Partial Wave Analysis of VectorPseudoscalar Final States at GlueX

Amy M. Schertz
for the GlueX Collaboration
Indiana University
HADRON Conference 2023 - Genova, Italy June 9 ${ }^{\text {th }}, 2023$

Quantum Numbers Accessible to Vec-PS

- The 0^{--}and 2^{+-}are exotic, not allowed by the quark model
- The 2^{--}is allowed, but has never been observed
- Understanding the 1^{+-}and 1^{--}, which have been observed, will assist us in our search for new and/or exotic states

Meson Spectra

- Axial vector spectrum is largely unmapped
- One nonet each in 1^{++} and 1^{+-}established by PDG
- In contrast, three vector 1^{--}nonets are established
- Vector-pseudoscalar final states are an ideal place to search for both

$\mathrm{a}_{4}(1970)$
$\mathrm{K}_{4}(2045)$
$\mathrm{f}_{4}(2050)$
$\mathrm{f}_{4}(2300)$
$4^{++}\left(1^{3} \mathrm{~F}_{4}\right)$

Meson Spectra

- Axial vector spectrum is largely unmapped
- One nonet each in 1^{++} and 1^{+-}established by PDG
- In contrast, three vector 1^{--}nonets are established
- Vector-pseudoscalar final states are an ideal place to search for both

Meson Spectra

- Axial vector spectrum is largely unmapped
- One nonet each in 1^{++} and 1^{+-}establishea by PDG
- In contrast, three vector 1^{--}nonets are established
- Vector-pseudoscatar final states are an ideal place to search for both

Meson Spectra

- Axial vector spectrum is largely unmapped
- One nonet each in 1^{++} and 1^{+-}established by PDG
- In contrast, three vector 1^{--}nonets are established
- Vector-pseudoscalar final states are an ideal place to search for both

$\omega \pi$ in π^{-}Production

- E852 at BNL observed a dominant axial vector signal in $\omega \pi^{-}$, as well as a $\rho_{3}\left(3^{--}\right)$
- Noted a significant enhancement in potentially exotic 2^{+-}

$\omega \pi$ in $e^{+} e^{-}$Annihilation

- BESIII, which has access to only 1^{--}, has observed excited ρ states, as well as evidence for a Y (2040)

Meson Spectra

- Higher mass vector mesons may include gluonic contributions in their wavefunctions
- Not spin-exotic, but fill out the lightest predicted hybrid meson supermultiplet (along with π_{1}, η_{1})

GlueX at Jefferson Lab

- Goal at GlueX: Measure spectrum of light quark mesons using polarized photoproduction
- Linear polarization of the photon beam gives insight into the production mechanism
- See talk by A. Austregesilo [This session, 9am]

Two-Pseudoscalar Production

- Two-pseudoscalar channels, such as $\eta \pi$ and $\eta^{\prime} \pi$, are the first places to look when performing amplitude analyses
- Relatively mathematically straightforward
- Previous experiments have seen exotic signals
- See talk by M. Albrecht [Tuesday, Exotic Hadrons]
- By considering channels where the final state consists of a vector and a pseudoscalar, we can access a broader range of intermediate resonances
- Including excited vectors and axial vectors

From Two-Pseudoscalar to Vector-

 Pseudoscalar- Two-pseudoscalar $\left(X \rightarrow \eta^{(1)} \pi\right)$

$$
A_{\lambda_{\gamma}}=\sum_{\ell, m} T_{\lambda_{\gamma}, m}^{\ell} Y_{\ell}^{m}(\Omega)
$$

- Vector-pseudoscalar $(X \rightarrow \omega \pi)$

$$
A_{\lambda_{\gamma}}=\sum_{i=J^{P}} T_{\lambda_{\gamma}, m}^{i} \sum_{\lambda=-J_{i} \ldots J_{i}} F_{\lambda}^{i} D_{m, \lambda}^{J_{i}^{*}}(\Omega) Y_{1}^{\lambda}\left(\Omega_{H}\right) G
$$

From Two-Pseudoscalar to VectorPseudoscalar

- Two-pseudoscalar $\left(X \rightarrow \eta^{(1)} \pi\right)$

$$
A_{\lambda_{\gamma}}=\sum_{\ell, m} T_{\lambda_{\gamma}, m}^{\ell} Y_{\ell}^{m}(\Omega)
$$

- Vector-pseudoscalar $(X \rightarrow \omega \pi)$

$$
A_{\lambda_{\gamma}}=\sum_{i, m} T_{\lambda_{\gamma}, m}^{i} \sum_{\lambda} F_{\lambda}^{i} D_{m, \lambda}^{J_{i}^{*}}(\Omega) Y_{1}^{\lambda}\left(\Omega_{H}\right) G
$$

From Two-Pseudoscalar to VectorPseudoscalar

- Two-pseudoscalar $\left(X \rightarrow \eta^{(1)} \pi\right)$

$$
A_{\lambda_{\gamma}}=\sum_{\ell, m} T_{\lambda_{\gamma}, m}^{\ell} Y_{\ell}^{Y_{\ell}^{m}(\Omega)} \stackrel{\eta^{(1) \pi}}{\begin{array}{l}
\text { decay } \\
\text { amplitude } \\
\text { of } X
\end{array}}
$$

- Vector-pseudoscalar $(X \rightarrow \omega \pi)$

$$
A_{\lambda_{\gamma}}=\sum_{i, m} T_{\lambda_{r}, m}^{i} \sum_{\lambda} F_{\lambda}^{i} D_{m, \lambda}^{J_{i}^{*}}(\Omega) Y_{1}^{\lambda}\left(\Omega_{H}\right) G
$$

From Two-Pseudoscalar to Vector-

 Pseudoscalar- Two-pseudoscalar $\left(X \rightarrow \eta^{(1)} \pi\right)$

$$
A_{\lambda_{\gamma}}=\sum_{\ell, m} T_{\lambda_{\gamma}, m}^{\ell} Y_{\ell}^{m}(\Omega)
$$

- Vector-pseudoscalar $(X \rightarrow \omega \pi)$

$$
A_{\lambda_{V}}=\sum_{i, m} T_{\lambda_{r}, m}^{i} \sum_{\lambda} F_{\lambda}^{i} D_{m, \lambda}^{J^{*}}(\Omega \underbrace{Y_{1}^{\lambda}\left(\Omega_{H}\right) G}_{1}
$$

Partial Wave Analysis

- Decomposition of a measured intensity into its orthogonal angular momentum components, or partial waves
- Can extract the spin and parity of the resonances contributing to a given final state
- At GlueX, we can perform PWA in the reflectivity basis to extract information on the exchange mechanism
- The reflectivity operator, $\Pi_{y}=P R_{y}(\pi)$, reflects the reaction through the production plane

Naturality: $\tau=P(-1)^{J}$
Reflectivity: $\varepsilon=\tau_{\mathbb{R}} \tau_{X}$

Reflectivity Basis Intensity

- The intensity function is written in terms of the reflectivity basis production amplitudes and phase-rotated decay amplitudes

$$
\begin{aligned}
& I \propto\left(1-P_{\gamma}\right)\left[\left|\sum_{i, m}\left[J_{i}\right]_{m, k}^{(-)} \operatorname{Im} Z_{m}^{i}\right|^{2}+\left|\sum_{i, m}\left[J_{i}\right]_{m, k}^{(+)} \operatorname{Re} Z_{m}^{i}\right|^{2}\right] \\
& \quad+\left(1+P_{\gamma}\right)\left[\left|\sum_{i, m}\left[J_{i}\right]_{m, k}^{(+)} \operatorname{Im} Z_{m}^{i}\right|^{2}+\left|\sum_{i, m}\left[J_{i}\right]_{m, k}^{(-)} \operatorname{Re} Z_{m}^{i}\right|^{2}\right]
\end{aligned}
$$

- All the angles are included in the Z_{m}^{i} decay amplitudes, and the $\left[J_{i}\right]_{m, k}^{(\epsilon)}$ are the free parameters in the fit

$$
Z_{m}^{i}=e^{-i \Phi} \sum_{\lambda} F_{\lambda}^{i} D_{m, \lambda}^{J_{i}^{*}}(\Omega) Y_{1}^{\lambda}\left(\Omega_{H}\right) G
$$

$\omega \pi^{0}$ in Photoproduction

- A major contributor is the $b_{1}(1235)$
- Excited $\rho(1450,1700)$ and $\omega(1420)$ mesons have been seen

Preliminary $\omega \pi^{0}$ Results

- Roughly 10% of the intensity is taken up by vector partial waves, the rest is axial vector (shown here)

What about charged pions?

- Analysis of $\omega \pi^{-}$system as well
- Can compare production mechanisms
- Unstable lower vertex adds complication

Other Vec-PS Channels: $\omega \eta$

- The h_{1} (1595), (not PDG established), was seen in a PWA of $\omega \eta$ by E852
- Excited $\omega(1650)$ was seen in the same analysis
- Potential for excited ϕ at higher masses

Other Vec-PS Channels: $\phi \eta$

- Structures near $\phi(1680)$ and ϕ (1820)
- Search ongoing for Y (2175) in $\phi \eta$ using Vec-PS PWA
- See talk by F. Nerling on the search for $Y(2175)$ in $\phi \pi \pi$ [Tuesday, Exotic Hadrons]

Summary/Outlook

- Partial wave analysis of vector-pseudoscalar final states is a pathway to a large set of interesting hadronic states (possibly including hybrids)
- Performing fits in the reflectivity basis provides information about exchange mechanism, and has never been done with a polarized beam
- Analyses of several vector-pseudoscalar channels are underway at GlueX stay tuned!
- GlueX gratefully acknowledges the support of several funding agencies and computing facilities: gluex.org/thanks

Backup

Helicity to Reflectivity Basis

- Helicity basis amplitude

$$
A_{\lambda_{\gamma}}=\sum_{i, m} T_{\lambda_{r}, m}^{i} \sum_{\lambda} F_{\lambda}^{i} D_{m, \lambda}^{J_{i}^{*}}(\Omega) Y_{1}^{\lambda}\left(\Omega_{H}\right) G
$$

- Define reflectivity basis production amplitudes

$$
{ }^{(\epsilon)} V_{m}^{i}=\frac{1}{2}\left[T_{+, m}^{i}-\tau_{i} \epsilon(-1)^{m} T_{-, m}^{i}\right]
$$

Helicity to Reflectivity Basis

- The phase-rotated helicity basis amplitudes can be written as sums and differences of the reflectivity production amplitudes

$$
\begin{aligned}
& \tilde{A}_{+}=\sum_{i, m}\left({ }^{(+)} V_{m}^{i}+{ }^{(-)} V_{m}^{i}\right) Z_{m}^{i} \\
& \tilde{A}_{-}=\sum_{i, m}\left({ }^{(+)} V_{m}^{i}-{ }^{(-)} V_{m}^{i}\right) Z_{m}^{i *}
\end{aligned}
$$

$$
Z_{m}^{i}=e^{-i \Phi} \sum_{\lambda} F_{\lambda}^{i} D_{m, \lambda}^{J_{i}^{*}}(\Omega) Y_{1}^{\lambda}\left(\Omega_{H}\right) G
$$

- The sum and difference of $\tilde{A}_{ \pm}$are used in the intensity equation

$$
I=\frac{\kappa}{4} \sum_{\lambda_{1} \lambda_{2}}\left[\left(1-P_{\gamma}\right)\left|\tilde{A}_{+}+\tilde{A}_{-}\right|^{2}+\left(1+P_{\gamma}\right)\left|\tilde{A}_{+}-\tilde{A}_{-}\right|^{2}\right]
$$

$\omega \pi$ Production and Decay Angles

- Consider the reaction $\gamma p \rightarrow \Delta^{++} X^{-}$, where $X^{-} \rightarrow \omega \pi^{-}$and $\omega \rightarrow 3 \pi$
- The decay of the X^{-}can be described by 4 angles, two (Ω) to describe $X^{-} \rightarrow \omega \pi^{-}$, and two more $\left(\Omega_{\mathrm{H}}\right)$ to describe $\omega \rightarrow 3 \pi$ in the helicity frame
- Angle between polarization and production plane is given by Φ $Z_{m}^{i}\left(\Phi, \Omega, \Omega_{H}\right) \propto e^{-i \Phi} \sum_{\lambda} D_{m, \lambda}^{J_{i^{*}}}(\Omega) F_{\lambda}^{i} Y_{1}^{\lambda}\left(\Omega_{H}\right) G$

Polarized Photoproduction

- Polarization of the photon beam gives insight into the production mechanism via reflectivity measurements and beam asymmetries

