

Measuring neutron polarisation in pn production using CLAS

William Booth

The University of York

Supervisors: Prof. Daniel Watts, Dr Nicholas Zachariou

Slide 1 of 17

Motivation

Analysing Neutron polarisation

- Insight into neutron stars
- Studying SRCs (Short Range Correlations)
- The recently discovered dibaryon, d*(2380)

Building the world dataset

- Gaps in energy/angular coverage
- Utilizing existing data with a novel approach

Artistic view of the neutron and its internal structure CREDIT: ©: Professor Dr. Xiaorong Zhu, University for Science and Technology, China

Slide 2 of 17

Jefferson Lab

- International laboratory Est 1984
- US Department of Energy facility
- A world leading electron accelerator (CEBAF)
- Various experiments done across 4 halls (A-D)

Slide 3 of 17

The CLAS detector (1998-2012)

- CEBAF Large Acceptance Spectrometer
- Housed in Hall B of JLab
- A many component detector system
- Accepting beam energies up to 6GeV

Slide 4 of 17

The Start Counter

- A set of 3mm thick plastic scintillators surrounding the target, parallel to the beam line
- Used to determine start time of particle events

Photo of the start counter during CLAS's construction. https://www.jlab.org/Hall-B/album/index.html

Slide 5 of 17

Experiment g13 (2006-2007)

on

- Polarised photon beam
- Liquid Deuterium target (LD₂)
- Proposed to study Kaon production and search for baryon resonances

Slide 6 of 17

Differentiating the protons

- DOCA (Distance Of Closest Approach)
- The closest distance between two vertices

Slide 7 of 17

Differentiating the protons p1 and γ

p2 and γ

• Smaller DOCA

• Larger DOCA

Slide 8 of 17

Differentiating the protons

• p1 and p2 defined by DOCA between photon and proton

Slide 9 of 17

Missing mass of protons

• The distinction between p1 and p2 using DOCA is also clear in missing neutron mass

Slide 10 of 17

Filtering the data

Goal: Isolate the events of interest as much as possible

SAID model

Relates analysing power to P scattering angle and N energy

Maximum Likelihood technique

- Most mathematically likely values of Cx extracted using a "maximum" (minimum) likelihood technique
- Cx parameterised with a many parameter function of photon energy and reconstructed Neutron θ (Legendre functions)

Minimize:
$$\sum -2 \log[1 + \alpha (P_y \cos(\varphi) - C_x P_y^{\odot} \sin(\varphi))]$$
fixed P_y
 $C_x = f(E_\gamma, \theta_N, P0 \dots P32)$

Slide 13 of 17

Extracted Cx distribution

Slide 14 of 17

Bootstrap technique

- New functions extracted after randomising original dataset
- Spread of new functions indicates the level of confidence

Slide 15 of 17

Bootstrap technique

• Overlaying functions shows where the fit is most confident

Extending to CLAS12

- The upgraded CLAS capable of 12GeV
- Run Group M
 - nuclear target experiments
 - Insight into SRCs
- This novel approach can be applied to CLAS12 and the SVT

CLAS12 render

The Silicon Vertex Tracker (SVT), component of CLAS12

Slide 17 of 17

Summary

- g13 study to be finalised
 - Filtering process refined
 - Background subtraction implemented
 - Comparisons made to simulated/published data
- Extend analysis to CLAS12 data with RGM
 - Provide first polarisation measurements of SRCs utilising the SVT

Thank you!

wab510@york.ac.uk