Timelike pion form factor from lattice QCD

Felipe G. Ortega-Gama

William & Mary

felortga@jlab.org

June - 9 - 2023

In collaboration with J. Dudek

Resonance structure and production

Finite-volume roadmap

Finite-volume roadmap

Known geometric function

HADRON2023 — F. Ortega-Gama

P

June 9 2023

 $a_t E_{\rm cm}$

Finite volume corrections Infinite volume: Watson's theorem. $\mathcal{H}(s) = \mathcal{A}_{02}(s) \mathcal{M}(s)$ $\mathcal{M}(s) = \mathcal{M}(s) + \mathcal{M}(s) + \mathcal{M}(s)$

Finite volume: Lellouch-Lüscher factor.

Scattering and pair-production $J^{P}(I^{G})=1^{-}(1^{+})$

	$L=2.7~{ m fm}$					
	$a_t m$	$m/{ m MeV}$				
π	0.0474	284				
K	0.0866	519				

$$C_{ab}(t-t_s) = \left\langle O_a(t)O_b^{\dagger}(t_s) \right\rangle$$

1. GEVP
$$C_{ab}(t)v_b^n = C_{ab}(t_0)v_b^n\lambda_n(t-t_0)$$

2. Fit eigenvalues
$$\lambda_n(t-t_0) = e^{-E_n(t-t_0)}$$

$$\left\langle \mathcal{J}(t)\Omega_{n}^{\dagger}(0)\right\rangle \propto \left\langle 0|\mathcal{J}(0)|n
ight
angle$$

Optimized operators

1. Extract invariant
$$\mathcal{H}_{L}^{\mu} = K^{\mu} \mathcal{F}_{L}$$

2. FV correction $\mu_{0}^{\prime \star} = \frac{\partial}{\partial E^{\star}} (\mathcal{M}^{-1} + F)$

June 9 2023

$$\mathcal{M}_{\ell} = \frac{E_{\rm cm}}{2q^{\star}} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\mathcal{M}_{\ell}^{-1} = \frac{1}{(2q^{\star})^{\ell}} K_{\ell}^{-1} \frac{1}{(2q^{\star})^{\ell}} - i\rho_{\rm CM}$$

$$K_1 = \frac{g^2}{-s+m^2} + \gamma$$

Coupled channel fit

 $\mathcal{M}_{\ell,aa} = \frac{\eta e^{2i\delta_{\ell,a}} - 1}{2i\rho_a}$

$$\mathcal{M}_{\ell,ab} = \frac{\sqrt{1 - \eta^2} e^{i(\delta_{\ell,a} + \delta_{\ell,b})}}{2\sqrt{\rho_a \rho_b}}$$

June 9 2023

10

Rho resonance

$$\mathcal{M}(s) \sim \frac{g_R^2}{(m_\rho - i\Gamma_\rho/2)^2 - s} \qquad \Gamma/2/\text{MeV} = 254 \pm 5 \text{ MeV}$$

$$Re(m_\rho) = 797 \pm 2.6 \text{ MeV}$$

$$\Gamma_\rho/2 = 28.5 \pm 1.0 \text{ MeV}$$

$$Re(m_\rho) = 797 \pm 2.6 \text{ MeV}$$

$$\Gamma_\rho/2 = 28.5 \pm 1.0 \text{ MeV}$$

$$\frac{-26}{-28} = -30$$

$$-30$$

$$-30$$

$$-26$$

$$-26$$

$$-28$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-30$$

$$-3$$

Pair production

 $\mathcal{H}^{\mu}(q) = K^{\mu}f(q^2)$

June 9 2023

 $\mathcal{H}^{\mu}_{L} = K^{\mu} \mathcal{F}_{L}$

Finite-volume matrix elements

HADRON2023 — F. Ortega-Gama

 $f = \frac{\mathcal{M}}{q^{\star 2}} \frac{1}{\tilde{r}_n} \mathcal{F}_L$

Lellouch-Lüscher factor

Relative momentum in cm frame

 q^{\star}

Matrix elements

Optimized operators -

Fit function: $C + Ae^{-mt}$

Invariant matrix element

$$\mathcal{H}_{L}^{\mu} = K^{\mu} \mathcal{F}_{L}$$
$$\langle 0|\mathcal{J}^{\mu}(0)|n, P, 1\lambda \rangle = \frac{2}{\sqrt{3}} \epsilon^{\mu}(P, \lambda) \mathcal{F}_{L}(P^{2})$$

HADRON2023 — F. Ortega-Gama

$$\mathcal{F}_L(P^2) = \sqrt{\frac{2E_n}{L^3}} \frac{Z_n^{1/2} Z_V C_n^{\mathbf{d},\Lambda,\rho}}{K_n(\vec{d},\Lambda,J)}$$

13

June 9 2023

Finite volume correction

• Lellouch-Lüscher factor

$$\mu_0^{\prime\star} = \frac{\partial}{\partial E^\star} \left(\mathcal{M}^{-1} + F \right)$$

$$\tilde{r}_{\mathfrak{n}} = \frac{1}{q^{\star}} \sqrt{\frac{-2E_{n}^{\star}}{\mu_{0}^{\prime\star}}} \sim \sqrt{16\pi} g_{R}/q^{\star}$$
In the narrow

In the narrow width limit

14

Timelike form factor

HADRON2023 — F. Ortega-Gama

Watson's theorem:

 $f = \Omega \times \mathcal{F}$

$$\Omega(s) = \exp\left(\frac{s}{\pi} \int_{s_{\rm thr}}^{\infty} \mathrm{d}s' \frac{\delta(s')}{s'(s'-s)}\right)$$

June 9 2023

Smooth function fit $\mathcal{F} = f/\Omega$

June 9 2023

June 9 2023

 $\sqrt{\langle r_\pi^2 \rangle} = 0.616(7) \text{ fm}$

Consistency with existing results

 $m_{\pi} \approx 280 \text{ MeV}$

[arXiv:1808.05007] Andersen, et al.

Coupled channel Finite Volume correction

$$\lambda_0^{\prime \star} w_0 w_0^{\mathsf{T}} = \frac{\partial}{\partial E^{\star}} \left(\mathcal{M} + F^{-1} \right)$$

$$\sum_{a} w_{0,a}^2 = 1$$

 $\mathcal{F}_L \propto w_{0,a} f_a$

June 9 2023

19

Summary and outlook

- Isovector *p*-wave in elastic and coupled channel regions
 - Finite-volume spectrum
 - Scattering amplitude
- Pair production amplitude
 - Zero-to-two finite volume matrix elements
 - Lellouch-Lüscher factor
 - Form factor fit across spacelike and timelike region
- Future work to extend the analysis to the coupled channel region. π

Back up slides

21

Operator basis

			$[000] T_1^-$	$[100] A_1$	$[110] A_1$	$[111] A_1$	$[200] A_1$
			$11 imes \bar{\psi} \mathbf{\Gamma} \psi$	$8 imesar\psi {f \Gamma}\psi$	$9 imes ar{\psi} \mathbf{\Gamma} \psi$	$10 imes ar{\psi} \mathbf{\Gamma} \psi$	$11 imes \bar{\psi} \mathbf{\Gamma} \psi$
			$\pi_{[100]}\pi_{[100]}$	$\pi_{[100]}\pi_{[000]}$	$\pi_{[110]}\pi_{[000]}$	$\pi_{[111]}\pi_{[000]}$	$\pi_{[200]}\pi_{[000]}$
	$a_4 E_{41}$	E_{41} /MeV		$K_{[100]}\overline{K}_{[000]}$	$K_{[110]}\overline{K}_{[000]}$	$\pi_{[110]}\pi_{[100]}$	$K_{[200]}\overline{K}_{[000]}$
$\pi\pi$	$\frac{\alpha_t \mathcal{D}_{\text{th}}}{0.0947}$	567		$\pi_{[110]}\pi_{[100]}$	$\pi_{[111]}\pi_{[100]}$	$K_{[111]}\overline{K}_{[000]}$	
$K\overline{K}$	0.1732	1037				$K_{[110]}\overline{K}_{[100]}$	
$\pi\pi\pi\pi\pi$	$0.1894 \\ 0.1896$	1134 1135					
$\pi\omega$ $\pi\pi\eta$	0.1908	1142					
$\pi\phi$	0.2183	1307			-		
$\pi K \overline{K}$	0.2206	1320 1710	$[100] E_2$	$[110] B_1$	$[110] B_2$	$[111] E_2$	$[200] E_2$
$\pi\eta\omega$	0.2000	1710	$17 imes ar{\psi} \mathbf{\Gamma} \psi$	$12 imes \bar{\psi} \mathbf{\Gamma} \psi$	$15 imes \bar{\psi} \mathbf{\Gamma} \psi$	$12 imes \bar{\psi} \mathbf{\Gamma} \psi$	$15 imes \bar{\psi} \mathbf{\Gamma} \psi$
			$\pi_{[110]}\pi_{[100]}$	$\pi_{[100]}\pi_{[100]}$	$\omega_{[110]}\pi_{[000]}$	$\pi_{[110]}\pi_{[100]}$	$\pi_{[110]}\pi_{[110]}$
				$\omega_{[110]}\pi_{[000]}$	$\pi_{[111]}\pi_{[100]}$	$K_{[110]}\overline{K}_{[100]}$	
				$K_{[100]}\overline{K}_{[100]}$	$\pi_{[110]}\pi_{[110]}$		
				$\pi_{[110]}\pi_{[110]}$	$\phi_{[110]}\pi_{[000]}$		
				$\phi_{[110]}\pi_{[000]}$			
				$\omega_{[100]}\pi_{[100]}$			

22

MC statistics

$\pi\pi$ Coupled channels fit: $K\overline{K}$

 $\chi^2/dof = 28.70/(32 - 6) = 1.10$

25

 $\pi_{200}\pi_{000}$

 $K_{000} \overline{K}_{200}$

 $\pi_{210}\pi_{100}$

 $K\overline{K}$

 $\pi\phi$

 $\pi\pi n$

 πKK

 $\pi\pi\pi\pi$

 $\pi_{110}\pi_{110}$

 $\pi_{100}\omega_{100}$

 $\pi_{000}\omega_{200}$

 $\pi_{210}\pi_{100}$

 $K_{110}\overline{K}_{110}$

 $\pi_{000}\phi_{200}$

 $\pi_{100}\phi_{100}$

 $\pi_{111}\pi_{111}$

 $\pi_{110}\omega_{110}$

 $\pi_{110}\omega_{110}$

 $\pi_{110}\omega_{110}$

 $\pi_{200}\omega_{000}$

 $K_{210}\overline{K}_{100}$

 $\pi_{211}\pi_{110}$

ππ

--- πω

 $---\pi\phi$

--- ππππ

data

28

 $\pi\pi\eta$

 πKK

 $-- K\overline{K}$

🛨 data

fit

 $--\pi\omega$

_ _ _

₫

28

+

+

 $\dot{24}$

-

24

Optimized operators

[000] T1m irrep

 $e^{\sqrt{E_n E_m}t} \langle 0|\Omega_n(t)\Omega_m^{\dagger}(0)|0\rangle = \delta_{n,m} + \mathcal{O}(e^{-(E_N - \sqrt{E_n E_m})t})$

C10

26

Typical three point fit $\langle \pi_{[1-10]} | \mathcal{J}^{\rho}_{impro} | \pi_{[200]} \rangle$

$$\frac{\left\langle \pi(\tau, \vec{p}_f) \mathcal{J}(t) \pi^{\dagger}(0, \vec{p}_i) \right\rangle_{\text{rel}}}{\left\langle \pi(\tau - t, \vec{p}_f) \pi^{\dagger}(0, \vec{p}_f) \right\rangle \left\langle \pi(t, \vec{p}_i) \pi^{\dagger}(0, \vec{p}_i) \right\rangle} = Z_f^{-1/2} Z_i^{-1/2} \left\langle \pi(\vec{p}_f) | \mathcal{J}(0) | \pi(\vec{p}_i) \right\rangle + \dots$$
$$C + A_{src} e^{-dE_{src}t} + A_{snk} e^{-dE_{snk}(\tau - t)}$$

Kinematic factor

 $\langle \pi(p_1) | \mathcal{J}^i(\vec{q}) | \pi(p_2) \rangle = (p_1 + p_2)^i f(Q^2) ,$ $\mathcal{S}_m^{\Lambda,\mu} \varepsilon_i^m(\vec{q}) \langle \pi(p_1) | \mathcal{J}^i(\vec{q}) | \pi(p) \rangle = \langle \pi(p_1) | \mathcal{J}^{\Lambda,\mu}(\vec{q}) | \pi(p_2) \rangle ,$

Improvement

 $\langle \mathfrak{m} | \mathcal{J}^{\rho}_{\text{impro}} | \mathfrak{n} \rangle = \langle \mathfrak{m} | \rho | \mathfrak{n} \rangle + \frac{1}{4} (1 - \xi) a_t (E_m - E_n) \langle \mathfrak{m} | \rho_2 | \mathfrak{n} \rangle$

Average over irreps

Correlation between slope and energies

- Slopes away from the resonance are highly correlated to the Lüscher energy.
- The slopes close to the resonance have high correlation to g.

Correlation matrix between slopes, Lüscher energies and scattering parameters