The D_s^+ decay into $\pi^+ K_S^0 K_S^0$ reaction and the I = 1 partner of the $f_0(1710)$ state

L. R. $DAI(^{1})(^{*})$, E. OSET (²) and L. S. $GENG(^{3})$

- (¹) School of science, Huzhou University, Huzhou, 313000, Zhejiang, China
- ⁽²⁾ Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC
- Institutos de Investigación de Paterna, Aptdo.22085, 46071 Valencia, Spain
- (³) School of Physics, Beihang University, Beijing, 102206, China

Summary. — Two identified decay modes of the $D_s^+ \to \pi^+ K^{*+} K^{*-}, \pi^+ K^{*0} \bar{K}^{*0}$ reactions producing a pion and two vector mesons are discussed in this talk. The posterior vector-vector interaction generates two resonances that we associate to the $f_0(1710)$ and the $a_0(1710)$ recently claimed, and they decay to the observed K^+K^- or $K_S^0K_S^0$ pair, leading to the reactions $D_s^+ \to \pi^+K^+K^-, \pi^+K_S^0K_S^0$. The results depend on two parameters related to external and internal emission. We determine a narrow region of the parameters consistent with the large N_c limit within uncertainties which gives rise to decay widths in agreement with experiment. With this scenario we make predictions for the branching ratio of the $a_0(1710)$ contribution to the $D_s^+ \to \pi^0 K^+ K_S^0$ reaction, finding values within the range of $(1.3 \pm 0.4) \times 10^{-3}$. We are happy to see that we have a fair prediction with BESIII experiments, confirming the new $a_0(1710)$ [$a_0(1817)$] resonance. This is an important state and will shed light into the structure of scalar mesons in light quark sector and other relevant issues currently under debate in hadron physics.

1. – Motivation

An isospin I = 0, $f_0(1710)$ resonance has been known for quite some time [1]. It was found from the recent BESIII experiments, the branching fraction [2]

Br
$$[D_s^+ \to \pi^+ f_0(1710)^{"}; f_0(1710)^{"} \to K^+K^-] = (1.0 \pm 0.2 \pm 0.3) \times 10^{-3}$$

and in another work it was found that [3]

Br
$$[D_s^+ \to \pi^+ "f_0(1710)"; "f_0(1710)" \to K_S^0 K_S^0] = (3.1 \pm 0.3 \pm 0.1) \times 10^{-3},$$

^(*) dailianrong@zjhu.edu.cn

[©] Società Italiana di Fisica

where " $f_0(1710)$ " was supposed to be the $f_0(1710)$ resonance. Thus one finds

(1)
$$R_1 = \frac{\Gamma(D_s^+ \to \pi^+ "f_0(1710)" \to \pi^+ K^0 \bar{K}^0)}{\Gamma(D_s^+ \to \pi^+ "f_0(1710)" \to \pi^+ K^+ K^-)} = 6.20 \pm 0.67.$$

But, it is easy to proof that if " $f_0(1710)$ " was the $f_0(1710)$ resonance, this latter ratio should be 1. Therefore, hidden below or around the $f_0(1710)$, there should be an I = 1resonance responsible for this surprising large ratio. We think a mixture of the two resonances and their interference would be responsible for a different K^+K^- or $K^0\bar{K}^0$ production, due to

(2)
$$|K\bar{K}, I = 0, I_3 = 0\rangle = -\frac{1}{\sqrt{2}} (K^0 \bar{K}^0 + K^+ K^-),$$
$$|K\bar{K}, I = 1, I_3 = 0\rangle = \frac{1}{\sqrt{2}} (K^0 \bar{K}^0 - K^+ K^-).$$

As we know in the chiral unitary approach, $a_0(980)$ is dynamically generated as the interaction of the coupled channels $\pi\eta$ and $K\bar{K}$. Then an extension of these ideas to the interaction of vector mesons was done, and interestingly two resonances of $f_0(1710)$ and $a_0(1710)$ were predicted qualifying roughly as $K^*\bar{K}^*$ molecules [4, 5].

2. – Formalism

Fig. 1 shows the Cabibbo-favored decay mode of D_s^+ at the quark level and the hadronization with the vacuum quantum numbers $(\bar{q}q = \bar{u}u + \bar{d}d + \bar{s}s)$. Fig. 2 shows the internal emission and hadronization, which is suppressed by a color factor $1/N_c$. The external and internal emissions will produce the $f_0(1710)$ and $a_0(1710)$ resonances [6].

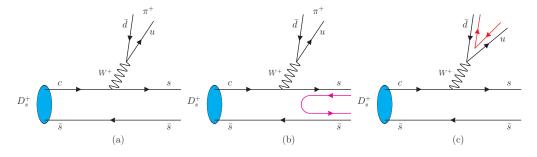


Fig. 1. – External emission of D_s^+ decay with π^+ production at the quark level (a) and hadronization of the $s\bar{s}$ component (b) and the $u\bar{d}$ component (c) with the vacuum quantum numbers.

From Figs. 1 and 2 and because the $G_{\omega\phi}$ and $G_{\rho\phi}$ loop functions are remarkably similar to $G_{K^*\bar{K}^*}$, finally the amplitudes \tilde{t}_{f_0} and \tilde{t}_{a_0} can be written

(3)

$$\tilde{t}_{f_0} = A\{-\sqrt{2} G_{K^*\bar{K}^*}(M_{\rm inv}) g_{f_0,K^*\bar{K}^*} + G_{\phi\phi}(M_{\rm inv})\sqrt{2} g_{f_0,\phi\phi} \\
- \sqrt{2} \gamma' G_{K^*\bar{K}^*}(M_{\rm inv}) g_{f_0,K^*\bar{K}^*}\}, \\
\tilde{t}_{a_0} = -A\sqrt{2} \,\delta' G_{K^*\bar{K}^*}(M_{\rm inv}) g_{a_0,K^*\bar{K}^*}.$$

THE D_S^+ DECAY INTO $\pi^+ K_S^0 K_S^0$ REACTION AND THE I = 1 PARTNER OF THE $F_0(1710)$ STATE **3**

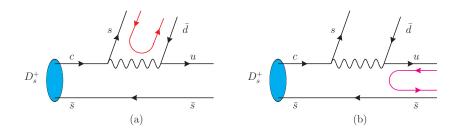


Fig. 2. – Internal emission of D_s^+ decay and hadronization of the $s\bar{d}$ pair (a) and the $u\bar{s}$ pair (b).

with the two effective parameters

$$\gamma' = \gamma - \alpha \, \frac{g_{f_0,\omega\phi}}{g_{f_0,K^*\bar{K}^*}} \,, \qquad \delta' = \delta - \beta \frac{g_{f_0,\rho\phi}}{g_{a_0,K^*\bar{K}^*}} \,.$$

and the global factor A will disappear when we evaluate the ratios of production. We also

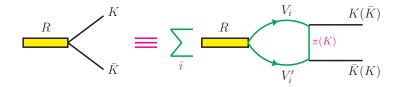


Fig. 3. – Amplitude for $R \to K\bar{K}$ for a resonance build up from the V_i, V'_i channels. Diagrams with $\bar{K}K$ instead of $K\bar{K}$ in the final state appear with ρ, ω, ϕ vector mesons but not for the $V_i, V'_i \equiv K^*\bar{K}^*$.

need amplitudes of the two resonances decay into $K\bar{K}$, shown in Fig. 3, with $K^*\bar{K}^* \rightarrow K\bar{K}$ transitions driven by π exchange, and $\phi(\rho, \omega, \phi) \rightarrow K\bar{K}$ transitions driven by K exchange, the weights are given by

(4)
$$W_{f_0} = \sum_i g_{f_0,i} \widetilde{W}_i G_i(M_{\rm inv}), \quad W_{a_0} = \sum_i g_{a_0,i} \widetilde{W}_i G_i(M_{\rm inv}).$$

where $g_{f_0,i}$ and $g_{a_0,i}$ are the couplings of the $f_0(1710)$ and $a_0(1710)$ resonances to the different coupled channels that build up the resonance, the \widetilde{W}_i coefficients can be evaluated from Lagrangian for $V \to PP$, and the sum over *i* goes over the channels of I = 0 and I = 1 respectively. Finally we obtain the t_i amplitudes in the following

$$\begin{split} t_{K^+K^-} &= -\tilde{t}_{f_0} \frac{1}{M_{\rm inv}^2 - M_{f_0}^2 + iM_{f_0}\Gamma_{f_0}} W_{f_0} \frac{1}{\sqrt{2}} g_{K\bar{K}} - \tilde{t}_{a_0} \frac{1}{M_{\rm inv}^2 - M_{a_0}^2 + iM_{a_0}\Gamma_{a_0}} W_{a_0} \frac{1}{\sqrt{2}} g_{K\bar{K}} ,\\ t_{K^0\bar{K}^0} &= -\tilde{t}_{f_0} \frac{1}{M_{\rm inv}^2 - M_{f_0}^2 + iM_{f_0}\Gamma_{f_0}} W_{f_0} \frac{1}{\sqrt{2}} g_{K\bar{K}} + \tilde{t}_{a_0} \frac{1}{M_{\rm inv}^2 - M_{a_0}^2 + iM_{a_0}\Gamma_{a_0}} W_{a_0} \frac{1}{\sqrt{2}} g_{K\bar{K}} ,\\ t_{K^+\bar{K}^0} &= \tilde{t}_{a_0} \frac{1}{M_{\rm inv}^2 - M_{a_0}^2 + iM_{a_0}\Gamma_{a_0}} W_{a_0} g_{K\bar{K}} ,\\ t_{K^+K_S^0} &= -\frac{1}{\sqrt{2}} t_{K^+\bar{K}^0} \,. \end{split}$$

The differential decay width

(5)
$$\frac{d\Gamma_i}{dM_{\rm inv}(K\bar{K})} = \frac{1}{(2\pi)^3} \frac{1}{4M_{D_s}^2} p_{\pi} \, \tilde{p}_k \, |t_i|^2 \, .$$

The ratios are defined

(6)
$$R_1 = \frac{\Gamma(D_s^+ \to \pi^+ K^0 \bar{K}^0)}{\Gamma(D_s^+ \to \pi^+ K^+ K^-)}, \quad R_2 = \frac{\Gamma(D_s^+ \to \pi^0 K^+ K_S^0)}{\Gamma(D_s^+ \to \pi^+ K^+ K^-)}.$$

3. – Results

For the two effective parameters, a narrow region of the parameters $\gamma' \in [-1, 0.1]$, $\delta' \in [-1.3, 1.3]$, are obtained and shown in Fig. 4, which are consistent with the large N_c limit within uncertainties.

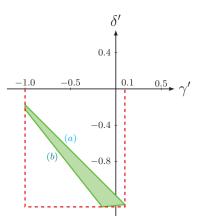


Fig. 4. – The range of two effective parameters

Using the above parameters, we obtain the ratio of $R_1 = 6.20 \pm 0.67$, which is in good agreement with BESIII experimental data [2, 3].

Next, the big challenge of the approach is to make prediction of R_2 . In [6], $R_2^{\text{theo}} \simeq 1.31 \pm 0.12$ was obtained and from this ratio we have evaluated

(7)
$$\operatorname{Br}[D_s^+ \to \pi^0 a_0(1710)^+; a_0(1710)^+ \to K^+ K_S^0] \simeq (1.3 \pm 0.4) \times 10^{-3},$$

which was a prediction before this ratio was measured.

We make a further analysis by taking $\gamma' = -0.5$, $\delta' = -0.75$ (middle of the allowed region) in Fig. 5, finding that in the $K^0 \bar{K}^0$ mass distribution there has been a constructive interference from the two resonances of I = 0 and I = 1, while in the K^+K^- mass distribution the interference has been destructive. This is exactly the reason suggested in the experimental analysis to justify the existence of the $a_0(1710)$ resonance [2, 3], because it should give the same K^+K^- or $K^0\bar{K}^0$ mass distributions should there be only the $f_0(1710)$ state. Hence, we give a boost to the molecular interpretation on the nature of these two $f_0(1710)$ and $a_0(1710)$ resonances.

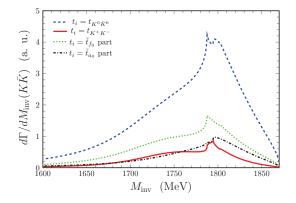


Fig. 5. – Mass distributions $d\Gamma/dM_{\rm inv}$ for the cases of Eq. (5).

4. – Summary

Based on the prediction of $f_0(1710)$ and $a_0(1710)$ as a molecular states of $K^*\bar{K}^*$ and other vector-vector coupled channels, we investigate the two $D_s^+ \to \pi^+ K^+ K^-$ and $D_s^+ \to \pi^+ K_S^0 K_S^0$ reactions. Two effective parameters related to external and internal emission are obtained with a narrow region, which is consistent with the large N_c limit within uncertainties. Using the allowed parameters, we can reasonably explain the surprising large ratio of R_1 , in good agreement with recent BESIII experiments. We further made a prediction of $\operatorname{Br}[D_s^+ \to \pi^0 a_0(1710)^+; a_0(1710)^+ \to K^+ K_S^0] \simeq (1.3 \pm 0.4) \times 10^{-3}$.

Now we are happy to see a fair prediction with the coming data of the branching fraction $\operatorname{Br}[D_s^+ \to \pi^0 a_0(1710)^+; a_0(1710)^+ \to K^+ K_S^0] \simeq (3.44 \pm 0.52 \pm 0.32) \times 10^{-3}$ [7], confirming the existence of new $a_0(1817)$ resonance. Our predicted state of $a_0(1710)$ [new $a_0(1817)$], as an important state, will shed light into the structure of scalar mesons in the light quark sector and other relevant issues currently under debate in hadron physics.

* * *

The author acknowledge supports partly from the National Natural Science Foundation of China under Grants Nos. 12175066 and 11975009.

REFERENCES

- [1] ZYLA P.A. ET AL. (PARTICLE DATA GROUP), Prog. Theor. Exp. Phys., 2020 (083C01).
- [2] ABLIKIM M. ET AL. (BESIII COLLABORATION), Phys. Rev. D, 104 (2021) 012016.
- [3] ABLIKIM M. ET AL. (BESIII COLLABORATION), Phys. Rev. D, 105 (2022) L051103.
- [4] OLLER Y. A. and OSET E., Nucl. Phys. A, 620 (1997) 438.
- [5] GENG L. S. and OSET E., Phys. Rev. D, 79 (2009) 074009.
- [6] DAI L. R., OSET E. and GENG L. S., Eur. Phys. J. C, 82 (2022) 225.
- [7] ABLIKIM M. ET AL. (BESIII COLLABORATION), Phys. Rev. lett., 129 (2022) 182001