(Light) Meson Spectroscopy with GlueX (and Beyond)

Alexander Austregesilo for the GlueX Collaboration

20th International Conference on Hadron Spectroscopy and Structure June 9th, 2023

Light Meson Spectroscopy: The GlueX Experiment

2 Probing the Electromagnetic Structure of Hadrons: PrimEx- η and CPP

Strange Hadron Spectroscopy with Secondary K_L Beam

Light Meson Spectroscopy

Meson Spectroscopy

- Study of $q\bar{q}$ system: equivalent to the hydrogen atom
- Many broad and overlapping states in mass spectrum

Light Meson Spectroscopy

Light Meson Spectroscopy

Meson Spectroscopy

- Study of $q\bar{q}$ system: equivalent to the hydrogen atom
- Many broad and overlapping states in mass spectrum
- Characterize states by quantum numbers
- Disentangle states with angular distribution of decay
- Use interference to look for small signals

Allowed J^{PC} for $q\bar{q}$ mesons: $0^{++}, 0^{-+}, 1^{--}, 1^{+-}, 2^{++}, ...$

Experimental Status

Evidence for Exotic States

- Forbidden J^{PC} for $q\bar{q}$ mesons: $0^{+-}, 1^{-+}, 2^{+-}, \dots$
- Smoking gun for states beyond the quark-antiquark model
- Lowest mass state with $J^{PC} = 1^{-+} : \pi_1$
- Existence and interpretation still debated

Experimental Status

1.57

* (n (1855))

PWA fit projection (exclude

WA fit projection (baseline fit)

REST

(a) $\chi^2/dof =$

Events/(10MeV/c²)

300

200

1.5

Evidence for Exotic States

- Forbidden J^{PC} for $a\bar{a}$ mesons: $0^{+-}, 1^{-+}, 2^{+-}, \dots$
- Smoking gun for states beyond the guark-antiguark model
- Lowest mass state with $J^{PC} = 1^{-+}$: $\pi_1(1600)$ ٠
- Significant progress in recent years, isospin-partner $\eta_1(1855)$?

The GlueX Experiment

GlueX at Jefferson Lab

- 12 GeV electron beam from CEBAF accelerator
- Coherent Bremsstrahlung on diamond radiator
- Linear polarization in peak $P_{\gamma} \sim 40\%$
- Energy tagged by scattered electrons
- Beam intensity: $1 5 \cdot 10^7 \gamma$ /s in peak

Photoproduction

Complementary Production Mechanism

- Wide variety of states in spectrum accessible
- Linear polarization of photon provides constraints on produced system
- Understanding of **production mechanism** is prerequisite for interpretation
- Very limited photoproduction data existing at these energies

GlueX Detector

Analysis Strategy

GlueX + Theory

- High statistical precision requires robust theoretical models and capable analysis frameworks
- Collaboration: experiment and theory working together on analysis and interpretation

Polarization Transfer First GlueX Publication: PRC 95, 042201 (2017)

$\pi^{\rm 0}$ and η from 2016 Commissioning Data

- Modeling production mechanism: Σ sensitive to exchanged J^{PC}
- Cancel systematic effects by rotating polarization plane by 90°
- First measurement for η in this energy

Pseudoscalar Meson Photoproduction

Beam Asymmetry Measurements

- η : significantly higher precision
- n': first measurement in this energy
- π^- : unnatural exchange important at small -t
- K⁺: no visible *t*-dependence

Photoproduction

- Neutral exchange: natural parity exchange dominates
- Charge exchange: unnatural parity exchange for small t

Vector Meson Photoproduction

- Full angular distribution of vector meson production and decay is described by spin-density matrix elements ρ^k_{ii}
- Linear beam polarization provides access to nine linearly independent SDMEs
- Intensity *W* is expressed as function of angles cos ϑ, φ, Φ and degree of polarization *P*_γ

$$\begin{split} W(\cos\vartheta,\varphi,\Phi) &= W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi) \\ W^{0}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\frac{1}{2}(1-\rho_{00}^{0}) + \frac{1}{2}(3\rho_{00}^{0}-1)\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\vartheta\cos\varphi - \rho_{1-1}^{0}\sin^{2}\vartheta\cos2\varphi \right) \\ W^{1}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\vartheta + \rho_{00}^{1}\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\vartheta\cos\varphi - \rho_{1-1}^{1}\sin^{2}\vartheta\cos2\varphi \right) \\ W^{2}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\vartheta\sin\varphi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\vartheta\sin2\varphi \right) \end{split}$$

Schilling et al. [Nucl. Phy. B, 15 (1970) 397]

t-dependence of SDMEs arXiv:2305.09047 (2023)

$\gamma p ightarrow ho$ (770)p

- High precision with only fraction of data set
- Uncertainties dominated by systematics
- Agree with model up to $-t \approx 0.5 \, {\rm GeV^2}/c^2$ [PRD 97 094003 (2018)]

t-dependence of SDMEs arXiv:2305.09047 (2023)

ENERGY

$\gamma p ightarrow ho$ (770)p

- High precision with only fraction of data set
- Uncertainties dominated by systematics
- Agree with model up to −t ≈ 0.5 GeV²/c²
 [PRD 97 094003 (2018)]
- Detailed studies of mass and energy dependence will follow

Other Channels...

- Analysis of ω (782), ϕ (1020) ongoing
- Natural-parity exchange generally dominates
- Improve theoretical description of photoproduction process
- Understand and evaluate detector acceptance

Cross Section Measurements

η Diff. Cross Sec. 8.0 < E₂ < 8.5 GeV

$\gamma p \rightarrow \eta p$

- t-channel dominant, but coverage of entire kinematic regime
- Regge models at low |t|, Handbag for intermediate |t|

Cross Section Measurements

$\gamma p \rightarrow \eta p$

- t-channel dominant, but coverage of entire kinematic regime
- Regge models at low |t|, Handbag for intermediate |t|
- Energy coverage: 3 12 GeV
 Overlap with previous measurements

Other Channels...

- Precise measurement for many different final states ongoing
- Consistency between decay modes limits systematic uncertainties

The $\eta^{(\prime)}\pi$ Systems \rightarrow M. Albrecht [Tuesday, Exotic Hadrons]

- Strongest evidence for exotic $\pi_1(1600)$ from COMPASS in this channel
- Competitive statistical precision, but different production and multiple decay modes
- Collaboration with theory on development of amplitudes and models

- Clear signals for *a*₀(980) and *a*₂(1320)
- Different angular distribution between charged (top) and neutral (bottom) final state
- Production mechanism populates states with different spin-projections

\Rightarrow Amplitude Analysis

PWA with Beam Polarization V. Mathieu (JPAC) [PRD 100 (2019) 054017]

• New amplitude formalism with $Z_{\ell}^{m}(\Omega, \Phi) = Y_{\ell}^{m}(\Omega)e^{-i\Phi}$:

$$\mathcal{I}(\Omega,\Phi) \propto (1-P_{\gamma}) \left| \sum_{\ell,m} [T]_m^{(-)} \operatorname{Re} Z_{\ell}^m(\Omega,\Phi) \right|^2 + (1-P_{\gamma}) \left| \sum_{\ell,m} [T]_m^{(+)} \operatorname{Im} Z_{\ell}^m(\Omega,\Phi) \right|^2 + (1+P_{\gamma}) \left| \sum_{\ell,m} [T]_m^{(-)} \operatorname{Im} Z_{\ell}^m(\Omega,\Phi) \right|^2$$

• Describes all two-pseudoscalar meson systems ($\pi\pi$, *KK*, $\pi\eta$, etc.), extension to vector-pseudoscalar systems \rightarrow A. Schertz [this Session, 10:35am]

• Fully mass-independent analysis difficult due to complexity of wave set: S_0^{\pm} , $P_{-1,0,1}^{\pm}$, $D_{-2,-1,0,1,2}^{\pm}$, ...

Require theory input to limit amplitudes (TMD model) or constrain mass dependence of known resonances

a₂(1320) Cross Section

Semi-Massdependent Method: Impose Breit-Wigner Shape for $a_2(1320)$

- Good agreement with theory prediction, demonstrate validity of method
- Separation of natural and unnatural parity exchange mechanisms
- $a_2(1320)$ signal as reference wave for exotic $\pi_1(1600)$ in $\eta'\pi$

Projection for $\pi_1(1600) \rightarrow \eta^{(\prime)}\pi$

• Upper limits for $\pi_1(1600)$ branching fractions from LQCD

• Projections combine LQCD with measured $a_2(1320)$ and (iso-vector) $b_1 \pi$ cross sections

Projection for $\pi_1(1600) \rightarrow \eta^{(\prime)}\pi$

Upper limits for $\pi_1(1600)$ branching fractions from LQCD

Saturate measured $\omega \pi \pi$ cross section (I = 1)

`≷ 9000 ₽

₹ 8000

Projections combine LQCD with measured $a_2(1320)$ and (iso-vector) $b_1\pi$ cross sections

Expect small signal in $n\pi$, but signal could saturate $n'\pi$ channels \rightarrow enforced effort

Jefferson Lab

 $\gamma p \rightarrow n\pi^0 p$

homas Jefferson National Accelerator Facility

 $v p \rightarrow n' \pi^0 p$

20/ P

The Future of GlueX

- DIRC: Extend kaon/pion separation,fully commissioned in Fall 2019
- FCal2: PbWO₄ insert with higher granularity, will be completed in 2024

GlueX Phase II + JLab Eta Factory

- Started 2020, 2023, continue with FCal2 in 2024
- Emphasis on final states with strangeness
- Higher luminosity: rare η decays
 - \rightarrow S. Schadmand [Tuesday, New Facilities]

PrimEx- η

PrimEx- η : Precision measurement of η decay

- Primakoff production of η meson on nuclear target (Helium)
- Precise measurement of $\eta \rightarrow \gamma \gamma$ decay width
- Determine fundamental properties: light quark mass ratio, $\eta \eta'$ mixing angle
- Experiment completed in three beam times 2019, 2021 and 2022

 \rightarrow L. Gan [Thursday, BSM]

π^{\pm} and π^{0} Polarizability

Status and Projection for Sensitivity

- Fundamental property of the strong interaction, precise predictions from χPT
- Primakoff production of $\pi^+\pi^-$ and $\pi^0\pi^0$ with 6 GeV polarized photon beam on Pb target
- New wire chambers behind forward calorimeter to detect muon background, data recorded in 2022

π^{\pm} and π^{0} Polarizability

Status and Projection for Sensitivity

- Fundamental property of the strong interaction, precise predictions from χPT
- Primakoff production of $\pi^+\pi^-$ and $\pi^0\pi^0$ with 6 GeV polarized photon beam on Pb target
- New wire chambers behind forward calorimeter to detect muon background, data recorded in 2022
- Precision for \(\pi^\pm \exists estimated to be comparable with COMPASS, but complementary systematic effects)
- Neutral pion polarizability has never been measured

K_L Facility: Strangeness Spectroscopy

Strange Hadron Spectroscopy with Secondary K_L Beam

- Use photon beam to produce beam of neutral Kaons, sweep away charged tracks
- World-wide unique facility combined with versatile GlueX detector, planned to be ready in 2026
- Hyperon spectroscopy to identify missing baryon resonances
- $K\pi$ scattering to study κ meson

Jefferson Lab

Jefferson National Accelerator Facility

Summary

Status of the GlueX Experiment

- Full data set for initial phase of GlueX available and under active analysis
- Several exciting physics results, many more to come
- GlueX Phase II in process: focus on meson spectrum with strangeness content

Summary

Status of the GlueX Experiment

- Full data set for initial phase of GlueX available and under active analysis
- Several exciting physics results, many more to come
- GlueX Phase II in process: focus on meson spectrum with strangeness content

Beyond GlueX

- Light meson spectroscopy is active field of research with global effort
- Versatile GlueX detector used for precision measurements of QCD
- Detector upgrades for more science potential
- Development of new programs:
 - ightarrow P. Rossi "New opportunities with Jefferson Lab at 22 GeV" [Thursday, Plenary]

Summary

Status of the GlueX Experiment

- Full data set for initial phase of GlueX available and under active analysis
- Several exciting physics results, many more to come
- GlueX Phase II in process: focus on meson spectrum with strangeness content

Beyond GlueX

- Light meson spectroscopy is active field of research with global effort
- Versatile GlueX detector used for precision measurements of QCD
- Detector upgrades for more science potential
- Development of new programs:
 - \rightarrow P. Rossi "New opportunities with Jefferson Lab at 22 GeV" [Thursday, Plenary]

GlueX gratefully acknowledges the support of several funding agencies and computing facilities: gluex.org/thanks

Dedicated GlueX Presentations HADRON2023

- E. Chudakov
 "J/ψ photoproduction close to threshold at GlueX"
 Monday June 5, 3:12pm, 5H (Hadron decays, production and interaction)
- M. Albrecht

"Search for Exotic Hadrons in $\eta()\pi$ at GlueX" Tuesday June 6, 4:30pm, 4H (Exotic hadrons and candidates)

S. Schadmand
 "Precision tests of fundamental utility"

"Precision tests of fundamental physics with light meson decays" Tuesday June 6, 5:40pm, 1B (New facilities)

F. Nerling

"Measurement of the photoproduction cross section for $\gamma p \rightarrow \phi \pi^+ \pi^- p$ and search for the Y(2175) at GlueX" Tuesday June 6, 5:00pm, 4H (Exotic hadrons and candidates)

A. Schertz

"Vector-Pseudoscalar Partial Wave Analysis at GlueX" Friday June 9, 10:35am, 5L (Light meson spectroscopy)

Amplitude Analysis

Step 1: Mass-Independent Partial-Wave Analysis

- Partial wave $\psi_w(\tau)$: Complex-valued amplitude which describes angular distribution of decay products
- Constant in a narrow mass bin: model-independent
- Total intensity distribution $\mathcal I$ in each mass bin: coherent sum of amplitudes with production coefficients T_w

$$\mathcal{I}(au) = \left|\sum_{w}^{waves} T_w \; \psi_w(au)
ight|^2$$

Amplitude Analysis

Step 1: Mass-Independent Partial-Wave Analysis

- Partial wave $\psi_w(\tau)$: Complex-valued amplitude which describes angular distribution of decay products
- Constant in a narrow mass bin: model-independent
- Total intensity distribution $\mathcal I$ in each mass bin: coherent sum of amplitudes with production coefficients T_w

Step 2: Model for Mass Dependence for Results from Step 1

- Breit-Wigner function for narrow, isolated resonances
- Approximations for coupled channels: Flatté, K-matrix, ...
- Amplitudes for dynamical effects: triangle singularity, ...
- Treatment of background

Extraction of physical quantities: pole positions, coupling constants

J/ψ Photoproduction at Threshold $\gamma p \rightarrow J/\psi p$, $J/\psi \rightarrow e^+e^-$

Threshold for J/ψ production: $E_{\gamma} = 8.22 \, {
m GeV}$

 $\gamma \rightarrow$

Electron identification: *E*/*p* in calorimeters, pion background suppression by 10⁻⁴

Kinematic Fit with 0.1% precision on photon beam energy

J/ψ Photoproduction at Threshold $\gamma p \rightarrow J/\psi p, J/\psi \rightarrow e^+e^-$

Threshold for J/ψ production: $E_{\gamma} = 8.22 \, {
m GeV}$

- Electron identification: E/p in calorimeters, pion background suppression by 10⁻⁴
- Kinematic Fit with 0.1% precision on photon beam energy
- Cross section normalized by non-resonant e⁺e⁻ production (Bethe-Heitler)

J/ψ Cross Section at Threshold PRL 123, 072001 (2019)

Energy dependence probes

- Production dynamics
 Brodsky et al. [PRL 498 (2001)]
- Gluon distribution in proton
 Kharzeev et al. [NPA 661, 568 (1999)]

J/ ψ Cross Section at Threshold PRL 123, 072001 (2019)

Energy dependence probes

- Production dynamics
 Brodsky et al. [PRL 498 (2001)]
- Gluon distribution in proton Kharzeev et al. [NPA 661, 568 (1999)]

Search for Resonance in $J/\psi p$

- No evidence for P_c^+ states
- Upper limit for $J^{PC} = 3/2^{-1}$

State	BR
P_c^+(4312)3/2-	< 2.9%
P_c^+(4440)3/2-	< 1.6%
P_c^+(4457)3/2-	< 2.7%

 Disfavors hadrocharmonium and some molecular models

J/ψ Cross Section with GlueX-I Data

→ E. Chudakov [Monday], arXiv:2304.03845 (2023)

• 4 times more data, smaller systematic uncertainties, precise measurement of $d\sigma/dt$

• Results relevant for fundamental properties: proton mass, gravitational form factors, scattering length

Jefferson Lab

ferson National Accelerator Facility

J/ψ Cross Section with GlueX-I Data

Jefferson Lab

→ E. Chudakov [Monday], arXiv:2304.03845 (2023)

- 4 times more data, smaller systematic uncertainties, precise measurement of $d\sigma/dt$
- Results relevant for fundamental properties: proton mass, gravitational form factors, scattering length
- Possible evidence for contribution from open charm production