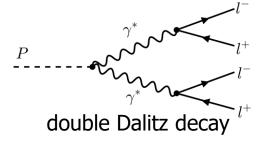


Alessandra Fanfani* on behalf of the CMS Collaboration

* Bologna University and INFN

5-9 Jun 2023 Genova, Italy


Motivations

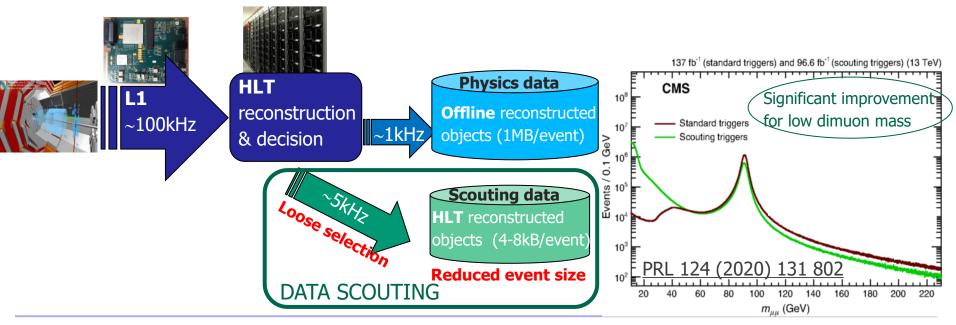
PDG 2022

- Leptonic radiative decays of η and η'
 - * proceed via E.M. coupling of pseudoscalar mesons to the photon, where photon convert into l^+l^-

- Highly suppressed
- So far, the following modes have been observed:
 - * $\eta \to \mu^{+}\mu^{-}$ (<u>SERPUKHOV-134,1980</u>; Saturne SPES2,1994),
 - * $\eta \rightarrow e^+e^-e^+e^-(KLOE-2, 2011)$
 - * $\eta' \to e^+ e^- e^+ e^-$ (BESIII, 2022)

	Charged modes						
Γ_8	charged modes	(28.04±0.30) %	S=1.3				
Γ_9	$\pi^+\pi^-\pi^0$	$(23.02\pm0.25)~\%$	S=1.2				
Γ_{10}	$\pi^+\pi^-\gamma$	(4.28 ± 0.07) %	S=1.1				
Γ_{11}	$e^+e^-\gamma$	$(6.9 \pm 0.4) \times 10^{-3}$	S=1.2				
Γ_{12}	$\mu^+\mu^-\gamma$	$(3.1 \pm 0.4) \times 10^{-4}$					
Γ_{13}	e^+e^-	$< 7 \times 10^{-7}$	CL=90%				
Γ_{14}	$\mu^+\mu^-$	$(5.8 \pm 0.8) \times 10^{-6}$					
Γ_{15}	$2e^{+}2e^{-}$	$(2.40\pm0.22)\times10^{-5}$					
Γ_{16}	$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$	$(2.68\pm0.11)\times10^{-4}$					
Γ_{17}	$e^+e^-\mu^+\mu^-$	$< 1.6 \times 10^{-4}$	CL=90%				
Γ_{18}	$2\mu^+2\mu^-$	< 3.6 × 10 ⁻⁴	CL=90%				
Γ_{19}	$\mu^+\mu^-\pi^+\pi^-$	$< 3.6 \times 10^{-4}$	CL=90%				
Γ_{20}	$\pi^+e^-\overline{ u}_e^{}+$ c.c.	$< 1.7 \times 10^{-4}$	CL=90%				
Γ_{21}	$\pi^+\pi^-$ 2 γ	$< 2.1 \times 10^{-3}$					
Г	$\pi^{+}\pi^{-}\pi^{0}$	- 6	CI = 0.09/				

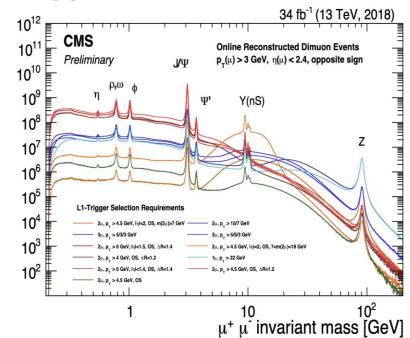
- Observations of these rare decays
 - * Allow precision tests of the SM (Phys.Rep. 945 (2022) 1)
 - * Impact the knowledge of hadronic contributions to the anomalous magnetic moment of the muon (Phys.Lett.B 787 (2018)



CMS trigger system & scouting

- CMS events are selected by a two-tiered trigger system
 - ★ L1 (Level-1): hardware-based trigger to select events at ~100kHz
 - * HLT (High-Level trigger): processors's farm running high-level physics algorithms with output rate ~1kHz
- «Data scouting» trigger strategy
 - * High-rate triggers with loose selection
 - * Limited event-level information saved (only HLT reconstructed objects)

Dimuon scouting data



- ▶ Run 2 pp collision data at $\sqrt{s} = 13 \, TeV$
- Dedicated set of high-rate dimuon triggers:

* Several **L1** selection requirements

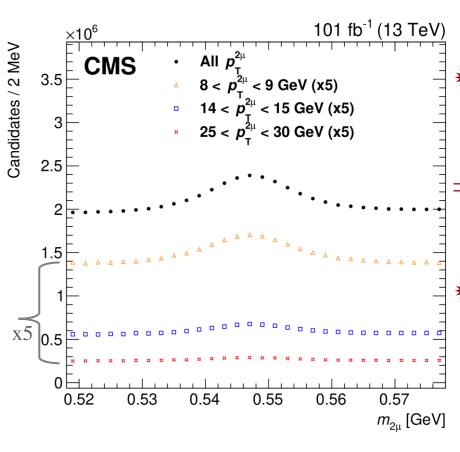
						4µ selection	Ĺ
L1 path	p_{T} [GeV]	$ \eta $	ΔR	$m_{2\mu}$ [GeV]	Charge	Fraction	
#1	>4.0 (4.5)	_	<1.2	_	OS	90%	
#2	_	< 1.5	< 1.4	_	OS	48%	
#3	>15,>7	_	_	_	_	46%	
#4	>4.5	< 2.0	_	7–18	OS	9%	

* At **HLT** : 2 muons with $p_T > 3 \; GeV$

▶ Information stored: muons reconstructed online (at HLT)

Events/GeV ×

▶ in 2017 and 2018 collected **101 fb**⁻¹



$\eta \rightarrow \mu^{+}\mu^{-}$ in scouting data

Two oppositely charged muons, consistent with common origin

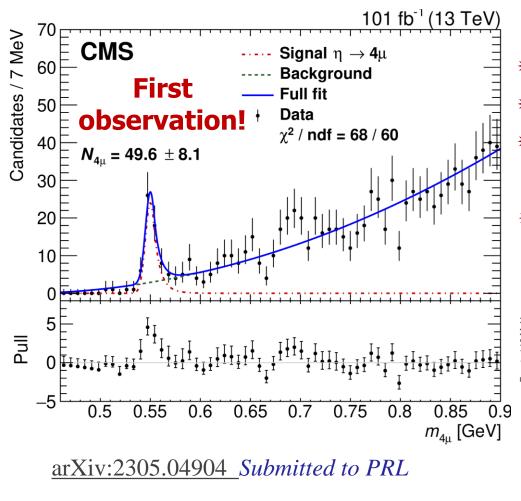
* Around 4.5 \times 10⁶ $\eta \rightarrow 2\mu$ decays in the scouting data!

$$\mathcal{B}(\eta \to 2\mu) = (5.8 \pm 0.8) \times 10^{-6}$$
 (PDG)

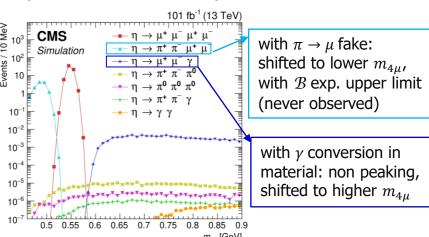
 $\Rightarrow \sim 10^{12} \, \eta$ produced in "CMS acceptance" (even more after correcting for efficiency)

Huge η production rate critical to study its rare decays

* $\eta \rightarrow \mu^{+}\mu^{-}$ used as normalization channel and to calibrate η meson production in MC

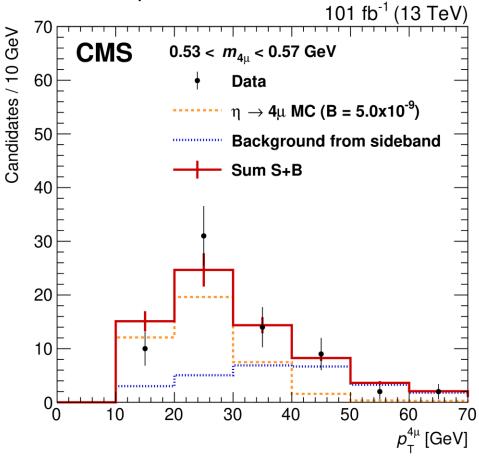


First $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ observation



Four muons with 0 net charge, consistent with same-vertex production

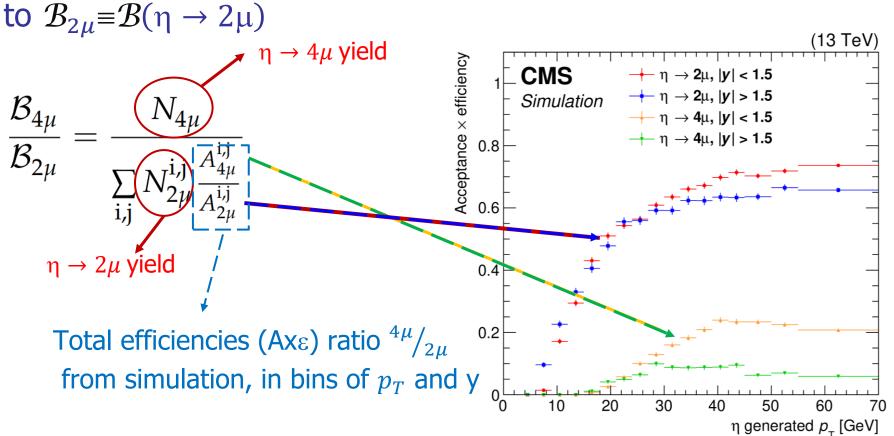
- ★ A clear narrow peak of ~50 events
- * Fit with Crystall-Ball + threshold
- ***** Significance > 5σ $(m_{4\mu}-4m_{\mu})^{\beta}$
- Several misreconstructed decays were shown to not be able to produce such a peak



Four-muon p_T spectrum $(p_T^{4\mu})$

- * Signal MC prediction reweighted based on η meson p_T differential production rate measured with $\eta \rightarrow \mu^+ \mu^-$ channel
- *** Background** shape from $m_{4\mu}$ sideband [0.6-0.9 GeV]

* $p_T^{4\mu}$ spectrum consistent with MC prediction + Background



Brancing fraction: Analysis strategy

► The branching fraction $\mathcal{B}_{4\mu} \equiv \mathcal{B}(\eta \to 4\mu)$ is determined relative to $\mathcal{B}_{2\mu} \equiv \mathcal{B}(\eta \to 2\mu)$

* several uncertainties cancel out when considering the ratio of quantities

Branching fraction: Results

Relative branching fraction:

$$\frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.86 \pm 0.14 \, (\mathrm{stat}) \pm 0.12 \, (\mathrm{syst})) \times 10^{-3}$$

- * Statistical uncertainty on $N_{4\mu} \rightarrow 16\%$
- ★ Total systematic uncertainty →14%
 - Imperfect knowledge of efficiencies from simulation
 - choice of fit model to extract signal yields $N_{4\mu}$ and $N_{2\mu}$

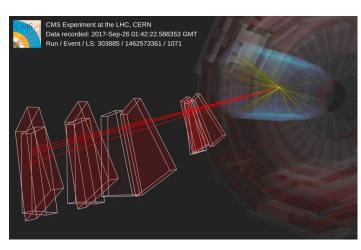
Track p_T threshold	9.0%
Trigger p_T threshold	8.4%
Efficiency plateau	3.2%
Fit model	6.6%

The branching fraction $\mathcal{B}(\eta \to 4\mu)$ with $\mathcal{B}(\eta \to 2\mu) = (5.8 \pm 0.8) \times 10^{-6}$

$$\mathcal{B}(\eta \to 4\mu) = (5.0 \pm 0.8 \, (\text{stat}) \pm 0.7 \, (\text{syst}) \pm 0.7 \, (\mathcal{B}_{2\mu})) \times 10^{-9}$$

uncertainty in $\mathcal{B}(\eta \to 2\mu) \sim 14\%$

• in agreement with theoretical prediction within uncertainties $(3.98 \pm 0.15) \times 10^{-9}$ [Chin.Phys.C 42 (2018) 2, 023109]



Summary

 First observation of η meson's rare double-Dalitz decay to four muons is reported

- ▶ Made possible by CMS high-rate dimuon triggers that collected 101 fb⁻¹ in 2017 and 2018 at $\sqrt{s} = 13 \, TeV$
- ▶ Branching fraction $\mathcal{B}(\eta \to 4\mu)$ is measured, in agreement with predictions