Partial-wave analysis of $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\pm} \nu_{\tau}$ BELLE collaboration

Andrei Rabusov, Daniel Greenwald, and Stephan Paul

Technical University of Munich

* Phys.Rev. Lett. 115, 082001

Searches for new particles and interactions not part of the Standard Model: need to know various hadron form-factors

Disagreement in measurements of $a_1(1260)$ parameters

• COMPASS observed^{*} narrow peak $a_1(1420)$

- Isospin partner of $f_1(1420)$?
- ► K^{*}K rescattering?
- $\tau \rightarrow 3\pi\nu$ provides X-check for COMPASS 3π partial wave analysis (PWA) in different experimental conditions

Improve current model in event generators

 $a_1(1420)$ observation at COMPASS

* Phys.Rev. Lett. 115, 082001

Searches for new particles and interactions not part of the Standard Model: need to know various hadron form-factors

Disagreement in measurements of $a_1(1260)$ parameters

• COMPASS observed^{*} narrow peak $a_1(1420)$

- Isospin partner of $f_1(1420)$?
- ► K^{*}K rescattering?
- $\tau \rightarrow 3\pi\nu$ provides X-check for COMPASS 3π partial wave analysis (PWA) in different experimental conditions

Improve current model in event generators

 $a_1(1420)$ observation at COMPASS

Belle experiment

KEKB is asymmetric e^+e^- collider

$$E_{\rm e^+} = 3.5~{
m GeV}, E_{\rm e^-} = 8~{
m GeV}$$

Total luminosity: 988 fb^{-1}

- $\Upsilon(4S)$: 711 fb⁻¹
- 0.9×10^9 tauon pairs produced

Tauon:

 $\bullet \ m=1.777 \; {\rm MeV}$

•
$$c\tau = 86 \, \mu m$$

•
$$\mathcal{B}(\tau^{\mp}\pi^{\mp}\pi^{\mp}\pi^{\pm}\nu_{\tau}) = 9\%$$

Integrated luminosity of Belle

Selection criteria

Event-class selection

- Standard Belle selection for tauon pairs
- Topology: 3–1
- Boosted Decision Tree
- Signal hemisphere
 - Tracks identification:
 - Veto signal-side particles being electrons or muons
 - Veto the like-sign signal-side particles being kaons
 - Veto pions coming from K_0: $\left|m_{2\pi}-m_{\mathrm{K_S}}\right| < 12~\mathrm{MeV}$
 - Veto π^0 s in signal hemisphere: $\sum E_{\gamma} < 480 \text{ MeV}$

* Phys.Rev.D 81 (2010) 113007

Selection criteria summary:

- Previous*
 Current

 Efficiency
 22 % 32 %

 Purity
 89 % 82 %

 # of events
 9×10^6 55×10^6
- Major background components:

$$\begin{array}{ll} \tau \rightarrow 3\pi^{\mp}\pi^{0}\nu_{\tau} & 12\ \% \\ \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \mathbf{q}\overline{\mathbf{q}} & 4\ \% \\ \tau \rightarrow \mathbf{K}^{\mp}2\pi^{\mp}\nu_{\tau} & 1\ \% \\ \tau \rightarrow 3\pi^{\mp}N\pi^{0}\nu_{\tau}, N \geq 2 & 0.8\ \% \end{array}$$

Simulated $m_{3\pi}$ spectrum

HADRON 2023

 $\overline{\tau^-} \rightarrow \pi^- \pi^- \pi^+ \overline{\nu}_{\tau}$ PWA

Assume
$$\pi_3 = \pi^+$$
, π_1 and π_2 denote π^- s.

Four-body decay: 7 free parameters

•
$$q^2 = m_{3\pi}^2$$

• $s_1 = m_{23}^2, s_2 = m_{13}^2$

- θ : angle between hadron system and $-\hat{n}_{\rm CMS}$ in tau frame helicity angle
- α, β, and γ: Euler angles of basis transformation in hadron frame from "lepton" basis to "hadron" basis

 \hat{n} \hat{n}_{CMS} π y π_1 x

Euler angles in hadron rest frame

Average intensity over α because tauon direction can't be measured

Average intensity over α because tauon direction can't be measured Decompose hadron current^{*} J^{μ}_{had} into partial waves

Average intensity over α because tauon direction can't be measured Decompose hadron current^{*} J^{μ}_{had} into partial waves

$$J^{\mu}_{\mathsf{had}} = \sum_w \mathcal{C}_w j^{\mu}_w$$

7/16

Average intensity over α because tauon direction can't be measured Decompose hadron current^{*} J^{μ}_{had} into partial waves

$$J^P[\xi^0\pi]_L$$

A. Rabusov (TU Munich)

* 2305.11711 [hep-ph]

				-		
Partial wave	$m(\xi) \; [{\rm GeV}]$	$\Gamma(\xi)$ [GeV]	Threshold [GeV]		Partial wave	Threshold [GeV]
$1^+[\sigma\pi]_{\rm P}$	Broad $[\pi\pi]_{s}$ -wave component [*]				$1^{-}[\rho(770)\pi]_{\rm P}$	_
$1^+[f_0(980)\pi]_P$	0.990	0.07	1.14		$1^{-}[f_2(1270)\pi]_D$	—
$1^+[f_0(1500)\pi]_P$	1.504	0.109	1.24	-	$1^{+}[\omega(782)\pi]_{\pi}$	1.0
$1^+ [\rho(770)\pi]_{\rm S}$	0.769	0.1509	_	-	$1 \left[\omega(102)\pi\right]$ S	1.0
$1^+ [\rho(770)\pi]_{\rm D}$			_	Sp	oin-exotic or "ob	scure" partial waves
$1^{+}[\rho(1450)\pi]_{\rm S}$	1.465	0.40	1.18			
$1^{+}[\rho(1450)\pi]_{\rm D}$			1.0			
$1^+[f_2(1270)\pi]_P$	1.2755	0.1867	1.1			
$1^+[f_2(1270)\pi]_F$			1.06			
$0^{-}[\sigma\pi]_{\rm S}$			_	-		
$0^{-}[f_0(980)\pi]_{\rm S}$			1.14			
$0^{-}[\rho(770)\pi]_{\rm P}$			_			
$0^{-}[f_2(1270)\pi]_D$			1.0	_		

A. Rabusov (TU Munich)

Decomposition

 $\tau^-
ightarrow \pi^- \pi^- \pi^+
u_{ au}$ PWA

9/16

Conventional PWA:

- Isobars shape is fixed
- Fit in bins of $m_{3\pi}$ (no a_1 shape assumptions)
- $2 \times N_{\text{PW}} 1$ free parameters: partial-waves complex coefficients C_w (one phase is fixed)

Intensity:

$$\begin{split} \mathcal{I} &= \sum_{w,v} \mathcal{C}_w \mathcal{C}_v^* \mathcal{I}_{w \, v} \\ \mathcal{I}_{w \, v} &= \overline{\mathcal{L}_{\mu \nu}} j_w^\mu \left(j_v^\nu \right)^* \end{split}$$

Extended log likelihood function:

$$\ln \mathcal{L} = \sum_{\mathsf{Data}} \ln \sum_{w,v} \mathcal{C}_w \mathcal{C}_v^* \mathcal{I}_{w\,v} - \sum_{w,v} \mathcal{C}_w \mathcal{C}_v^* \mathcal{N}_{w\,v}$$

Decomposition

Integral matrix:

$$\mathcal{N}_{wv} = \frac{\sum\limits_{\mathsf{Acc}\;\mathsf{MC}}\mathcal{I}_{wv}/{\left|\mathcal{M}_{\mathsf{MC}\;\mathsf{Generator}}\right|^2}}{\sum\limits_{\mathsf{Acc}\;\mathsf{MC}}1/{\left|\mathcal{M}_{\mathsf{MC}\;\mathsf{Generator}}\right|^2}}$$

 $|\mathcal{M}_{\rm MC\ Generator}|^2$ TAUOLA intensity (CLEO current for $au o 3\pi
u_{ au}$)

- Slice of $m_{3\pi} \in [1.50, 1.52]$ GeV
- Fit to 20% $L_{\rm int}$ data and simulate $\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \nu_{\tau}$
- Plot legend:

P

- Black dots: data
- Blue hist: Fit prediction with TAUOLA-m
- Orange hist: background

 $\cos\beta$

 $au^-
ightarrow \pi^- \pi^- \pi^+
u_{ au}$ PWA

- Slice of $m_{3\pi} \in [1.50, 1.52]$ GeV
- Fit to 20% $L_{\rm int}$ data and simulate $\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \nu_{\tau}$
- Plot legend:
 - Black dots: data
 - Blue hist: Fit prediction with TAUOLA-m
 - Orange hist: background

 γ

- Slice of $m_{3\pi} \in [1.50, 1.52]~{\rm GeV}$
- Fit to 20% $L_{\rm int}$ data and simulate $\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \nu_{\tau}$
- Plot legend:

P

- Black dots: data
- Blue hist: Fit prediction with TAUOLA-m
- Orange hist: background

 $\cos \theta$

 $au^-
ightarrow \pi^- \pi^- \pi^+
u_{ au}$ PWA

- Slice of $m_{3\pi} \in [1.50, 1.52]~{\rm GeV}$
- Fit to 20% $L_{\rm int}$ data and simulate $\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \nu_{\tau}$
- Plot legend:

 \mathcal{B}

- Black dots: data
- Blue hist: Fit prediction with TAUOLA-m
- Orange hist: background
- Data overshoots simulation at the $\rho(770)$ peak position

 $s_1 \, [{\rm GeV}^2]$

Slice of $m_{3\pi} \in [1.50, 1.52]~{\rm GeV}$

Fit to 20% $L_{\rm int}$ data and simulate $\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \nu_{\tau}$

Plot legend:

 \mathcal{B}

- Black dots: data
- Blue hist: Fit prediction with TAUOLA-m
- Orange hist: background

Data overshoots simulation at the $\rho(770)$ peak position

 $s_2 \, [{\rm GeV}^2]$

 $au \to \pi^- \pi^- \pi^+
u_{ au}$ PWA

Resonance-model fit, $\chi^2/ndf = 60.48/24$ for the $1^+[f_0(980)\pi]_P$ intensity.

 $1^+[f_0(980)\pi]_P$ intensity. Orange curve shows the resonance-model fit projection

Complex magnitude of $a_1(1420)$ decaying to $1^+[f_0(980)\pi]_{\rm P},$ ellipses show confidence intervals

Four major sources:

- Model:
 - Isobar parametrization
 - Model selection
- Background
 - Model in simulations
 - Neural network parametrization
- Acceptance
 - Stat. uncertainty of \mathcal{N}_{wv}
 - Momentum correction
- Detector resolution

Neural network* trained on simulated data

Neural network shape fixed in PWA

Test background leakage on – simulated data

Background still leaks to signal

 $\pi^+ \nu_{\tau}$ PWA

^{*} JINST 16 (2021) 06, P06016

Neural network* trained on simulated data

Neural network shape fixed in PWA

Test background leakage on simulated data

Background still leaks to signal

 $\pi^+ \nu_{\tau}$ PWA

^{*} JINST 16 (2021) 06, P06016

Neural network uncertainty:

Plots' legend:

- Stat. uncertainty
- Syst. uncertainty

Propagate uncertainties by varying neural network parameters before PWA

25--120 networks/bin

HADRON 2023

 $\pi^+ \nu_{\tau}$ PWA

Integrals uncertainty:

Plots' legend:

- Stat. uncertainty
- Syst. uncertainty

Propagate statistical uncertainties of integrals by varying integrals within their statistical uncertainties before PWA

Correlations not taken into account

 $100 \mathcal{N}_{ww}/\text{bin}$

HADRON 2023

Current status:

- Selection criteria
- Background description with neural network
- Partial-wave decomposition
 - Fixed-isobar
 - Freed-isobar
- Resonance-model and isobar fits
- Systematic uncertainties:
 - Model
 - Background
 - Acceptance
 - Resolution

Preliminary results:

• $a_1(1420)$ is discovered in tau decays

Remaining systematic studies:

- Background model
- Trigger
- PID

Plans:

- Extract $a_1(1260)$ pole parameters
- Test for exotic mesons
- Publish this year

A. Rabusov (TU Munich)

 $au^-
ightarrow \pi^- \pi^- \pi^+
u_ au$ PWA

HADRON 2023

16/16

Backup

ШП

Good tracks selection:

- $\bullet ~|\Delta r| < 0.5 ~{\rm cm}$
- $\bullet ~|\Delta z| < 2.5~{\rm cm}$
- $p_{\perp} > 0.1 \; \mathrm{GeV}$

Good photons selection:

- $E_{\gamma} > 0.04 \; \mathrm{GeV}$
- $w > 0.5 \ \mathrm{cm}$
- $\bullet \ N_{\rm hits} > 2$
- $\bullet \ E_{\rm seed}/E_{\rm cluster} < 0.95$

Preselection: four good tracks with sum charge zero

Skimming:

- tau_skimB Or HadronBJ
- BDT response $b_{\tau\tau} > 0$

Topology: 3 + 1

Loose π^0 -veto in signal hemisphere: $\sum E_\gamma < 0.48~{\rm GeV}$

Signal tracks PID:

- three tracks: e-veto, μ -veto
- two tracks same charge: K-veto

 K_S -veto in signal hemisphere:

$$\left|m_{2\pi}-m_{\mathsf{K}_{\mathsf{S}}}\right|<0.012\;\mathsf{GeV}$$

 $\pi^- o \pi^- \pi^- \pi^+
u_{ au}$ PWA

Selection criteria

A. Rabusov (TU Munich)

 $\tau^-
ightarrow \pi^- \pi^- \pi^+
u_{\tau}$ PWA

Sequential efficiencies and purities:

Criterion	purity [%]	efficiency [%]	0.30
baseline	22.1	44.4	0.25
trig	23.1	43.8	0.20
skim	24.5	43.1	
BDT	50.6	39 .9	¹⁰ 0.15
LID	54.0	37.8	0.10
HID	57.4	36.7	
PHS	57.7	36.7	$0.05 \longrightarrow \tau^- \to \pi^- \pi^- \pi^+ \nu_\tau$
ISR	58.2	35.9	$0.00 \qquad \qquad$
KS_veto	60.7	34.3	1.0 1.2 1.4 1.6 1.8 $m(3\pi)$ [GeV]
pi0_veto	81.6	32.3	$m(3\pi)$ efficiency

A. Rabusov (TU Munich)

 $\tau^-
ightarrow \pi^- \pi^- \pi^+
u_{\tau}$ PWA

20/16

ПП

Selection summary

 $m(3\pi)$ spectrum in MC

 $m(3\pi)$ spectrum in MC, logOY

A. Rabusov (TU Munich)

 $\tau^- \rightarrow \pi^- \pi^- \pi^+
u_{\tau}$ PWA

20/16

Selection summary

Conventional PWA:

• Isobar's shape $\Delta(s)$ is fixed

• One complex coefficient C_w per wave Breit-Wigner (BW) parametrization:

$$\begin{split} \Delta_{\xi}(s) &= \mathsf{BW}_{\xi}(s) = \frac{m_{\xi}^2}{m_{\xi}^2 - s - i\sqrt{s}\Gamma(s)} \\ \Gamma_{\xi}(s) &= \Gamma_{\xi} \bigg(\frac{q_s}{q_m}\bigg)^{2L_{\xi}+1} \frac{m_{\xi}}{\sqrt{s}} \end{split}$$

Freed isobar PWA:

$$\Delta(s) = \sum_{w \, \mathrm{freed}} \mathcal{C}_{w \, \mathrm{freed}} \Theta_w(s)$$

$$\Theta_w(s) = egin{cases} 1 & ext{if } s ext{ in the } m_{2\pi} ext{ bin } w \ 0 & ext{otherwise} \end{cases}$$

 $1^{--} m(2\pi)$ binning:

∫ 20 MeV [640, 920] MeV
 ↓
 40 MeV otherwise
 ↓

Selection summary

Freed isobar PWA:

$$\Delta(s) = \sum_{w \, \mathrm{freed}} \mathcal{C}_{w \, \mathrm{freed}} \Theta_w(s)$$

$$\Theta_w(s) = \begin{cases} 1 & \text{if } s \text{ in the } m_{2\pi} \text{ bin } w \\ 0 & \text{otherwise} \end{cases}$$

 $0^{++} m(2\pi)$ binning:

 $\begin{cases} 10 \text{ MeV} & [920, 1080] \text{ MeV} \\ 40 \text{ MeV} & \text{otherwise} \end{cases}$

Selection summary

ТЛП

Freed isobar PWA:

$$\Delta(s) = \sum_{w \, \text{freed}} \mathcal{C}_{w \, \text{freed}} \Theta_w(s)$$

$$\Theta_w(s) = egin{cases} 1 & ext{if } s ext{ in the } m_{2\pi} ext{ bin } w \ 0 & ext{otherwise} \end{cases}$$

Mathematical ambiguities (zero modes) 10.1103/PhysRevD.97.114008

Selection summary

A. Rabusov (TU Munich)

 $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ PWA

Selection summary

 $1^+[0^{++}\pi]_{\mathrm{P}}$ wave

 $m_{3\pi} \in [1.24, 1.26] \; \mathrm{GeV}$

 $au^-
ightarrow \pi^- \pi^- \pi^+
u_{ au}$ PWA

Selection summary

 $m_{3\pi} \in [1.38, 1.40] \; \mathrm{GeV}$

 $au^-
ightarrow \pi^- \pi^- \pi^+
u_ au$ PWA

 $1^+[0^{++}\pi]_{\rm P}$ wave Extracted $1^+[f_0(980)\pi]_{\rm P}$ wave parameters:

m	$988.0\pm2.5[{ m MeV}]$
m PDG 2022	$980 \pm 20 [\text{MeV}]$
Γ	$49.5 \pm 5.2 [\mathrm{MeV}]$
Γ PDG 2022	50–100 [MeV]
Re	$-0.4\pm1.3[\sqrt{N}/{ m GeV}^2]$
Im	$9.8\pm1.1[\sqrt{N}/{ m GeV}^2]$

 $1^+[1^{--}\pi]_S$ wave Extracted $1^+[\rho(770)\pi]_S$ wave parameters:

m	$777.0 \pm 1.0 \left[\text{MeV} \right]$
m PDG 2022	$775.26 \pm 0.25 [\text{MeV}]$
Γ	$139.6\pm2.3[{ m MeV}]$
Г PDG 2022	$149.1\pm0.8[\mathrm{MeV}]$
Re	$113.6\pm2.6[\sqrt{N}/{ m GeV}^2]$
Im	$25.1 \pm 5.2 [\sqrt{N}/{ m GeV}^2]$

 $m_{3\pi} \in [1.38, 1.40] \; \mathrm{GeV}$

Selection summary

Clear peak at 1.4~GeV in $1^+[f_0(980)\pi]_P\text{-wave}$

Clear phase motion at 1.4~GeV in $1^+[f_0(980)\pi]_P\text{-wave}$

 $a_1(1260)$ is dominant in the $1^+[
ho(770)\pi]_{
m S}$ -wave

Blatt-Weisskopf centrifugal-barrier factor F

F takes into the finite size of a meson Each partial wave is multiplied by two *F*s corresponding to either X⁻ or ξ^0 F_S for ξ^0 depends on the break-up momentum in the rest frame of ξ^0

 F_L for X⁻ depends on the break-up momentum in the rest frame of X⁻

There are two alternative parametrizations for F, I use the relativistic one, for example for a P wave

$$F_P(x) = \sqrt{\frac{1-x_0}{1-x}}, \ x = (pd)^2$$

HADRON 2023

Blatt-Weisskopf centrifugal-barrier factor F

Each partial wave is multiplied by two *F*s corresponding to either X⁻ or ξ^0 F_S for ξ^0 depends on the break-up momentum in the rest frame of ξ^0

 F_L for X⁻ depends on the break-up momentum in the rest frame of X⁻

There are two alternative parametrizations for F, I use the relativistic one, for example for a P wave

$$F_P(x) = \sqrt{\frac{1-x_0}{1-x}}, \ x = (pd)^2$$

 $\pi^+ \nu_- PWA$

HADRON 2023

\mathbf{S} Blatt-Weisskopf centrifugal-barrier factor \mathbf{F}

- *F* takes into the finite size of a meson Each partial wave is multiplied by two *F*s corresponding to either X⁻ or ξ^0 F_S for ξ^0 depends on the break-up momentum in the rest frame of ξ^0
- F_L for X⁻ depends on the break-up momentum in the rest frame of X⁻
- There are two alternative parametrizations for F, I use the relativistic one, for example for a P wave

$$F_P(x) = \sqrt{\frac{1-x_0}{1-x}}, \ x = (pd)^2$$

HADRON 2023

 $\pi^+ \nu_- PWA$

Neural network

A. Rabusov (TU Munich)

 $au^-
ightarrow \pi^- \pi^- \pi^+
u_{ au}$ PWA

Resolution

ТИП

$$\mathcal{I}_{wv}(\Phi) \to \int \mathcal{I}_{wv}(\Phi') \varepsilon(\Phi, \Phi') \mathrm{d}\Phi',$$

 Φ — reconstructed phase space variables, Φ' generated phase space variables

Requires MC sampling for each event

Unknown $\varepsilon(\Phi, \Phi')$

Intensity of the $1^+[f_0(980)\pi]_P$ wave.

Resolution

TUT

$$\mathcal{I}_{wv}(\Phi) \to \int \mathcal{I}_{wv}(\Phi') \varepsilon(\Phi, \Phi') \mathrm{d}\Phi',$$

 Φ — reconstructed phase space variables, Φ' generated phase space variables

Requires MC sampling for each event

Unknown $\varepsilon(\Phi, \Phi')$

Phase of the $1^+[f_0(980)\pi]_P$ wave.