$$

$$
a_{2}(1700)
$$

$$
m=1698 \pm 40 \mathrm{MeV}
$$

$$
\Gamma=265 \pm 60 \mathrm{MeV}
$$

Results $J^{P C}=2^{-+}$

States listed in PDG

$$
\begin{gathered}
\pi_{2}(1670) \\
m=1670_{-1.2}^{+2.9} \mathrm{MeV} \\
\Gamma=258_{-9}^{+8} \mathrm{MeV}
\end{gathered}
$$

$$
\begin{gathered}
\pi_{2}(1880) \\
m=1874_{-5}^{+26} \mathrm{MeV} \\
\Gamma=237_{-30}^{+33} \mathrm{MeV}
\end{gathered}
$$

$$
\begin{gathered}
\pi_{2}(2005) \\
m=1963_{-27}^{+17} \mathrm{MeV} \\
\Gamma=370_{-90}^{+16} \mathrm{MeV}
\end{gathered}
$$

Results $J^{P C}=4^{++}$

States listed in PDG

$$
\begin{gathered}
a_{4}(1970) \\
m=1967 \pm 16 \mathrm{MeV} \\
\Gamma=324_{-18}^{+15} \mathrm{MeV}
\end{gathered}
$$

Results $J^{P C}=4^{++}$

Results $J^{P C}=3^{++}$

States listed in PDG

$$
\begin{gathered}
a_{3}(1875) \\
m=1874 \pm 105 \mathrm{MeV} \\
\Gamma=385 \pm 166 \mathrm{MeV}
\end{gathered}
$$

This only has been seen in $\pi^{-} \pi^{-} \pi^{+}$at BNL E852

The PDG further lists a a_{3} (2030)
$m_{X}\left[\mathrm{GeV} / c^{2}\right]$

Results $J^{P C}=3^{++}$

Results $J^{P C}=6^{++}$

Results $J^{P C}=1^{-+}$

States listed in PDG

$$
\begin{gathered}
\pi_{1}(1600) \\
m=1661_{-11}^{+15} \mathrm{MeV} \\
\Gamma=240 \pm 50 \mathrm{MeV}
\end{gathered}
$$

Results $J^{P C}=1^{-+}$

Comparison to 1^{-+}in other COMPASS final states

tes listed in PDG

$$
\begin{aligned}
& \pi_{1}(1600) \\
= & 1661_{11}^{+15} \mathrm{MeV} \\
= & 240 \pm 50 \mathrm{MeV}
\end{aligned}
$$

Results $J^{P C}=1^{-+}$

Comparison to 1^{-+}in other COMPASS final states

tes listed in PDG

$$
\begin{aligned}
& \pi_{1}(1600) \\
= & 1661_{-11}^{+15} \mathrm{MeV} \\
= & 240 \pm 50 \mathrm{MeV}
\end{aligned}
$$

Results $J^{P C}=1^{-+}$

States listed in PDG

$$
\begin{gathered}
\pi_{1}(1600) \\
m=1661_{-11}^{+15} \mathrm{MeV} \\
\Gamma=240 \pm 50 \mathrm{MeV}
\end{gathered}
$$

Results $J^{P C}=1^{-+}$

Conclusion and Outlook

- Resonance-like signals for many well-established states visible
- Clear peak for $\pi_{1}(1600) \rightarrow b_{1}(1235) \pi$
- Possible signals for further states:
a_{3} (1975), a_{6} (2450), $\pi_{1} \rightarrow \rho(770) \omega$
- Next step: Resonance-model fit to extract resonance parameters
- First studies yield promising results

Backup

Mesons in QCD

- Many short-lived, exited states with similar masses
\Rightarrow All possible intermediate states X for one final-state configuration interfere
\Rightarrow PWA necessary to determine contributions of certain X

Kinematic Distributions - $\omega(782) \pi^{-} \pi^{0}$

- Total of 720,000 selected $\pi^{-} \pi^{0} \omega$ (782) events

Kinematic Distributions - $\omega(782) \pi^{-} \pi^{0}$

- Total of 720,000 selected $\pi^{-} \pi^{0} \omega$ (782) events

t^{\prime} Distribution $-\omega(782) \pi^{-} \pi^{0}$

Dalitz Plots - $\omega(782) \pi^{-} \pi^{0}$

$\omega(782)$ Selection $-\omega(782) \pi^{-} \pi^{0}$

- Reconstruction of ω (782) from $\pi^{-} \pi^{0} \pi^{+}$decay

$\omega(782)$ Selection $-\omega(782) \pi^{-} \pi^{0}$

- Reconstruction of ω (782) from $\pi^{-} \pi^{0} \pi^{+}$decay
- Select events with exactly one $\pi^{-} \pi^{0} \pi^{+}$combination within $\pm 3 \sigma_{\omega}$ around the fitted m_{ω}

Partial-Wave Decomposition

$$
I\left(m_{X}, t^{\prime}, \tau\right)=\left|\sum_{i} \mathcal{T}_{i}\left(m_{X}, t^{\prime}\right) \psi_{i}\left(m_{X}, \tau\right)\right|^{2}
$$

- Decay amplitude $\psi_{i}\left(m_{X}, \tau\right)$: calculated using the isobar model
- $\mathcal{T}_{i}\left(m_{X}, t^{\prime}\right)$ contains production, propagation, and coupling of
- No assumptions about the resonant content of X^{-}
- Extract $\mathcal{T}_{i}\left(m_{X}, t^{\prime}\right)$ by independent maximum-likelihood fits of $I(\tau)$ in bins of (m_{X}, t^{\prime})
- Approximate \mathcal{T}_{i} by fitting step-wise constant functions in bins of (m_{X}, t^{\prime})

ω (782) Decay in PWA Model

- Factorisation of the decay amplitude

$$
\psi_{i}=\Sigma_{\lambda_{\omega}} \psi_{i, X \rightarrow \omega \pi \pi}^{\lambda_{\omega}} \psi_{\omega \rightarrow 3 \pi}^{\lambda_{\omega}}
$$

- $\psi_{i, X \rightarrow \omega \pi \pi}^{\lambda_{\omega}}$ calculated with isobar model
- $\psi_{\omega \rightarrow 3 \pi}^{\lambda_{\omega}}=\mathcal{D}\left(m_{\omega}\right) D_{0}^{\lambda_{\omega}}\left|p^{+} \times p^{-}\right|$

- $\mathcal{D}\left(m_{\omega}\right)$ is the Breit-Wigner (BW) of ω
- $D_{0}^{\lambda} \omega$ and $\left|p^{+} \times p^{-}\right|$describe the orientation of ω and its P-wave Dalitz plot, respectively
- Both are independent of m_{ω}

ω (782) Decay in PWA Model

- Problem: m_{ω} is only measured with limited resolution
\Rightarrow Intensity level: Convolution of BW with resolution function $=>m_{\omega}$ follows Voigt distribution
\Rightarrow Convolution of the full intensity is not feasible
- Solution: Neglect self-interference of ω as only one $\pi^{-} \pi^{0} \pi^{+}$combination has a large amplitude
$\Rightarrow \mathcal{D}\left(m_{\omega}\right)$ factorises out of the intensity:
$I\left(m_{X}, t^{\prime}, \tau, m_{\omega}\right)=\tilde{I}\left(m_{X}, t^{\prime}, \tau\right)\left|\mathcal{D}\left(m_{\omega}\right)\right|^{2}$
$\Rightarrow\left|\mathcal{D}\left(m_{\omega}\right)\right|^{2}$ is modelled as Voigt distribution with parameters from fitted data

Isospin Symmetrization

- $X^{-} \rightarrow \xi^{-} \pi^{0}$ and $X^{-} \rightarrow \xi^{0} \pi^{-}$have the same amplitude (modulo a sign due to isospin Clebsch-Gordons)
$\Rightarrow \mathcal{T}_{i}\left(m_{X}, t^{\prime}\right)$ is the same and we model the total decay amplitude as

$$
\psi_{i}=+\frac{1}{2} \psi_{i, \xi^{0} \pi^{-}}-\frac{1}{2} \psi_{i, \xi^{-} \pi^{0}}
$$

Wave Selection

- Method used for $3 \pi, 5 \pi$ and $K \pi \pi$

Notation:

$$
i=J^{P} M^{\epsilon}[\xi l] b L S
$$

- Modified log-likelihood with penalties:
- Cauchy regularization to suppress small waves
- Connected bins over m_{X} to smoothen $\mathcal{T}_{i}\left(m_{X}\right)$
- Wave pool:
- $J \leq 8, M \leq 2, \epsilon=+$
- $\xi \rightarrow \pi \pi: \rho(770), \rho(1450), \rho_{3}(1690)$
- $\xi \rightarrow \omega \pi: b_{1}(1235), \rho(1450), \rho_{3}(1690)$
- $L \leq 8$
- 893 waves + flat wave

Flat Wave

- Isotropic in 5-body phase-space
- Used to describe background

