

Baryon spectroscopy at BESIII

Shi Wang (on behalf of the BESIII Collaboration) Lanzhou University

HADRON 2023, JUNE 5TH TO 9TH 2023, GENOVA, ITALY

Outline

- Motivation
- BEPCII and BESIII detector
- Recent results
- Summary

Baryonic States

- All ground baryonic states are well established
 - Good agreement between experimental data and quark model
- The excited spectrum is much less clear
 - ◆ Many more states predicted than observed
- Insight to hadron structure

Issues in baryon spectroscopy:

- Threshold enhancement
- > Missing resonance of N^* , Λ^* , Σ^* , ...
- Multiquark baryon

.

A simple 3-quark structure for the light baryons

Missing Resonances

- Many of the predicted resonances were not observed experimentally
- Experimental and theoretical efforts
- Experimentally:
 - baryon resonances may couple very weakly to single pions
- Theoretically:
 - the baryon spectrum can be modeled with fewer effective
 - degrees of freedom (quark-diquark or Y/Δ -type models)

Relativistic quark model Nucleon-resonances spectrum Potential model: A(green) and C(blue)

Prog.Part.Nucl.Phys. 125 (2022) 103949

Missing Resonances

- Many of the predicted resonances were not observed experimentally
- Experimental and theoretical efforts
- Experimentally:
 - baryon resonances may couple very weakly to single pions
- Theoretically:
 - the baryon spectrum can be modeled with fewer effective
 - degrees of freedom (quark-diquark or Y/Δ -type models)

Lattice QCD Nucleon- and Δ -resonances spectrum $m_{\pi} = 396 \text{ MeV}$ $m_{\Omega} \simeq 1672 \text{ MeV}$

Phys.Rev.D 84 (2011) 074508

5

BESIII at **BEPCII**

Symmetric electron-positron collider BEPCII:

- energy range: $\sqrt{s} = 2.0 4.6 \text{ GeV}$ (~5 GeV since summer 2019)
- design luminosity achieved: 1×10^{33} cm⁻² s⁻¹ (at $\psi(3770)$)
- operating since 2008

Why BESIII is complementary for baryon spectroscopy study?

- When compared to hadron collider or fixed target experiments, electron positron collision has a different production method:
 - the direct production: vector state
 - Background is low, and the initial state (energy, J^{PC}) is known
 - > Could run the collisions on the critical points, such as J/ψ peak, where the cross section is large.
 - Coupling of unobserved states through conventional production channels could be small, but coupling may be large to *gggN*:

 $\succ \psi \to N\overline{N}(\pi/\eta/\eta'/\omega/\phi), pK\overline{\Lambda}, pK\overline{\Sigma}$

7

Evidence for $\Lambda^* \to \Lambda \omega$ in $\psi(3686) \to \Lambda \overline{\Lambda} \omega$

Phys.Rev.D 106 (2022) 11, 112011

- Three body decay is a great opportunity to search for potential baryon excitation.
- **Δ** Many excited hyperon states near the $\Lambda \omega$ threshold are performed in the past.
- ✓ Based on 448M ψ (3686) events, the process ψ (3686) → $\Lambda \overline{\Lambda} \omega$ is performed for the first time.
- ✓ An excited Λ state is investigated by an unbinned maximum likelihood fit to the Dalitz plot.

8

Evidence for $\Lambda^* \to \Lambda \omega$ in $\psi(3686) \to \Lambda \overline{\Lambda} \omega$

- $\mathcal{B}(\psi(3686) \rightarrow \Lambda \overline{\Lambda} \omega) = (3.30 \pm 0.34 \pm 0.29) \times 10^{-5}$
- For Λ^* :
 - Parameterization: An *S*-wave Breit-Wigner function convolved a Gaussian function
 - $M = 2001 \pm 7 \text{ MeV}/c^2$, $\Gamma = 36 \pm 7 \text{ MeV}$
 - Statistical significance: 3.0σ
 - $\mathcal{B}(\psi(3686) \to \Lambda^* \overline{\Lambda} + c.c. \to \Lambda \overline{\Lambda} \omega) < 1.40 \times 10^{-5} @ 90\%$ confidence level.
- \succ The branching fraction of ψ (3686) → $\Lambda \overline{\Lambda} \omega$ is measured for the first time.
- An potential excited Λ state was seen with 3.0σ around 2.0 GeV/ c^2 , the mass is near to $\Lambda(2000)$, $\Lambda(2050)$ or $\Lambda(2070)$, but the width is too narrow.

Source	Λ^* in This work	Λ(2000)	Λ(2050)	Λ(2070)
Mass (MeV/ c^2)	2001 ± 7	≈ 2000	2056 ± 22	2070 ± 24
Γ (MeV)	36 ± 7	(125~255)	493 ± 61	370 ± 50
Significance/ Existence	3.0σ	*	*	*

Λ^* near $\Lambda\eta$ threshold in $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \eta$

Phys.Rev.D 106 (2022) 7, 072006

- **Δ** Search for isospin violation decay of $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \pi^0$
- **□** Search for Λ^* in $\Lambda \pi^0$ and $\Lambda \eta$ mass spectrum
- ✓ Based on 448M ψ (3686) events
- ✓ The branching fraction of $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \pi^0$ is measured with 3.7 σ statistical significance for the first time
- ✓ Due to the low statistical, no clear struture is found in the $\Lambda \pi^0$ mass spectrum.
- ✓ A PWA is performed for $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \eta$, and a Λ^* near the $\Lambda \eta$ threshold is performed.

Λ^* near $\Lambda\eta$ threshold in $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \eta$

- $\mathcal{B}(\psi(3686) \to \Lambda \overline{\Lambda} \pi^0) = (1.42 \pm 0.39 \pm 0.59) \times 10^{-6}$
- $\mathcal{B}(\psi(3686) \rightarrow \Lambda \overline{\Lambda} \eta) = (2.34 \pm 0.18 \pm 0.52) \times 10^{-5}$
- For the Λ^* :
 - Parameterization: $BW(s) = \frac{1}{m_0^2 m^2 im_0\Gamma_0}$
 - $M = (1672 \pm 5 \pm 6) \text{ MeV}/c^2$, $\Gamma = (38 \pm 10 \pm 19) \text{ MeV}$
 - $\mathcal{B}(\psi(3686) \rightarrow \Lambda(1670)\overline{\Lambda} + c.c. \rightarrow \Lambda\overline{\Lambda}\eta) = (1.29 \pm 0.31 \pm 0.62) \times 10^{-5}$
- → The isospin violation decay, $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \pi^0$, is observed with over 3*σ*
- > The structure near $\Lambda \eta$ threshold can be described with $\Lambda(1670)$

Source	Λ^* in This work	Λ(1670)	Λ(1690)
J^P	1/2-	1/2-	3/2-
Mass (MeV/ c^2)	$1672 \pm 5 \pm 6$	1670~1678	1685~1695
Γ (MeV)	$38 \pm 10 \pm 19$	25~35	60~80

Observation of Ξ^* in $e^+e^- \rightarrow \Xi^- + anything$

Phys.Rev.Lett. 124 (2020) 3, 032002

- □ Search for charmonium states above open-charm
- □ Measure the effective form factors
- \blacksquare Search for the excited Ξ states
- ✓ Analysis based on 11.0 fb⁻¹ events, from 4.1 to 4.6

GeV, 15 energy points.

 \checkmark Using the single tag method to improve efficiency

Observation of Ξ^* in $e^+e^- \rightarrow \Xi^- + anything$

- $\Gamma_{ee}\mathcal{B}(\psi(4260) \to \Xi^-\overline{\Xi}^+) < 0.27 \times 10^{-3} \text{ eV} @ 90\% \text{ C.L.}$
- A structure is observed in the recoil mass spectrum of $\pi^- \Lambda$
 - Parameterization:
 - A BW function convolved a double Gaussian function
 - Statistical significance: $6.2\sigma 6.5\sigma$
 - $M = (1825.5 \pm 4.7 \pm 4.7) \text{ MeV}/c^2$
 - $\Gamma = (17.0 \pm 15.0 \pm 7.9) \text{ MeV}$
- ➤ The upper limits on the products of the electronic partial width and the branching fractions of $\psi(4260) \rightarrow \Xi^- \overline{\Xi}^+$ is measaured for the first time.
- ➤ The EFFs are measured at the 15 energy points.
- > An excited Ξ baryon is observed around 1820 MeV with $6.2-6.5\sigma$ statistical significance. The mass and width of Ξ^{*} are consistent with Ξ(1820) and the first updated in 33 years.

$\Lambda\overline{\Lambda}$ threshold enhancement in $e^+e^- \rightarrow \Lambda\overline{\Lambda}\eta$

Phys.Rev.D 107 (2023) 11, 112001

- □ Search for charmonium states
- \blacksquare Search for the enhancement near $\Lambda\overline{\Lambda}$ threshold
- **□** Search for Λ^* in the $\Lambda \eta$ mass spectrum
- ✓ Based on the data events at 31 energy points (3.5~4.7 GeV)
- ✓ Partial reconstruction technique to achieve higher efficiency.

$\Lambda\overline{\Lambda}$ threshold enhancement in $e^+e^- \rightarrow \Lambda\overline{\Lambda}\eta$

- The enhancement near $\Lambda\overline{\Lambda}$ threshold:
 - Parameterization: A BW function with mass-dependent width
 - $J^{PC} = 1^{--}, M = (2356 \pm 7 \pm 17) \text{ MeV}/c^2, \Gamma = (304 \pm 28 \pm 54) \text{ MeV}$
- No significant structure of charmonium state is observed in the line shape of the Born cross section
- > A clear enhancement above pure phase space is observed near the $\Lambda\overline{\Lambda}$ mass threshold.
- \succ Not any excited Λ state is observed due to the limit data.

N^* and Λ^* in $e^+e^- \rightarrow pK^-\overline{\Lambda} + c.c.$ at 4.178 GeV

arXiv:2303.01989 [hep-ex]

- Based on 3189 pb⁻¹ events at 4.178 GeV, a partial wave analysis is performed.
- The intermediate states of baseline solution include:
 - $K^*: K_2^*(1980), K_4^*(2075), K_2(2250)$
 - Λ*: Λ(1520), Λ(1890), Λ(2350)
 - $N^*: N(1720), N(2570)$
 - $p\Lambda$ enhancement: X(2085)
- The parameterization of K^* , Λ^* and N^* :

$$BW(s) = \frac{1}{m_0^2 - m^2 - im_0\Gamma_0}$$

 The resonance parameters of K^{*}, Λ^{*} and N^{*} are fixed to the individual world average values.

$p\Lambda$ threshold enhancement in $e^+e^- \rightarrow pK^-\Lambda + c.c.$

$$BW(s) = \frac{1}{m_0^2 - m^2 - im_0\Gamma(m)}$$
$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2l+1} \frac{m_0}{m} B_l^2(q, q_0, d)$$
$$B_l^2(q, q_0, d): Blatt - Weisskopf barrier factor$$

J^P	$M_{\rm pole}$	(MeV) Γ	$_{\rm pole}$ (N	ſeV) γ	$\sqrt{\Delta(-2\ln\mathcal{L})}$
1^{+}	2085	6 ± 6	$62 \pm$: 10	
0^{-}	2095	5 ± 9	$140 \pm$: 6	9.3
1^{-}	2063	3 ± 12	$130 \pm$	- 9	8.1
2^{+}	2077	7 ± 2	$122 \pm$: 8	9.8
2^{-}	2082	2 ± 16	$46 \pm$: 36	5.7
	•	v			
-	\sqrt{s}	$\mathcal{L}_{ ext{int}}$	Year	$M_{ m pole}$	$\Gamma_{\rm pole}$
-	4.008	482.0 ± 4.7	2011	2085 ± 14	50 ± 16
	4.178	3189.0 ± 31.9	2016	2085 ± 6	62 ± 10
	4.226	1100.9 ± 7.0	2013	2088 ± 10	68 ± 12
	4.258	828.4 ± 5.5	2013	2083 ± 11	48 ± 10
	4.416	1090.7 ± 7.2	2014	2088 ± 13	56 ± 12
	4.682	1669.3 ± 9.0	2020	2092 ± 10	54 ± 10
-	Average			2086 ± 4	56 ± 5

Significance > 20σ

• A threshold enhancement near $p\overline{\Lambda}$ threshold, *X*(2085), is observed with:

 $J^P = 1^+, M_{\text{pole}} = (2086 \pm 4 \pm 6) \text{MeV/c}^2, \Gamma_{\text{pole}} = (56 \pm 6 \pm 16) \text{MeV}$

Result of $p\overline{\Lambda}$ threshold enhancement

 $J/\psi \rightarrow pK^{-}\overline{\Lambda}$ BES Collaboration *Phys.Rev.Lett.* 93 (2004) 112002

 $B^+ \rightarrow p\overline{\Lambda}\overline{D}{}^0$ Belle Collaboration

Phys.Rev.D 84 (2011) 071501

 $e^+e^- \rightarrow pK^-\overline{\Lambda}$ BESIII Collaboration arXiv:2303.01989 [hep-ex]

Significance > 20σ

 $I^{P} = 1^{+}$

 $M = (2086 \pm 4 \pm 6) \text{ MeV}$

 $\Gamma = (56 \pm 5 \pm 16) \text{ MeV}$

X(2075)Significance $\approx 7\sigma$ $M = (2075 \pm 12 \pm 5) \text{ MeV}$ $\Gamma = (90 \pm 35 \pm 9) \text{ MeV}$

No conclusion can be drawn that X(2085) is the same structure as X(2075) observed $J/\psi \rightarrow pK^-\overline{\Lambda}$ since limited information was given.

Included in X(2075) of PDG

Measurement of $\Sigma^+ \to p\gamma$ in $J/\psi \to \Sigma^+ \overline{\Sigma}^-$

□ Measure the absolute branching fraction and decay

asymmetry parameter α_{γ} of $\Sigma^+ \rightarrow p\gamma$

Through the decay asymmetry parameter, perform a test for CP violation in hyperon decay

- ✓ Analysis based on 10 billion J/ψ events
- \checkmark The absolute branching fraction is calculated by

$$\mathcal{B}(\Sigma^+ \to p\gamma) = \frac{N_{DT}^{obs} \varepsilon_{ST}}{N_{ST}^{obs} \varepsilon_{DT}}$$

Measurement of $\Sigma^+ \to p\gamma$ in $J/\psi \to \Sigma^+ \overline{\Sigma}^-$

Source	PDG 2022	Our result
$\mathcal{B}(\Sigma^+ \to p\gamma) \times 10^{-3}$	1.23 ± 0.05	$0.996 \pm 0.021 \pm 0.018$
$lpha_{\gamma}$	-0.76 ± 0.08	$-0.652 \pm 0.056 \pm 0.020$

• The CP violation is test through Δ_{CP} and A_{CP} :

$$\begin{split} \Delta_{CP} &= \frac{\mathcal{B}_{+} - \mathcal{B}_{-}}{\mathcal{B}_{+} + \mathcal{B}_{-}} = 0.006 \pm 0.011_{\text{stat}} \pm 0.004_{\text{syst}}, \\ A_{CP} &= \frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}} = 0.095 \pm 0.087_{\text{stat}} \pm 0.018_{\text{syst}}. \end{split}$$

> The accuracies improvement:

▶ Branching fraction: 78%, decay asymmetry parameter α_γ: 34%
 ▶ B(Σ⁺ → pγ) is lower than the PDG value by 4.2σ.
 ▶ No obvious CP violation is observed.

20

Summary

- ✓ Overview of our recent result of baryon spectroscopy
- ✓ Charmonium decays are the powerful tool to investigate excited nucleons and hyperons
- ► BESIII has collected 10 billion J/ψ and about 3 billion ψ (3686) events.
- ➢ Many interesting analyses are now on performing and will come soon.

Thanks for your attention!