Multi-meson photoproduction off the proton - recent results from the CBELSA/TAPS experiment

Tobias Seifen

05.06.2023

Introduction

 $\gamma p \rightarrow p \pi^0 \pi^0$

- importance increases with E_{γ}
- access to sequential decays
- less background amplitudes than $p\pi^+\pi^-$ but cannot discriminate between N*/ Δ^*

Tobias Seifen

Event selection

Selection of $\gamma \mathbf{p} \!\rightarrow\! \mathbf{p} \pi^0 \pi^0 \!\rightarrow\! \mathbf{p} 4 \gamma$ cuts on

- charge (1 charged + 4 neutral)
- ϑ,φ difference of p to 4γ
- mass of calculated proton

after all cuts global background $\lesssim 1.5\,\%$

Tobias Seifen

3-body final state π^0 y = y' $\vec{\varepsilon}$ θ* φ p π^0 p

Polarisation Observables

5 kinematic variables:

• E_{γ}

• $\cos \vartheta_{\pi^0 \pi^0}$

*m*_π⁰_π⁰

• $\phi^*_{\pi^0\pi^0}$

• $\theta^*_{\pi^0\pi^0}$

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \frac{\mathrm{d}\sigma_0}{\mathrm{d}\Omega} \cdot \Big\{ 1 + \Lambda_x \cdot P_x + \Lambda_y \cdot P_y \\ &+ \delta_\ell \sin(2\phi) \cdot I^s + \delta_\ell \cos(2\phi) \cdot I^c \\ &+ \Lambda_y \, \delta_\ell \sin(2\phi) \cdot P_y^s + \Lambda_x \, \delta_\ell \sin(2\phi) \cdot P_x^s \\ &+ \Lambda_x \, \delta_\ell \cos(2\phi) \cdot P_x^c + \Lambda_y \, \delta_\ell \cos(2\phi) \cdot P_y^c \Big\} \end{split}$$

W. Roberts, T. Oed, Phys. Rev. C 71 (2005)

Photon Pol.		Target Pol. Axis		
		x	y	z
unpolarised	σ	P_x	P_y	P_z
linear $\sin(2\phi)$	I^s	P_x^s	P_u^s	P_z^s
linear $\cos(2\phi)$	I^{c}	P_x^c	P_{y}^{c}	P_z^c
circular	I^{\odot}	P_x^{\odot}	P_y^{\odot}	P_z^{\odot}

Tobias Seifen

Target asymmetry P_y

Target asymmetry P_y

Target asymmetry P_y - 4D

Branching ratios

$\Delta(1910)\frac{1}{2}^+$, $\Delta(1920)\frac{3}{2}^+$, $\Delta(1905)\frac{5}{2}^+$, $\Delta(1950)\frac{7}{2}^+$	
• BR into N(938) π or $\Delta(1232)\pi$	$(44\pm7)\%$
• BR into N(1520) π or N(1535) π	$(5\pm 2)\%$

$N(1880)\frac{1}{2}^+$, $N(1900)\frac{3}{2}^+$, $N(2000)\frac{5}{2}^+$, $N(1990)\frac{7}{2}^+$

• BR into N(938) π or $\Delta(1232)\pi$ (34 ± 6)% • BR into N(1520) π , N(1535) π or N σ (21 ± 5)%

Branching ratios

• BR into N(1520) π , N(1535) π or N σ

 $(34 \pm 6) \%$ $(21 \pm 5) \%$

spatial wave function

•
$$M_{S} = \frac{1}{\sqrt{2}}[0s \times 0d] - \frac{1}{\sqrt{2}}[0d \times 0s]$$

• $M_{A} = -[0p \times 0p]$

Harmonic oscillator

dominant decays:

- single oscillator excitation
 - \rightarrow ground state

Harmonic oscillator

dominant decays:

- single oscillator excitation
 - \rightarrow ground state
- dual oscillator excitation
 - \rightarrow sequential decay
- mixed oscillator \rightarrow both occur

Branching ratios

Branching ratios

Double polarization P_u^c – new data

Beam polarization I^c – new data

Summary

CBELSA/TAPS experiment ideally suited for the measurement of neutral meson final states

reaction $\gamma p \rightarrow p \pi^0 \pi^0$

- intermediate states directly visible in Dalitz plots
- \bullet observables $P_x, P_y, P_x^s, P_x^c, P_y^s, P_y^c$ determined in multiple kinematic variables
- for $E_{\gamma} \leq 1250 \, {\rm MeV}$ observables determined in 4D

 $\begin{array}{l} \mathsf{BnGa}\text{-}\mathsf{PWA} \Rightarrow \mathsf{branching\ ratios\ of\ resonances} \\ \hookrightarrow \mathsf{hints\ for\ wave\ function\ structure\ of\ baryon\ resonances} \end{array}$

further analysis of multi-meson final states

- $p\pi^0\pi^0 + p\pi^0\eta$: beam polarisation observables I^s, I^c at high energies
- $p\pi^0\pi^0$: double polarisation observables $P_x^s, P_x^c, P_y^s, P_y^c$ at higher energies