Low-lying Baryon Resonances from Lattice QCD

Colin Morningstar Carnegie Mellon University

Hadron 2023, Genova, Italy

Monday, June 5, 2023

Outline

- present recent results for $\Delta,\,\Lambda(1405)$ resonances from lattice QCD
- excited-states energies in lattice QCD
- finite-volume energies ⇒ scattering phase shifts
- hadron resonance properties: masses, decay widths
- extra: scalar glueball in full QCD

Collaborators

- this work done in collaboration with
 - John Bulava (DESY, Zeuthen, Germany)
 - Andrew Hanlon (Brookhaven National Lab)
 - Ben Hörz (Intel Germany)
 - Daniel Mohler (GSI Helmholtz Centre, Darmstadt, Germany)
 - Bárbara Mora (GSI Helmholtz Centre, Darmstadt, Germany)
 - Joseph Moscoso (U. North Carolina)
 - Amy Nicholson (U. North Carolina)
 - Fernando Romero-López (Massachusetts Institute of Technology)
 - Sarah Skinner (Carnegie Mellon University)
 - Pavlos Vranas (Lawrence Livermore Lab)
 - André Walker-Loud (Lawrence Berkeley Lab)
- acknowledge support from the NSF 4
- ISF 🐞

- o computing resource:
 - Frontera at Texas Advanced Computing Center

Masses/widths of resonances from lattice QCD

- evaluate finite-volume energies of stationary states corresponding to decay products of resonance for variety of total momenta
- such energies obtained from Markov-chain Monte Carlo estimates of appropriate temporal correlation functions
- parametrize either the *K*-matrix or its inverse for the relevant scattering processes
- Lüscher quantization condition determines finite-volume spectrum from the *K* matrix
- determine best fit values of the parameters in the *K*-matrix by matching the spectrum from quantization condition to spectrum obtained from lattice QCD

Excited states from correlation matrices

- energies from temporal correlations $C_{ij}(t) = \langle 0 | \overline{O}_i(t) O_j(0) | 0 \rangle$
- in finite volume, energies are discrete (neglect wrap-around)

$$C_{ij}(t) = \sum_{n} Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \qquad Z_j^{(n)} = \langle 0 | O_j | n \rangle$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

 $\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$

- columns of U are eigenvectors of $C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2}$
- choose au_0 and au_D large enough so $\widetilde{C}(t)$ diagonal for $t > au_D$
- 2-exponential fits to $\widetilde{C}_{\alpha\alpha}(t)$ yield energies E_{α} and overlaps $Z_{i}^{(n)}$
- energy shifts from non-interacting using 1-exp fits to ratio of correlators

Correlator matrix toy model

- example: 12×12 correlator matrix with $N_e = 200$ eigenstates
 - $E_0 = 0.20,$ $E_n = E_{n-1} + \frac{0.08}{\sqrt{n}},$ $Z_j^{(n)} = \frac{(-1)^{j+n}}{1 + 0.05(j-n)^2}.$

- left: effective energies of diagonal elements of correlator matrix
- middle: effective energies of eigenvalues of C(t)
- right: effective energies of eigenvalues of $C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2}$ for $\tau_0 = 1$

C. Morningstar

Building blocks for single-hadron operators

- important to use good operators to see signal before noise growth
- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

 $\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x,y) \ \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$

- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$q^{A}_{a\alpha j} = D^{(j)} \widetilde{\psi}^{(A)}_{a\alpha}, \qquad \overline{q}^{A}_{a\alpha j} = \widetilde{\overline{\psi}}^{(A)}_{a\alpha} \gamma_4 D^{(j)\dagger}$$

• displacement $D^{(j)}$ is product of smeared links: $D^{(j)}(p_{j}, p_{j}) = \widetilde{T}_{j}(p_{j}) = \widetilde{T}$

 $D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x',\ x+d_{p+1}}$

to good approximation, LapH smearing operator is

$$\mathcal{S} = V_s V_s^{\dagger}$$

• columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

C. Morningstar

Extended operators for single hadrons

• quark displacements build up orbital, radial structure

C. Morningstar

Importance of smeared fields

- effective masses of 3 selected nucleon operators shown
- noise reduction of displaced-operators from link smearing $n_{\rho}\rho = 2.5, n_{\rho} = 16$
- quark-field smearing $\sigma_s = 4.0, n_{\sigma} = 32$ reduces excited-state contamination

Two-hadron operators

• comparison of $\pi(\mathbf{k})\pi(-\mathbf{k})$ and localized $\sum_{\mathbf{x}}\pi(\mathbf{x})\pi(\mathbf{x})$ operators

- important to use superposition of products of single-hadron operators of definite momenta
- efficient construction, generalizes to three or more hadrons

C. Morningstar

Quark propagation

- quark propagator Q is inverse D^{-1} of Dirac matrix
 - rows/columns involve lattice site, spin, color
 - very large $N_{
 m tot} imes N_{
 m tot}$ matrix for each flavor

 $N_{\rm tot} = N_{\rm site} N_{\rm spin} N_{\rm color}$

- for $64^3 \times 128$ lattice, $N_{\rm tot} \sim 400$ million
- not feasible to compute (or store) all elements of D⁻¹
- point-to-all trick for local operators: use translation invariance

 $\sum_{\mathbf{y}} \sum_{\mathbf{x}} Q^{(a)}(\mathbf{y}, t_f | \mathbf{x}, t_i) Q^{(b)}(\mathbf{y}, t_f | \mathbf{x}, t_i) \cdots \longrightarrow \sum_{\mathbf{y}} Q^{(a)}(\mathbf{y}, t_f | \mathbf{x}_0, t_i) Q^{(b)}(\mathbf{y}, t_f | \mathbf{x}_0, t_i) \cdots$

cannot use this trick for good multi-hadron operators

$$\sum_{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{x}_1, \mathbf{x}_2, \dots} Q^{(a)}(\mathbf{y}_1, t_f | \mathbf{x}_1, t_i) \ Q^{(b)}(\mathbf{y}_2, t_f | \mathbf{x}_2, t_i) \dots$$

- our solution: the stochastic LapH method!
- Monte Carlo estimates of D^{-1} with clever variance reduction

C. Morningstar

Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group O_h
 - $A_{1a}, A_{2ga}, E_a, T_{1a}, T_{2a}, \quad G_{1a}, G_{2a}, H_a, \qquad a = g, u$
 - on-axis momenta: little group C_{4v}

 $A_1, A_2, B_1, B_2, E, \quad G_1, G_2$

• planar-diagonal momenta: little group C_{2v}

 $A_1, A_2, B_1, B_2, \quad G_1, G_2$

cubic-diagonal momenta: little group C_{3v}

 $A_1, A_2, E, \quad F_1, F_2, G$

• include G parity in some meson sectors (superscript + or -)

Spin content of cubic box irreps

• numbers of occurrences of Λ irreps in J subduced

		J	A_1	A_2	E	T_1	T_2	
	-	0	1	0	0	0	0	
		1	0	0	0	1	0	
		2	0	0	1	0	1	
		3	0	1	0	1	1	
		4	1	0	1	1	1	
		5	0	0	1	2	1	
		6	1	1	1	1	2	
		7	0	1	1	2	2	
J	G_1	0	r_2 .	Η	J	G_{1}	G_1 G_2	H
$\frac{1}{2}$	1		0	0	$\frac{9}{2}$	1	0	2
$\frac{3}{2}$	0		0	1	$\frac{11}{2}$	- 1	1	2
$\frac{5}{2}$	0		1	1	$\frac{13}{2}$	1	2	2
$\frac{7}{2}$	1		1	1	$\frac{15}{2}$	1	1	3

C. Morningstar

Scattering phase shifts from lattice QCD

• each finite-volume energy *E* related to *S* matrix (and phase shifts) by the quantization condition

 $\det[1 + F^{(\mathbf{P})}(S-1)] = 0$

• F matrix in JLSa basis states given by

 $\langle J'm_{J'}L'S'a'|F^{(\mathbf{P})}|Jm_{J}LSa\rangle = \delta_{a'a}\delta_{S'S} \frac{1}{2} \Big\{ \delta_{J'J}\delta_{m_{J'}m_{J}}\delta_{L'L} + \langle J'm_{J'}|L'm_{L'}Sm_{S}\rangle \langle Lm_{L}Sm_{S}|Jm_{J}\rangle W^{(\mathbf{P}a)}_{L'm_{r'};\ Lm_{L}} \Big\}$

- total ang mom J, J', orbital L, L', spin S, S', channels a, a'
- W given by

$$-iW_{L'm_{L'};\ Lm_{L}}^{(\mathbf{P}a)} = \sum_{l=|L'-L|}^{L'+L} \sum_{m=-l}^{l} \frac{\mathcal{Z}_{lm}(s_{a},\gamma,u_{a}^{2})}{\pi^{3/2}\gamma u_{a}^{l+1}} \sqrt{\frac{(2L'+1)(2l+1)}{(2L+1)}} \times \langle L'0,l0|L0\rangle \langle L'm_{L'},lm|Lm_{L}\rangle.$$

- compute Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions Z_{lm}
- C. Morningstar

Kinematics

- work in spatial L^3 volume with periodic b.c.
- total momentum $P = (2\pi/L)d$, where d vector of integers
- calculate lab-frame energy E of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$E_{\rm cm} = \sqrt{E^2 - P^2}, \qquad \gamma = \frac{E}{E_{\rm cm}},$$

- assume *N_d* channels
- particle masses m_{1a}, m_{2a} and spins s_{1a}, s_{2a} of particle 1 and 2
- for each channel, can calculate

$$\begin{aligned} \boldsymbol{q}_{\mathrm{cm},a}^2 &= \frac{1}{4} E_{\mathrm{cm}}^2 - \frac{1}{2} (m_{1a}^2 + m_{2a}^2) + \frac{(m_{1a}^2 - m_{2a}^2)^2}{4E_{\mathrm{cm}}^2}, \\ u_a^2 &= \frac{L^2 \boldsymbol{q}_{\mathrm{cm},a}^2}{(2\pi)^2}, \qquad \boldsymbol{s}_a = \left(1 + \frac{(m_{1a}^2 - m_{2a}^2)}{E_{\mathrm{cm}}^2}\right) \boldsymbol{d} \end{aligned}$$

C. Morningstar

K matrix

- quantization condition relates single energy E to entire S-matrix
- cannot solve for *S*-matrix (except single channel, single wave)
- approximate *S*-matrix with functions depending on handful of fit parameters
- obtain estimates of fit parameters using many energies
- easier to parametrize Hermitian matrix than unitary matrix
- introduce K-matrix (Wigner 1946)

 $S = (1 + iK)(1 - iK)^{-1} = (1 - iK)^{-1}(1 + iK)$

- Hermiticity of *K*-matrix ensures unitarity of *S*-matrix
- with time reversal invariance, *K*-matrix must be real and symmetric
- multichannel effective range expansion (Ross 1961)

$$K_{L'S'a';\ LSa}^{-1}(E) = q_{a'}^{-L'-\frac{1}{2}} \ \widetilde{K}_{L'S'a';\ LSa}^{-1}(E_{\rm cm}) \ q_{a}^{-L-\frac{1}{2}},$$

C. Morningstar

Quantization condition

quantization condition can be written

 $\det(1 - B^{(\mathbf{P})}\widetilde{K}) = \det(1 - \widetilde{K}B^{(\mathbf{P})}) = 0$

we define the box matrix by

 $\langle J'm_{J'}L'S'a'| B^{(\mathbf{P})} | Jm_J LSa \rangle = -i\delta_{a'a}\delta_{S'S} u_a^{L'+L+1} W_{L'm_{L'}; Lm_L}^{(\mathbf{P}a)} \\ \times \langle J'm_{J'}|L'm_{L'}, Sm_S \rangle \langle Lm_L, Sm_S|Jm_J \rangle$

- box matrix is Hermitian for u_a^2 real
- quantization condition can also be expressed as

 $\det(\widetilde{K}^{-1} - B^{(\mathbf{P})}) = 0$

these determinants are real

Block diagonalization

- quantization condition involves determinant of infinite matrix
- make practical by (a) transforming to a block-diagonal basis and (b) truncating in orbital angular momentum
- block-diagonal basis

$$|\Lambda\lambda nJLSa\rangle = \sum c_{m_J}^{J(-1)^L;\,\Lambda\lambda n} |Jm_J LSa\rangle$$

- little group irrep Λ , irrep row $\stackrel{m_J}{\lambda}$, occurrence index n
- transformation coefficients depend on J and $(-1)^L$, not on S, a
- replaces m_J by (Λ, λ, n)
- group theoretical projections with Gram-Schmidt used to obtain coefficients
- use notation and irrep matrices from PRD 88, 014511 (2013)
- box matrix elements computed using C++ software available on github: TwoHadronsInBox
- reference: NPB924, 477 (2017)

C. Morningstar

Current ensemble

- currently using CLS D200 ensemble
- size: $64^3 \times 128$ lattice, $a \sim 0.066$ fm
- open boundary conditions in time
- number of configs = 2000
- quark masses: $m_{\pi} \sim 200 \text{ MeV}$, $m_K \sim 480 \text{ MeV}$
- smearing: $N_{\rm ev} = 448$
- sources:
 - $t_0 = 35$ forward,
 - $t_0 = 64$ forward and backward,
 - $t_0 = 92$ backward
- software: common subexpression elimination with tensor contractions (Ben Hörz)
- heavy use of batched BLAS routines

Flavor channels

Isospin channel	D200 Number
	01 OUTFIAIOIS
$I=0,\;S=0,\;NN$	8357
$I=0,\;S=-1,\;\Lambda,N\overline{K},\Sigma\pi$ (45 SH)	8143
$I=rac{1}{2},\ S=0,N\pi$	696
$I=rac{1}{2},\;S=-1,N\Lambda,N\Sigma$	17816
$I=1,\ S=0,NN$ (66 SH)	7945
$I=rac{3}{2},\;S=0,\Delta,N\pi$	3218
$I=rac{3}{2},\ S=-1,N\Sigma$	23748
$I=0,\ S=-2,\Lambda\Lambda,N\Xi,\Sigma\Sigma$ (66 SH)	16086
$I=2,\;S=-2,\;\Sigma\Sigma$ (66 SH)	4589
Single hadrons	33

C. Morningstar

Motivation

- meson-baryon amplitudes useful for pheno. at $m_{\pi}^{\rm phys}$ and for chiral EFT's at varying $m_{\pi}^{\rm phys}$.
- $\Delta(1232) \rightarrow N\pi$ used as a d.o.f. in some EFT's
- scattering lengths $a_{N\pi}^{I=3/2}$ and $a_{N\pi}^{I=1/2}$ impact lattice-pheno. discrepancy for $\sigma_{\pi N}$, relevant for dark matter direct detection. (see arxiv:1602.07688)
- recent Δ -resonance study in Nucl. Phys. B987, 116105 (2023)
- lattice QCD is good laboratory to study $\Lambda(1405)$ by varying quark masses.

$I = 3/2 N\pi$ spectrum determination

- irreps with leading (2J, L) = (3, 1) wave: $H_g(0)$, $G_2(1)$, $F_1(3)$, $G_2(4)$.
- irrep with leading (1,0) wave: $G_{1u}(0)$.
- irrep with leading (1,1) wave: $G_{1g}(0)$ not included because ground state is inelastic.
- irreps with s- and p-wave mixing: $G_1(1), G(2), G_1(4)$.

C. Morningstar

I = 1/2 spectrum determination

• isodoublet $N\pi$ spectrum

C. Morningstar

Parametrization of *K*-matrix

- each partial wave parametrized using effective range expansion
- remember $\sqrt{s} = E_{\rm cm} = \sqrt{m_\pi^2 + q_{\rm cm}^2} + \sqrt{m_N^2 + q_{\rm cm}^2}$
- for $I = 3/2, J^P = 3/2^+$ wave

$$\frac{q_{\rm cm}^3}{m_\pi^3}\cot\delta_{3/2^+} = \frac{6\pi\sqrt{s}}{m_\pi^3 g_{\Delta,{\rm BW}}^2}(m_\Delta^2-s),$$

other waves, used

$$\frac{q_{\rm cm}^{2\ell+1}}{m_{\pi}^{2\ell+1}} \cot \delta^{I}_{J^{P}} = \frac{\sqrt{s}}{m_{\pi} A^{I}_{J^{P}}},$$

fit parameter A^I_{JP} related to scattering length by

$$m_{\pi}^{2\ell+1}a_{J^{P}}^{I} = \frac{m_{\pi}}{m_{\pi} + m_{N}}A_{J^{P}}^{I}.$$

C. Morningstar

Isoquartet scattering amplitudes

• I = 3/2 s- and *p*-wave scattering amplitudes

• mass and width parameter of Δ -resonance

$$\frac{m_{\Delta}}{m_{\pi}} = 6.257(35), \qquad g_{\Delta,BW} = 14.41(53),$$

C. Morningstar

I = 1/2 scattering amplitudes

scattering lengths

 $m_{\pi}a_0^{3/2} = -0.2735(81), \qquad m_{\pi}a_0^{1/2} = 0.142(22),$

C. Morningstar

Baryon Resonances

25

C. Morningstar

Baryon Resonances

26

Comparison to previous works

 above, g_{ΔNπ} is defined in terms of the decay width in leading-order chiral effective theory

$$\Gamma_{\rm EFT}^{\rm LO} = \frac{g_{\Delta N\pi}^2}{48\pi} \frac{E_N + m_N}{E_N + E_\pi} \frac{q^3}{m_N^2}$$

C. Morningstar

Study of $\Lambda(1405)$ resonance

- Study of elusive $\Lambda(1405)$ nearly completed
- CLS D200 ensemble with $m_\pi pprox 200 \; {
 m MeV}$
- Finite volume spectrum of $\Sigma \pi$ and $N\overline{K}$ states below

C. Morningstar

Study of $\Lambda(1405)$ resonance

- PDG lists $\Lambda(1405)$ as single I = 0, $J^P = \frac{1}{2}^-$ resonance strangeness -1
- Recent models based on chiral effective theory and unitary suggest two nearby overlapping poles
- Our study supports two-pole structure (preliminary)
- Virtual bound state below $\Sigma \pi$ threshold, resonance pole below $N\overline{K}$ threshold
- First lattice QCD study of this coupled-channel system using full operator set

29

K matrix parametrization

• For best parametrization, used $\ell_{max} = 0$ in ERE

$$\frac{E_{\rm cm}}{M_{\pi}}\tilde{K}_{ij} = A_{ij} + B_{ij}\Delta_{\pi\Sigma}$$

 where A_{ij} and B_{ij} are symmetric and real coefficients with i and j denoting either of the two scattering channels, and

 $\Delta_{\pi\Sigma} = (E_{\rm cm}^2 - (M_{\pi} + M_{\Sigma})^2) / (M_{\pi} + M_{\Sigma})^2$

- other parametrizations also used:
 - an ERE for $ilde{K}^{-1}$
 - removing factor of $E_{\rm cm}$ above
 - Blatt-Biedenharn form
- forms with one pole strongly disfavored

The scalar glueball

- glueball: hypothetical bound state of gluons
- experimental evidence elusive, light scalar candidates:
 - $f_0(1370), f_0(1500), f_0(1710)$
- Iattice studies to date:
 - light scalar $\sim 1600 1700$ MeV
 - most in pure SU(3) or quenched approx. (no quark/meson mixing!)

- here: extract low-lying A⁺_{1g} spectrum with qq
 q
 , meson-meson, & glueball operators
 - first look (from the lattice) at mixing between glueball, $q\overline{q}$, and two-hadron states

C. Morningstar

Why are glueballs with quarks so hard in lattice QCD?

- must extract all levels lying below glueballs of interest
- many 2-meson, 3-meson, 4-meson levels expected below
- 2-meson correlators require timeslice-to-timeslice propagators
- glueballs expected to be resonances
- glueballs require high statistics: difficult with quarks
- scalar sector requires large VEV subtraction

• $24^3 imes 128$ anisotropic lattice, $m_\pi \sim 390 \; { m MeV}$

bad news for the scalar glueball?

C. Morningstar

A_{1g}^+ overlaps

Summary

- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
- large numbers of excited-state energy levels can be estimated
- scattering phase shifts can be computed
- infinite-volume resonance parameters from finite-volume energies below 2 particle thresholds
- hadron resonance properties: masses, decay widths
- presented recent results for Δ , $\Lambda(1405)$ resonances
- scalar glueball in full QCD
- next study: the Roper resonance (need for three-particle states)