Low-lying Baryon Resonances from Lattice QCD

Colin Morningstar
Carnegie Mellon University

Hadron 2023, Genova, Italy

Monday, June 5, 2023

FRONTERH

Outline

- present recent results for $\Delta, \Lambda(1405)$ resonances from lattice QCD
- excited-states energies in lattice QCD
- finite-volume energies \Rightarrow scattering phase shifts
- hadron resonance properties: masses, decay widths
- extra: scalar glueball in full QCD

Collaborators

- this work done in collaboration with
- John Bulava (DESY, Zeuthen, Germany)
- Andrew Hanlon (Brookhaven National Lab)
- Ben Hörz (Intel Germany)
- Daniel Mohler (GSI Helmholtz Centre, Darmstadt, Germany)
- Bárbara Mora (GSI Helmholtz Centre, Darmstadt, Germany)
- Joseph Moscoso (U. North Carolina)
- Amy Nicholson (U. North Carolina)
- Fernando Romero-López (Massachusetts Institute of Technology)
- Sarah Skinner (Carnegie Mellon University)
- Pavlos Vranas (Lawrence Livermore Lab)
- André Walker-Loud (Lawrence Berkeley Lab)
- acknowledge support from the NSF
- computing resource:
- Frontera at Texas Advanced Computing Center

Masses/widths of resonances from lattice QCD

- evaluate finite-volume energies of stationary states corresponding to decay products of resonance for variety of total momenta
- such energies obtained from Markov-chain Monte Carlo estimates of appropriate temporal correlation functions
- parametrize either the K-matrix or its inverse for the relevant scattering processes
- Lüscher quantization condition determines finite-volume spectrum from the K matrix
- determine best fit values of the parameters in the K-matrix by matching the spectrum from quantization condition to spectrum obtained from lattice QCD

Excited states from correlation matrices

- energies from temporal correlations $C_{i j}(t)=\langle 0| \bar{O}_{i}(t) O_{j}(0)|0\rangle$
- in finite volume, energies are discrete (neglect wrap-around)

$$
C_{i j}(t)=\sum_{n} Z_{i}^{(n)} Z_{j}^{(n) *} e^{-E_{n} t}, \quad Z_{j}^{(n)}=\langle 0| O_{j}|n\rangle
$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$
\widetilde{C}(t)=U^{\dagger} C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2} U
$$

- columns of U are eigenvectors of $C\left(\tau_{0}\right)^{-1 / 2} C\left(\tau_{D}\right) C\left(\tau_{0}\right)^{-1 / 2}$
- choose τ_{0} and τ_{D} large enough so $\widetilde{C}(t)$ diagonal for $t>\tau_{D}$
- 2-exponential fits to $\widetilde{C}_{\alpha \alpha}(t)$ yield energies E_{α} and overlaps $Z_{j}^{(n)}$
- energy shifts from non-interacting using 1-exp fits to ratio of correlators

Correlator matrix toy model

- example: 12×12 correlator matrix with $N_{e}=200$ eigenstates

$$
E_{0}=0.20, \quad E_{n}=E_{n-1}+\frac{0.08}{\sqrt{n}}, \quad Z_{j}^{(n)}=\frac{(-1)^{j+n}}{1+0.05(j-n)^{2}}
$$

- left: effective energies of diagonal elements of correlator matrix
- middle: effective energies of eigenvalues of $C(t)$
- right: effective energies of eigenvalues of

$$
C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2} \text { for } \tau_{0}=1
$$

Building blocks for single-hadron operators

- important to use good operators to see signal before noise growth
- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_{j}(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$
\widetilde{\psi}_{a \alpha}(x)=\mathcal{S}_{a b}(x, y) \psi_{b \alpha}(y), \quad \mathcal{S}=\Theta\left(\sigma_{s}^{2}+\widetilde{\Delta}\right)
$$

- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$
q_{a \alpha j}^{A}=D^{(j)} \widetilde{\psi}_{a \alpha}^{(A)}, \quad \bar{q}_{a \alpha j}^{A}=\widetilde{\bar{\psi}}_{a \alpha}^{(A)} \gamma_{4} D^{(j) \dagger}
$$

- displacement $D^{(j)}$ is product of smeared links:

$$
D^{(j)}\left(x, x^{\prime}\right)=\widetilde{U}_{j_{1}}(x) \widetilde{U}_{j_{2}}\left(x+d_{2}\right) \widetilde{U}_{j_{3}}\left(x+d_{3}\right) \ldots \widetilde{U}_{j_{p}}\left(x+d_{p}\right) \delta_{x^{\prime}, x+d_{p+1}}
$$

- to good approximation, LapH smearing operator is

$$
\mathcal{S}=V_{s} V_{s}^{\dagger}
$$

- columns of matrix V_{s} are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

- quark displacements build up orbital, radial structure

Meson configurations

- group-theory projections onto irreps of lattice symmetry group

$$
\bar{M}_{l}(t)=c_{\alpha \beta}^{(l) *} \bar{\Phi}_{\alpha \beta}^{A B}(t)
$$

$$
\bar{B}_{l}(t)=c_{\alpha \beta \gamma}^{(l) *} \bar{\Phi}_{\alpha \beta \gamma}^{A B C}(t)
$$

- definite momentum p, irreps of little group of p

Importance of smeared fields

- effective masses of 3 selected nucleon operators shown
- noise reduction of displaced-operators from link smearing $n_{\rho} \rho=2.5, n_{\rho}=16$
- quark-field smearing
$\sigma_{s}=4.0, n_{\sigma}=32$
reduces
excited-state contamination

Two-hadron operators

- comparison of $\pi(\boldsymbol{k}) \pi(-\boldsymbol{k})$ and localized $\sum_{\boldsymbol{x}} \pi(\boldsymbol{x}) \pi(\boldsymbol{x})$ operators

- important to use superposition of products of single-hadron operators of definite momenta
- efficient construction, generalizes to three or more hadrons

Quark propagation

- quark propagator Q is inverse D^{-1} of Dirac matrix
- rows/columns involve lattice site, spin, color
- very large $N_{\text {tot }} \times N_{\text {tot }}$ matrix for each flavor

$$
N_{\mathrm{tot}}=N_{\text {site }} N_{\text {spin }} N_{\text {color }}
$$

- for $64^{3} \times 128$ lattice, $N_{\text {tot }} \sim 400$ million
- not feasible to compute (or store) all elements of D^{-1}
- point-to-all trick for local operators: use translation invariance

$$
\sum_{\mathbf{y}} \sum_{\mathbf{x}} Q^{(a)}\left(\mathbf{y}, t_{f} \mid \mathbf{x}, t_{i}\right) Q^{(b)}\left(\mathbf{y}, t_{f} \mid \mathbf{x}, t_{i}\right) \cdots \longrightarrow \sum_{\mathbf{y}} Q^{(a)}\left(\mathbf{y}, t_{f} \mid \mathbf{x}_{0}, t_{i}\right) Q^{(b)}\left(\mathbf{y}, t_{f} \mid \mathbf{x}_{0}, t_{i}\right) \ldots
$$

- cannot use this trick for good multi-hadron operators

$$
\sum_{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots} Q^{(a)}\left(\mathbf{y}_{1}, t_{f} \mid \mathbf{x}_{1}, t_{i}\right) Q^{(b)}\left(\mathbf{y}_{2}, t_{f} \mid \mathbf{x}_{2}, t_{i}\right) \ldots
$$

- our solution: the stochastic LapH method!
- Monte Carlo estimates of D^{-1} with clever variance reduction

Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
- not all directions equivalent \Rightarrow using $J^{P C}$ is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
- zero momentum states: little group O_{h}

$$
A_{1 a}, A_{2 g a}, E_{a}, T_{1 a}, T_{2 a}, \quad G_{1 a}, G_{2 a}, H_{a}, \quad a=g, u
$$

- on-axis momenta: little group $C_{4 v}$

$$
A_{1}, A_{2}, B_{1}, B_{2}, E, \quad G_{1}, G_{2}
$$

- planar-diagonal momenta: little group $C_{2 v}$

$$
A_{1}, A_{2}, B_{1}, B_{2}, \quad G_{1}, G_{2}
$$

- cubic-diagonal momenta: little group $C_{3 v}$

$$
A_{1}, A_{2}, E, \quad F_{1}, F_{2}, G
$$

- include G parity in some meson sectors (superscript + or -)

Spin content of cubic box irreps

- numbers of occurrences of Λ irreps in J subduced

				A_{2}	E	T_{1}	T_{2}	
			1	0	0	0	0	
			0	0	0	1	0	
			0	0	1	0	1	
			0	1	0	1	1	
			1	0	1	1	1	
			0	0	1	2	1	
			1	1	1	1	2	
			0	1	1	2	2	
J	G_{1}	G_{2}	H		J	G_{1}	G_{2}	H
$\frac{1}{2}$	1	0	0		$\frac{9}{2}$	1	0	2
$\frac{3}{2}$	0	0	1		$\frac{11}{2}$	1	1	2
$\frac{5}{2}$	0	1	1		$\frac{13}{2}$	1	2	2
$\frac{7}{2}$	1	1	1		$\frac{15}{2}$	1	1	3

Scattering phase shifts from lattice QCD

- each finite-volume energy E related to S matrix (and phase shifts) by the quantization condition

$$
\operatorname{det}\left[1+F^{(\boldsymbol{P})}(S-1)\right]=0
$$

- F matrix in $J L S a$ basis states given by

$$
\begin{gathered}
\left\langle J^{\prime} m_{J^{\prime}} L^{\prime} S^{\prime} a^{\prime}\right| F^{(\boldsymbol{P})}\left|J m_{J} L S a\right\rangle=\delta_{a^{\prime} a} \delta_{S^{\prime} S} \frac{1}{2}\left\{\delta_{J^{\prime} J} \delta_{m_{J^{\prime}} m_{J}} \delta_{L^{\prime} L}\right. \\
\left.+\left\langle J^{\prime} m_{J^{\prime}} \mid L^{\prime} m_{L^{\prime}} S m_{S}\right\rangle\left\langle L m_{L} S m_{S} \mid J m_{J}\right\rangle W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(\boldsymbol{P a a}}\right\}
\end{gathered}
$$

- total ang mom J, J^{\prime}, orbital L, L^{\prime}, spin S, S^{\prime}, channels a, a^{\prime}
- W given by

$$
\begin{aligned}
& -i W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(\boldsymbol{P a} a)}=\sum_{l=\left|L^{\prime}-L\right|}^{L^{\prime}+L} \sum_{m=-l}^{l} \frac{\mathcal{Z}_{l m}\left(s_{a}, \gamma, u_{a}^{2}\right)}{\pi^{3 / 2} \gamma u_{a}^{l+1}} \sqrt{\frac{\left(2 L^{\prime}+1\right)(2 l+1)}{(2 L+1)}} \\
& \times\left\langle L^{\prime} 0, l 0 \mid L 0\right\rangle\left\langle L^{\prime} m_{L^{\prime}}, l m \mid L m_{L}\right\rangle .
\end{aligned}
$$

- compute Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions $\mathcal{Z}_{l m}$

Kinematics

- work in spatial L^{3} volume with periodic b.c.
- total momentum $\boldsymbol{P}=(2 \pi / L) \boldsymbol{d}$, where \boldsymbol{d} vector of integers
- calculate lab-frame energy E of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$
E_{\mathrm{cm}}=\sqrt{E^{2}-\boldsymbol{P}^{2}}, \quad \gamma=\frac{E}{E_{\mathrm{cm}}},
$$

- assume N_{d} channels
- particle masses $m_{1 a}, m_{2 a}$ and spins $s_{1 a}, s_{2 a}$ of particle 1 and 2
- for each channel, can calculate

$$
\begin{aligned}
\boldsymbol{q}_{\mathrm{cm}, a}^{2} & =\frac{1}{4} E_{\mathrm{cm}}^{2}-\frac{1}{2}\left(m_{1 a}^{2}+m_{2 a}^{2}\right)+\frac{\left(m_{1 a}^{2}-m_{2 a}^{2}\right)^{2}}{4 E_{\mathrm{cm}}^{2}} \\
u_{a}^{2} & =\frac{L^{2} \boldsymbol{q}_{\mathrm{cm}, a}^{2}}{(2 \pi)^{2}}, \quad \boldsymbol{s}_{a}=\left(1+\frac{\left(m_{1 a}^{2}-m_{2 a}^{2}\right)}{E_{\mathrm{cm}}^{2}}\right) \boldsymbol{d}
\end{aligned}
$$

K matrix

- quantization condition relates single energy E to entire S-matrix
- cannot solve for S-matrix (except single channel, single wave)
- approximate S-matrix with functions depending on handful of fit parameters
- obtain estimates of fit parameters using many energies
- easier to parametrize Hermitian matrix than unitary matrix
- introduce K-matrix (Wigner 1946)

$$
S=(1+i K)(1-i K)^{-1}=(1-i K)^{-1}(1+i K)
$$

- Hermiticity of K-matrix ensures unitarity of S-matrix
- with time reversal invariance, K-matrix must be real and symmetric
- multichannel effective range expansion (Ross 1961)

$$
K_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}(E)=q_{a^{\prime}}^{-L^{\prime}-\frac{1}{2}} \widetilde{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}\left(E_{\mathrm{cm}}\right) q_{a}^{-L-\frac{1}{2}}
$$

Quantization condition

- quantization condition can be written

$$
\operatorname{det}\left(1-B^{(\boldsymbol{P})} \widetilde{K}\right)=\operatorname{det}\left(1-\widetilde{K} B^{(\boldsymbol{P})}\right)=0
$$

- we define the box matrix by

$$
\begin{aligned}
& \left\langle J^{\prime} m_{J^{\prime}} L^{\prime} S^{\prime} a^{\prime}\right| B^{(\boldsymbol{P})}\left|J m_{J} L S a\right\rangle=-i \delta_{a^{\prime} a} \delta_{S^{\prime} S} u_{a}^{L^{\prime}+L+1} W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(\boldsymbol{P a)}} \\
& \quad \times\left\langle J^{\prime} m_{J^{\prime}} \mid L^{\prime} m_{L^{\prime}}, S m_{S}\right\rangle\left\langle L m_{L}, S m_{S} \mid J m_{J}\right\rangle
\end{aligned}
$$

- box matrix is Hermitian for u_{a}^{2} real
- quantization condition can also be expressed as

$$
\operatorname{det}\left(\widetilde{K}^{-1}-B^{(\boldsymbol{P})}\right)=0
$$

- these determinants are real

Block diagonalization

- quantization condition involves determinant of infinite matrix
- make practical by (a) transforming to a block-diagonal basis and (b) truncating in orbital angular momentum
- block-diagonal basis

$$
|\Lambda \lambda n J L S a\rangle=\sum_{m_{J}} c_{m_{J}}^{J(-1)^{L} ; \Lambda \lambda n}\left|J m_{J} L S a\right\rangle
$$

- little group irrep Λ, irrep row λ, occurrence index n
- transformation coefficients depend on J and $(-1)^{L}$, not on S, a
- replaces m_{J} by (Λ, λ, n)
- group theoretical projections with Gram-Schmidt used to obtain coefficients
- use notation and irrep matrices from PRD 88, 014511 (2013)
- box matrix elements computed using C++ software available on github: TwoHadronsInBox
- reference: NPB924, 477 (2017)

Current ensemble

- currently using CLS D200 ensemble
- size: $64^{3} \times 128$ lattice, $a \sim 0.066 \mathrm{fm}$
- open boundary conditions in time
- number of configs $=2000$
- quark masses: $m_{\pi} \sim 200 \mathrm{MeV}, m_{K} \sim 480 \mathrm{MeV}$
- smearing: $N_{\mathrm{ev}}=448$
- sources:
$t_{0}=35$ forward,
$t_{0}=64$ forward and backward,
$t_{0}=92$ backward
- software: common subexpression elimination with tensor contractions (Ben Hörz)
- heavy use of batched BLAS routines

Flavor channels

Isospin channel

$$
I=0, S=0, N N
$$

$$
I=0, S=-1, \Lambda, N \bar{K}, \Sigma \pi(45 \mathrm{SH})
$$

$$
I=\frac{1}{2}, S=0, N \pi
$$

$$
I=\frac{1}{2}, S=-1, N \Lambda, N \Sigma
$$

$$
I=1, S=0, N N(66 \mathrm{SH})
$$

$$
I=\frac{3}{2}, S=0, \Delta, N \pi
$$

$$
I=\frac{3}{2}, S=-1, N \Sigma
$$

$$
I=0, S=-2, \Lambda \Lambda, N \Xi, \Sigma \Sigma(66 \mathrm{SH})
$$

$$
I=2, S=-2, \Sigma \Sigma(66 \mathrm{SH})
$$

D200 Number of Correlators

$I=0, S=0, N N$	8357
$I=0, S=-1, \Lambda, N \bar{K}, \Sigma \pi(45 \mathrm{SH})$	8143
$I=\frac{1}{2}, S=0, N \pi$	696
$I=\frac{1}{2}, S=-1, N \Lambda, N \Sigma$	17816
$I=1, S=0, N N(66 \mathrm{SH})$	7945
$I=\frac{3}{2}, S=0, \Delta, N \pi$	3218
$I=\frac{3}{2}, S=-1, N \Sigma$	23748
$I=0, S=-2, \Lambda \Lambda, N \Xi, \Sigma \Sigma(66 \mathrm{SH})$	16086
$I=2, S=-2, \Sigma \Sigma(66 \mathrm{SH})$	4589
Single hadrons	33

Motivation

- meson-baryon amplitudes useful for pheno. at $m_{\pi}^{\text {phys }}$ and for chiral EFT's at varying $m_{\pi}^{\text {phys }}$.
- $\Delta(1232) \rightarrow N \pi$ used as a d.o.f. in some EFT's
- scattering lengths $a_{N \pi}^{I=3 / 2}$ and $a_{N \pi}^{I=1 / 2}$ impact lattice-pheno. discrepancy for $\sigma_{\pi N}$, relevant for dark matter direct detection. (see arxiv:1602.07688)
- recent Δ-resonance study in Nucl. Phys. B987, 116105 (2023)
- lattice QCD is good laboratory to study $\Lambda(1405)$ by varying quark masses.

$I=3 / 2 N \pi$ spectrum determination

- irreps with leading $(2 J, L)=(3,1)$ wave: $H_{g}(0), G_{2}(1), F_{1}(3)$, $G_{2}(4)$.
- irrep with leading $(1,0)$ wave: $G_{1 u}(0)$.
- irrep with leading $(1,1)$ wave: $G_{1 g}(0)$ not included because ground state is inelastic.
- irreps with s - and p-wave mixing: $G_{1}(1), G(2), G_{1}(4)$.

$I=1 / 2$ spectrum determination

- isodoublet $N \pi$ spectrum

Parametrization of K-matrix

- each partial wave parametrized using effective range expansion
- remember $\sqrt{s}=E_{\mathrm{cm}}=\sqrt{m_{\pi}^{2}+q_{\mathrm{cm}}^{2}}+\sqrt{m_{N}^{2}+q_{\mathrm{cm}}^{2}}$
- for $I=3 / 2, J^{P}=3 / 2^{+}$wave

$$
\frac{q_{\mathrm{cm}}^{3}}{m_{\pi}^{3}} \cot \delta_{3 / 2^{+}}=\frac{6 \pi \sqrt{s}}{m_{\pi}^{3} g_{\Delta, \mathrm{BW}}^{2}}\left(m_{\Delta}^{2}-s\right),
$$

- other waves, used

$$
\frac{q_{\mathrm{cm}}^{2 \ell+1}}{m_{\pi}^{2 \ell+1}} \cot \delta_{J^{P}}^{I}=\frac{\sqrt{s}}{m_{\pi} A_{J^{P}}^{I}},
$$

- fit parameter $A_{J^{P}}^{I}$ related to scattering length by

$$
m_{\pi}^{2 \ell+1} a_{J^{P}}^{I}=\frac{m_{\pi}}{m_{\pi}+m_{N}} A_{J^{P}}^{I}
$$

Isoquartet scattering amplitudes

- $I=3 / 2 s$ - and p-wave scattering amplitudes
- mass and width parameter of Δ-resonance

$$
\frac{m_{\Delta}}{m_{\pi}}=6.257(35), \quad g_{\Delta, \mathrm{BW}}=14.41(53)
$$

$I=1 / 2$ scattering amplitudes

- scattering lengths

$$
m_{\pi} a_{0}^{3 / 2}=-0.2735(81), \quad m_{\pi} a_{0}^{1 / 2}=0.142(22)
$$

Δ resonance

Comparison to previous works

- above, $g_{\Delta N \pi}$ is defined in terms of the decay width in leading-order chiral effective theory

$$
\Gamma_{\mathrm{EFT}}^{\mathrm{LO}}=\frac{g_{\Delta N \pi}^{2}}{48 \pi} \frac{E_{N}+m_{N}}{E_{N}+E_{\pi}} \frac{q^{3}}{m_{N}^{2}}
$$

Study of $\Lambda(1405)$ resonance

- Study of elusive $\Lambda(1405)$ nearly completed
- CLS D200 ensemble with $m_{\pi} \approx 200 \mathrm{MeV}$
- Finite volume spectrum of $\Sigma \pi$ and $N \bar{K}$ states below

Study of $\Lambda(1405)$ resonance

- PDG lists $\Lambda(1405)$ as single $I=0, J^{P}=\frac{1}{2}^{-}$resonance strangeness -1
- Recent models based on chiral effective theory and unitary suggest two nearby overlapping poles
- Our study supports two-pole structure (preliminary)
- Virtual bound state below $\Sigma \pi$ threshold, resonance pole below $N \bar{K}$ threshold
- First lattice QCD study of this coupled-channel system using full operator set

C. Morningstar

Baryon Resonances

K matrix parametrization

- For best parametrization, used $\ell_{\max }=0$ in ERE

$$
\frac{E_{\mathrm{cm}}}{M_{\pi}} \tilde{K}_{i j}=A_{i j}+B_{i j} \Delta_{\pi \Sigma}
$$

- where $A_{i j}$ and $B_{i j}$ are symmetric and real coefficients with i and j denoting either of the two scattering channels, and

$$
\Delta_{\pi \Sigma}=\left(E_{\mathrm{cm}}^{2}-\left(M_{\pi}+M_{\Sigma}\right)^{2}\right) /\left(M_{\pi}+M_{\Sigma}\right)^{2}
$$

- other parametrizations also used:
- an ERE for \tilde{K}^{-1}
- removing factor of E_{cm} above
- Blatt-Biedenharn form
- forms with one pole strongly disfavored

The scalar glueball

- glueball: hypothetical bound state of gluons
- experimental evidence elusive, light scalar candidates:
- $f_{0}(1370), f_{0}(1500), f_{0}(1710)$
- lattice studies to date:
- light scalar $\sim 1600-1700 \mathrm{MeV}$
- most in pure $S U(3)$ or quenched approx. (no quark/meson mixing!)

- here: extract low-lying $A_{1 g}^{+}$spectrum with $q \bar{q}$, meson-meson, \& glueball operators
- first look (from the lattice) at mixing between glueball, $q \bar{q}$, and two-hadron states

Why are glueballs with quarks so hard in lattice QCD?

- must extract all levels lying below glueballs of interest
- many 2-meson, 3-meson, 4-meson levels expected below
- 2-meson correlators require timeslice-to-timeslice propagators
- glueballs expected to be resonances
- glueballs require high statistics: difficult with quarks
- scalar sector requires large VEV subtraction

$A_{1 g}^{+}$spectrum

- $24^{3} \times 128$ anisotropic lattice, $m_{\pi} \sim 390 \mathrm{MeV}$

- bad news for the scalar glueball?

$A_{1 g}^{+}$overlaps

Summary

- stochastic LapH method works very well
- allows evaluation of all needed quark-line diagrams
- large numbers of excited-state energy levels can be estimated
- scattering phase shifts can be computed
- infinite-volume resonance parameters from finite-volume energies below 2 particle thresholds
- hadron resonance properties: masses, decay widths
- presented recent results for $\Delta, \Lambda(1405)$ resonances
- scalar glueball in full QCD
- next study: the Roper resonance (need for three-particle states)

