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Outline

present recent results for ∆, Λ(1405) resonances from lattice
QCD
excited-states energies in lattice QCD
finite-volume energies⇒ scattering phase shifts
hadron resonance properties: masses, decay widths
extra: scalar glueball in full QCD
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Masses/widths of resonances from lattice QCD

evaluate finite-volume energies of stationary states
corresponding to decay products of resonance for variety of total
momenta
such energies obtained from Markov-chain Monte Carlo
estimates of appropriate temporal correlation functions
parametrize either the K-matrix or its inverse for the relevant
scattering processes
Lüscher quantization condition determines finite-volume
spectrum from the K matrix
determine best fit values of the parameters in the K-matrix by
matching the spectrum from quantization condition to spectrum
obtained from lattice QCD
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Excited states from correlation matrices

energies from temporal correlations Cij(t) = 〈0|Oi(t)Oj(0)|0〉
in finite volume, energies are discrete (neglect wrap-around)

Cij(t) =
∑
n

Z
(n)
i Z

(n)∗
j e−Ent, Z

(n)
j = 〈0| Oj |n〉

not practical to do fits using above form
define new correlation matrix C̃(t) using a single rotation

C̃(t) = U† C(τ0)−1/2 C(t) C(τ0)−1/2 U

columns of U are eigenvectors of C(τ0)−1/2 C(τD)C(τ0)−1/2

choose τ0 and τD large enough so C̃(t) diagonal for t > τD

2-exponential fits to C̃αα(t) yield energies Eα and overlaps Z(n)
j

energy shifts from non-interacting using 1-exp fits to ratio of
correlators
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Correlator matrix toy model

example: 12× 12 correlator matrix with Ne = 200 eigenstates

E0 = 0.20, En = En−1 +
0.08√
n
, Z

(n)
j =

(−1)j+n

1 + 0.05(j − n)2
.

left: effective energies of diagonal elements of correlator matrix
middle: effective energies of eigenvalues of C(t)

right: effective energies of eigenvalues of
C(τ0)−1/2 C(t) C(τ0)−1/2 for τ0 = 1
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Building blocks for single-hadron operators

important to use good operators to see signal before noise
growth
building blocks: covariantly-displaced LapH-smeared quark fields
stout links Ũj(x)

Laplacian-Heaviside (LapH) smeared quark fields

ψ̃aα(x) = Sab(x, y) ψbα(y), S = Θ
(
σ2
s + ∆̃

)
3d gauge-covariant Laplacian ∆̃ in terms of Ũ
displaced quark fields:

qAaαj = D(j)ψ̃(A)
aα , qAaαj = ψ̃

(A)

aα γ4D
(j)†

displacement D(j) is product of smeared links:

D(j)(x, x′) = Ũj1(x) Ũj2(x+d2) Ũj3(x+d3) . . . Ũjp(x+dp)δx′, x+dp+1

to good approximation, LapH smearing operator is

S = VsV
†
s

columns of matrix Vs are eigenvectors of ∆̃
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Extended operators for single hadrons

quark displacements build up orbital, radial structure

Φ
AB

αβ (p, t) =
∑

x e
ip·(x+ 1

2 (dα+dβ))δab q
B
bβ(x, t) qAaα(x, t)

Φ
ABC

αβγ (p, t) =
∑

x e
ip·xεabc q

C
cγ(x, t) qBbβ(x, t) qAaα(x, t)

group-theory projections onto irreps of lattice symmetry group

M l(t) = c
(l)∗
αβ Φ

AB

αβ (t) Bl(t) = c
(l)∗
αβγ Φ

ABC

αβγ (t)

definite momentum p, irreps of little group of p
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Importance of smeared fields

effective masses of
3 selected nucleon
operators shown
noise reduction of
displaced-operators
from link smearing
nρρ = 2.5, nρ = 16

quark-field
smearing
σs = 4.0, nσ = 32
reduces
excited-state
contamination
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Two-hadron operators

comparison of π(k)π(−k) and localized
∑

x π(x)π(x) operators

important to use superposition of products of single-hadron
operators of definite momenta
efficient construction, generalizes to three or more hadrons
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Quark propagation

quark propagator Q is inverse D−1 of Dirac matrix
rows/columns involve lattice site, spin, color
very large Ntot ×Ntot matrix for each flavor

Ntot = NsiteNspinNcolor

for 643 × 128 lattice, Ntot ∼ 400 million

not feasible to compute (or store) all elements of D−1

point-to-all trick for local operators: use translation invariance
∑
y

∑
x

Q
(a)

(y, tf |x, ti)Q(b)
(y, tf |x, ti) · · · −→

∑
y

Q
(a)

(y, tf |x0, ti)Q
(b)

(y, tf |x0, ti) . . .

cannot use this trick for good multi-hadron operators∑
y1,y2,...

∑
x1,x2,...

Q(a)(y1, tf |x1, ti) Q
(b)(y2, tf |x2, ti) . . .

our solution: the stochastic LapH method!
Monte Carlo estimates of D−1 with clever variance reduction
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Quantum numbers in toroidal box

periodic boundary conditions in
cubic box

not all directions equivalent⇒
using JPC is wrong!!

label stationary states of QCD in a periodic box using irreps of
cubic space group even in continuum limit

zero momentum states: little group Oh

A1a, A2ga, Ea, T1a, T2a, G1a, G2a, Ha, a = g, u
on-axis momenta: little group C4v

A1, A2, B1, B2, E, G1, G2

planar-diagonal momenta: little group C2v

A1, A2, B1, B2, G1, G2

cubic-diagonal momenta: little group C3v

A1, A2, E, F1, F2, G

include G parity in some meson sectors (superscript + or −)
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Spin content of cubic box irreps

numbers of occurrences of Λ irreps in J subduced

J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1
5 0 0 1 2 1
6 1 1 1 1 2
7 0 1 1 2 2

J G1 G2 H J G1 G2 H
1
2 1 0 0 9

2 1 0 2
3
2 0 0 1 11

2 1 1 2
5
2 0 1 1 13

2 1 2 2
7
2 1 1 1 15

2 1 1 3
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Scattering phase shifts from lattice QCD

each finite-volume energy E related to S matrix (and phase
shifts) by the quantization condition

det[1 + F (P )(S − 1)] = 0

F matrix in JLSa basis states given by

〈J ′mJ′L′S′a′|F (P )|JmJLSa〉 = δa′aδS′S
1

2

{
δJ′JδmJ′mJ δL′L

+〈J ′mJ′ |L′mL′SmS〉〈LmLSmS |JmJ〉W (Pa)
L′mL′ ; LmL

}
total ang mom J, J ′, orbital L,L′, spin S, S′, channels a, a′

W given by

−iW (Pa)
L′mL′ ; LmL

=

L′+L∑
l=|L′−L|

l∑
m=−l

Zlm(sa, γ, u
2
a)

π3/2γul+1
a

√
(2L′ + 1)(2l + 1)

(2L+ 1)

×〈L′0, l0|L0〉〈L′mL′ , lm|LmL〉.

compute Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta
functions Zlm

C. Morningstar Baryon Resonances 13



Kinematics

work in spatial L3 volume with periodic b.c.
total momentum P = (2π/L)d, where d vector of integers
calculate lab-frame energy E of two-particle interacting state in
lattice QCD
boost to center-of-mass frame by defining:

Ecm =
√
E2 − P 2, γ =

E

Ecm
,

assume Nd channels
particle masses m1a,m2a and spins s1a, s2a of particle 1 and 2
for each channel, can calculate

q2
cm,a =

1

4
E2

cm −
1

2
(m2

1a +m2
2a) +

(m2
1a −m2

2a)2

4E2
cm

,

u2
a =

L2q2
cm,a

(2π)2
, sa =

(
1 +

(m2
1a −m2

2a)

E2
cm

)
d
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K matrix

quantization condition relates single energy E to entire S-matrix
cannot solve for S-matrix (except single channel, single wave)
approximate S-matrix with functions depending on handful of fit
parameters
obtain estimates of fit parameters using many energies
easier to parametrize Hermitian matrix than unitary matrix
introduce K-matrix (Wigner 1946)

S = (1 + iK)(1− iK)−1 = (1− iK)−1(1 + iK)

Hermiticity of K-matrix ensures unitarity of S-matrix
with time reversal invariance, K-matrix must be real and
symmetric
multichannel effective range expansion (Ross 1961)

K−1
L′S′a′; LSa(E) = q

−L′− 1
2

a′ K̃−1
L′S′a′; LSa(Ecm) q

−L− 1
2

a ,
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Quantization condition

quantization condition can be written

det(1−B(P )K̃) = det(1− K̃B(P )) = 0

we define the box matrix by

〈J ′mJ′L′S′a′| B(P ) |JmJLSa〉 = −iδa′aδS′S u
L′+L+1
a W

(Pa)
L′mL′ ; LmL

×〈J ′mJ′ |L′mL′ , SmS〉〈LmL, SmS |JmJ〉
box matrix is Hermitian for u2

a real
quantization condition can also be expressed as

det(K̃−1 −B(P )) = 0

these determinants are real
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Block diagonalization

quantization condition involves determinant of infinite matrix
make practical by (a) transforming to a block-diagonal basis and
(b) truncating in orbital angular momentum
block-diagonal basis

|ΛλnJLSa〉 =
∑
mJ

cJ(−1)L; Λλn
mJ |JmJLSa〉

little group irrep Λ, irrep row λ, occurrence index n
transformation coefficients depend on J and (−1)L, not on S, a
replaces mJ by (Λ, λ, n)

group theoretical projections with Gram-Schmidt used to obtain
coefficients
use notation and irrep matrices from PRD 88, 014511 (2013)
box matrix elements computed using C++ software available on
github: TwoHadronsInBox
reference: NPB924, 477 (2017)
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Current ensemble

currently using CLS D200 ensemble
size: 643 × 128 lattice, a ∼ 0.066 fm

open boundary conditions in time
number of configs = 2000
quark masses: mπ ∼ 200 MeV, mK ∼ 480 MeV

smearing: Nev = 448

sources:
t0 = 35 forward,
t0 = 64 forward and backward,
t0 = 92 backward
software: common subexpression elimination with tensor
contractions (Ben Hörz)
heavy use of batched BLAS routines
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Flavor channels

D200 Number
Isospin channel of Correlators

I = 0, S = 0, NN 8357
I = 0, S = −1, Λ, NK,Σπ (45 SH) 8143
I = 1

2 , S = 0, Nπ 696
I = 1

2 , S = −1, NΛ, NΣ 17816
I = 1, S = 0, NN (66 SH) 7945
I = 3

2 , S = 0, ∆, Nπ 3218
I = 3

2 , S = −1, NΣ 23748
I = 0, S = −2, ΛΛ, NΞ,ΣΣ (66 SH) 16086
I = 2, S = −2, ΣΣ (66 SH) 4589
Single hadrons 33
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Motivation

meson-baryon amplitudes useful for pheno. at mphys
π and for

chiral EFT’s at varying mphys
π .

∆(1232)→ Nπ used as a d.o.f. in some EFT’s

scattering lengths aI=3/2
Nπ and aI=1/2

Nπ impact lattice-pheno.
discrepancy for σπN , relevant for dark matter direct detection.
(see arxiv:1602.07688)
recent ∆-resonance study in Nucl. Phys. B987, 116105 (2023)
lattice QCD is good laboratory to study Λ(1405) by varying quark
masses.
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I = 3/2 Nπ spectrum determination

G1u(0) Hg(0) G1(1) G2(1) G(2) F1(3) F2(3) G(3) G1(4) G2(4)G1g(0) Hu(0)

6.0

6.5

7.0

7.5

E
cm
/m

π

Nπ

Nππ

irreps with leading (2J, L) = (3, 1) wave: Hg(0), G2(1), F1(3),
G2(4).
irrep with leading (1, 0) wave: G1u(0).
irrep with leading (1, 1) wave: G1g(0) not included because
ground state is inelastic.
irreps with s- and p-wave mixing: G1(1), G(2), G1(4).
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I = 1/2 spectrum determination

G1u(0) G1(1) G(2) G(3) G1(4)

5.0

5.5

6.0

6.5

E
cm
/m

π

Nπ

Nππ

isodoublet Nπ spectrum
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Parametrization of K-matrix

each partial wave parametrized using effective range expansion
remember

√
s = Ecm =

√
m2
π + q2

cm +
√
m2
N + q2

cm

for I = 3/2, JP = 3/2+ wave

q3
cm

m3
π

cot δ3/2+ =
6π
√
s

m3
πg

2
∆,BW

(m2
∆ − s),

other waves, used

q2`+1
cm

m2`+1
π

cot δIJP =

√
s

mπAIJP
,

fit parameter AIJP related to scattering length by

m2`+1
π aIJP =

mπ

mπ +mN
AIJP .
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Isoquartet scattering amplitudes

−5.0

−4.5

−4.0

−3.5

−3.0

q c
m

m
π

co
t
δ 1
/2
−

G1u(0)

0.0 0.5 1.0 1.5 2.0 2.5

(qcm/mπ)2

−5.0

−2.5

0.0

2.5

q3 cm m
3 π

co
t
δ 3
/2

+

Hg(0)

G2(1)

F1(3)

F2(3)

G2(4)

0.0 0.5 1.0 1.5 2.0 2.5

(qcm/mπ)2

I = 3/2 s- and p-wave scattering amplitudes
mass and width parameter of ∆-resonance

m∆

mπ
= 6.257(35), g∆,BW = 14.41(53),
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I = 1/2 scattering amplitudes

0

10

20

q c
m

m
π

co
t
δ 1
/2
−

G1u(0)

G1(1)

G(2)

G(3)

0.0 0.1 0.2 0.3

(qcm/mπ)2

scattering lengths

mπa
3/2
0 = −0.2735(81) , mπa

1/2
0 = 0.142(22),
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∆ resonance

0

π/2

δ 3
/2

+

0.0 0.5 1.0 1.5 2.0 2.5

(qcm/mπ)2
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Comparison to previous works

1250

1300

1350

m
∆

(M
eV

)

Physical point

Andersen et al. 2018

Silvi et al. 2021

This work

280139 206 255
mπ (MeV)

20

30

40

g ∆
N
π

0

1

m
π
a

1
⁄ 2 0

139 206 560 730255
mπ (MeV)

−0.5

0.0

0.5

m
π
a

3
⁄ 2 0

Physical point

This work

Fukugita et al. 1995

Lang and Verduci 2012

Silvi et al 2021

above, g∆Nπ is defined in terms of the decay width in
leading-order chiral effective theory

ΓLO
EFT =

g2
∆Nπ

48π

EN +mN

EN + Eπ

q3

m2
N
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Study of Λ(1405) resonance

Study of elusive Λ(1405) nearly completed
CLS D200 ensemble with mπ ≈ 200 MeV
Finite volume spectrum of Σπ and NK states below

G1u(0)G1g(0) G1(1) G2(1) G(2) F1(3) F2(3) G(3)

6.5

7.0

7.5

8.0

E
cm
/m

π

Σπ

Λππ

NK
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Study of Λ(1405) resonance

PDG lists Λ(1405) as single I = 0, JP = 1
2

− resonance
strangeness −1
Recent models based on chiral effective theory and unitary
suggest two nearby overlapping poles
Our study supports two-pole structure (preliminary)
Virtual bound state below Σπ threshold, resonance pole below
NK threshold
First lattice QCD study of this coupled-channel system using full
operator set

0.0

0.5

1.0

ρ
iρ
j
|t i
j
|2

πΣ→ πΣ

KN → KN

πΣ→ KN

−0.1

0.0

Im
E
/m

π

(−,+) (+,−)

6.6 6.8 7.0 7.2 7.4 7.6

Re E/mπ

E
i
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K matrix parametrization

For best parametrization, used `max = 0 in ERE
Ecm

Mπ
K̃ij = Aij +Bij∆πΣ

where Aij and Bij are symmetric and real coefficients with i and
j denoting either of the two scattering channels, and

∆πΣ = (E2
cm − (Mπ +MΣ)2)/(Mπ +MΣ)2

other parametrizations also used:
an ERE for K̃−1

removing factor of Ecm above
Blatt-Biedenharn form

forms with one pole strongly disfavored
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The scalar glueball

glueball: hypothetical bound state
of gluons

experimental evidence elusive, light
scalar candidates:

f0(1370), f0(1500), f0(1710)

lattice studies to date:
light scalar ∼ 1600− 1700 MeV

most in pure SU(3) or quenched

approx. (no quark/meson mixing!)
PRD 73, 014516 (2006)

here: extract low-lying A+
1g spectrum with qq, meson-meson, & glueball

operators

first look (from the lattice) at mixing between glueball, qq, and two-hadron states
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Why are glueballs with quarks so hard in lattice QCD?

must extract all levels lying below glueballs of interest
many 2-meson, 3-meson, 4-meson levels expected below
2-meson correlators require timeslice-to-timeslice propagators
glueballs expected to be resonances
glueballs require high statistics: difficult with quarks
scalar sector requires large VEV subtraction
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A+
1g spectrum

243 × 128 anisotropic lattice, mπ ∼ 390 MeV

bad news for the scalar glueball?
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A+
1g overlaps
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Summary

stochastic LapH method works very well
allows evaluation of all needed quark-line diagrams

large numbers of excited-state energy levels can be estimated
scattering phase shifts can be computed
infinite-volume resonance parameters from finite-volume
energies below 2 particle thresholds
hadron resonance properties: masses, decay widths
presented recent results for ∆, Λ(1405) resonances
scalar glueball in full QCD
next study: the Roper resonance (need for three-particle states)
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