HADRON 2023, Genoa

POLE EXTRACTION AND NATURE OF THE $F_0(980)$

César Fernández Ramírez

EXOTIC HADRONS TOPICAL COLLABORATION

Outlook

Motivation

- Compact or molecule?
- Probably a mix. Interest on the dominant contribution
- PDG'22: Section 64. Scalar mesons below 1 GeV

Effective range approach to dispersive data analyses

Neural networks applied to the $f_0(980)$

• Continuation of JPAC, PRD 105 (2022) L091501

Takeaways

Standard approach

"Data": S wave from dispersive data analysis $\pi\pi \to \pi\pi, K\overline{K}$

We take the S wave from the dispersive analysis in

(ππ):Garcia-Martin, et al., PRD 83 (2011) 074004 (πK): Peláez, Rodas, Phys.Rept. 969 (2022) 1

as "data".

Two solutions base on incompatible datasets for the $\pi\pi$ ->KKbar "data"

B: Longacre *et al.*, PLB 177 (1996) 223
C: Cohen, et al. PRD22 (1980) 2595
Etkin *et al.*, PRD25 (1982) 1786

Interpretation: Morgan-Pennington criterion

Morgan, Pennington, PLB258 (1991) 444

Model: Two-channel effective range

$$S_{ij}(s) = \delta_{ij} + 2i\sqrt{k_i k_j} T_{ij}(s)$$

$$k_i = \sqrt{s - s_i}$$

$$T_{ij}^{-1}(s) = M_{ij}(s) - ik_i \,\delta_{ij},$$

$$M_{ij}(s) = \mu_{ij} - c_{ij}s,$$

See, e.g.

Frazer, Hendry, PR 134 (1964) B1307 JPAC, PRL 123 (2019) 092001

Riemann sheets structure

Uncertainties: Bootstrap

Associate a distribution to each experimental datapoint

• Typically a Gaussian with mean and sigma from experiment

Monte Carlo

 Generate pseudodata according to the chosen distribution

Run statistics on the pseudadtasets

• Compute distributions, mean, standard deviation, quantiles, ...

Bootstrap can be "problematic"

Problems

- Best fit and expected value do not agree
- Difficult to assign interpretation as some BS fits have different interpretations
- Nearby first Riemann sheet poles might appear

Alternative

- Generate pseudodata according a shrinked distribution $\sigma_{new} = \sigma / \sqrt{N}$
- Recalculate errors multiplying by \sqrt{N}
- Same with pole positions

Results

Results

	В	С
μ_{11}	6.203(7)	4.482(8)
μ_{22}	-1.030(1)	-0.925(2)
μ_{12}	0.649(2)	0.8(2)
c_{11}	6.73(2)	5.07(9)
c_{22}	-0.9243(1)	-0.8230(1)
c_{12}	1.009(4)	1.2(2)
Riemann Sheet $\sqrt{s_p}$ (MeV) $M_p = \text{Re}\sqrt{s_p}$ (MeV) Γ	II 998.4(5) - i 6.6(4) 998.4(5) 12 1(8)	II 1000(1) - i 4.0(8) 1000(1)
$\Gamma_p = -2 \operatorname{Im} \sqrt{s_p} (\operatorname{MeV})$	13.1(8)	8(2)

Can machine learning help us?

The question

• Can we train a neural network to analyze a lineshape and get as a result what is the probability of each possible characterization?

First explorations of neural networks as classifiers for hadron spectroscopy

- Sombillo et al., PRD 102 (2020) 016024, 104 (2021) 036001
- JPAC, PRD 105 (2022) L091501, PPNP 127 (2022) 103981
- Zhang et al. Sci. Bull. (2023), 2301.05364

Bibrzycki's talk, Analysis Tools track, Room Benvenuto, Thursday@17:25

Holy Grail: ML as a tool for physics discovery

- **Interpretation 1**
- Interpretation 2

3

4

- **Interpretation 3**
- Interpretation 4
- Interpretation 5

1. Set the network architecture

- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap

- 1. Set the network structure
- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap

$$T_{ij}^{-1}(s) = M_{ij}(s) - ik_i \,\delta_{ij},$$

$$M_{ij}(s) = \mu_{ij} - c_{ij}s,$$

Building the training set

□10⁵ training curves

- Generated by randomly setting parameter values in a wide range
- Curves are computed at the "experimental" energies
- Can cleanup unphysical possibilities

Gaussian noise

- Included to mimic uncertainties
- Compare "blurry" to "blurry"

$$T_{ij}^{-1}(s) = M_{ij}(s) - ik_i \,\delta_{ij},$$

$$M_{ij}(s) = \mu_{ij} - c_{ij}s,$$

- 1. Set the network structure
- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap

Accuracy-Loss-NN-2-dropout-bts

- 1. Set the network structure
- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap

- 1. Set the network structure
- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap

Data support the $f_0(980)$ molecular interpretation

Towards a data-driven interpretation of resonances

NN open new possibilities to address the question on the underlying nature of resonances

NN allows a true comparison among interpretations. Gain physics insight

NN is not a substitution of the canonical approach to analyzing data