SoLID Status Update

Zhihong Ye

Department of Physics, Tsinghua University, Beijing China

On behalf of the SoLID Collaboration

Hadron2023 Workshop, 06/05-06/10/2023

About SoLID

> Solenoidal Large Intensity Device (Hall-A, Jefferson Lab):

✓ Large Acceptance, 4π Coverage

• SoLID White-Paper, arXiv:2303.03428, accepted by J. Phy. G

Physics Programs:

- ✓ Parity Violation DIS
- ✓ Near-Threshold J/ Ψ Production
- ✓ Semi-Inclusive DIS w/ polarized targets
- ✓ *NEW*: spin, GPD, eA physics, ...

> PVDIS

 \Box Parity Violation DIS w/ H2 and D2 (E12-10-007, 168 days, A rating $\frac{3}{2}$ 12

$$e^{-} \qquad e^{-} \qquad A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \Big[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \Big] \\ N \qquad \qquad X \qquad eD \\ = -\left(\frac{3G_F Q^2}{\pi\alpha 2\sqrt{2}}\right) \frac{2C_{1u} - C_{1d}\left(1 + R_s\right) + Y\left(2C_{2u} - C_{2d}\right)}{5 + R_s}$$

- ✓ sub-1% precision over broad kinematic range
 ✓ Sensitive to Standard Model test at high energy
 - Sensitive to Standard Model test at high energy scale
 I2 g^{eu}-g^{eu}

- ✓ Search for CSV at quark level
- Explore quark-quark higher twist effects
- ✓ Dark boson Z_d and other sub-TeV BSM models

> PVDIS

□ Parity Violation DIS w/ H2 and D2 (E12-10-007, 168 days, A rating)

- Detailed study of hadronic structure contributions
 - ✓ complementary other Jlab d/u program (PVDIS, BONUS (D), and MARATHON)
 - ✓ The MARATHON Data on d/u has different interpretations.
 - ✓ Only PVDIS has no nuclear effects

PRL 127 (2021) 24, 242001, PRL 128 (2022) 13, 132003

> PVDIS

□ SoLID-PVDIS Configuration:

- ✓ 50 μ A beam current.
- Lumi=10³⁹s⁻¹cm⁻²!!! \checkmark 40 cm LH2 & LD2 target
- ✓ Azimuthally symmetric
- ✓ Tracking: High-rate GEM tracking chambers
- ✓ PID: Light-Gas Cherenkov (LGC) + Shashlyk EM

Experimental Uncertainty Budget

	-
Total	0.6
Polarimetry	0.4
Q ²	0.2
Radiative Corrections	0.2
Event reconstruction	0.2
Statistics	0.3

SoLID (PVDIS) **EM Calorimeter** Baffle Target Coil and Yoke Cherenkov

1 m

Baffles:

- \checkmark ~40% azimuthal coverage
- \checkmark block positive and neutral background particles

(forward angle)

Beamline

> J/ Ψ

 \Box Nucleon mass >> quark mas sum \rightarrow QCD energy contribute!

□ Alslo quantum anomalous energy (Trace Anomaly)

 $H_{QCD} = H_q + H_m + Hg + H_a$

X. Ji PRL 74 1071 (1995), X. Ji & Y. Liu, arXiv: 2101.04483

✓ H_q, H_m & H_g → from PDFs and pi-N sigma terms.
 ✓ Lattice QCD calculation

 \Box Diff. cross-section of J/ Ψ production measurement at threshold \rightarrow access Trace anomaly

- ✓ Imaginary part → related to total cross section
- ✓ Real part → contains the conformal (trace) anomaly; Dominates the near threshold

D. Kharzeev(1995); Kharzeev, Satz, Syamtomov, and ZinovjevEPJC,9, 459, (1999); Gryniukand Vanderhaeghen, PRD94, 074001 (2016)

> J/ Ψ

- \Box Near Threshold J/ Ψ production (E12-12-006, 50 days, rating A)
 - ✓ 3uA unpol. beam on 15cm LH2 targets (10^{37} cm⁻² s⁻¹)
 - \checkmark Share the SIDIS detector configuration (see next)
 - ✓ Various triggers:
 - Photoproduction ((e)p \rightarrow e+e-) : 3-fold coincidence
 - Electroproduction $(e(p) \rightarrow e+e-)$: 3-fold coincidence
 - Exclusive $(ep \rightarrow e+e-)$: 4-fold coincidence
 - Inclusive (e+e-) : 2-fold coincidence

Precise measurement of t-dependence near threshold w/ high Lumi
 Access to Gluon Form Factor (radii, pressures, shear ...)

$$\left\langle N' \left| T_{q,g}^{\mu,\nu} \right| N \right\rangle = \bar{u}(N') \left(A_{g,q}(t) \gamma^{(\mu} p^{\nu)} + B_{q,g} \frac{i p^{(\mu_{\sigma}\nu)} \rho \Delta_{\rho}}{2M} + C_{g,q}(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2}}{M} + \bar{C}_{g,q}(t) M g^{\mu\nu} \right) u(N)$$

	GlueX Hall D	J/Ψ 007 Hall C	SoLID Hall A
J/Ψ counts (photoproduction)	469 published ~10k phase I+II	2k electron channel 2k muon channel	804k
J/Ψ counts (electroproduction)	N/A	N/A	21k
Features	Good reach near threshold No high-t reach	Reach high-t Low statistics	Reach high-t High statistics
Timeline	Finished/ongoing	Finished	Future

S. Joosten, Z.E. Meziani, PoS308 (2017); Gryniuk, Joosten, Meziani, and Vanderhaeghen, PRD 102, 014016 (2020)

> TMD w/ SIDIS

□ Access quarks' transverse momentum dependence distribution (TMD) in nucleon → Semi-Inclusive Deep Inelastic Scattering (SIDIS)

8 Quark-TMDs (leading twist)

Double-Spin Asymmetry (DSA)

 $A_{LT}^{Worm-Gear} \propto \left\langle \cos(\phi_h - \phi_s) \right\rangle_{LT} \propto g_{1T} \otimes D_1$

> TMD w/ SIDIS

- Three initial SIDIS proposals (just went through Jlab PAC Jeopardy Review in 2022):
 - **E12-10-006:** Single Spin Asymmetries on Transversely Polarized 3He @ 90 days, Rating A
 - □ E12-11-007: Single and Double Spin Asymmetries on Longitudinally Polarized 3He @ 35 days, Rating A
 - **E12-11-108:**Single Spin Asymmetries on Transversely Polarized Proton @ 120 days, Rating A

- Run-Group (same beam time / configuration):
 - SIDIS Dihadron with Transversely Polarized 3He (E12-10-006A)
 - SIDIS in Kaon Production with Transversely Polarized 3He (E12-10- 006D)
 - □ Ay with Transversely Polarized 3He (E12-10-006A)
 - g2n and d2n with Transversely and Longitudinally Polarized 3He (E12-10-006E)
 - □ Deep exclusive π Production with Transversely Polarized 3He (E12-10-006B)

> TMD w/ SIDIS

✓ Wide phase-space & high-statistics for 4D binning in (x, p_T , Q^2 , z)

✓ Precisely extract Transversity & Tensor-Charge, Sivers etc.

J. Cammarota et al, PRD 102, 054002 (2020) (JAM20+) L. Gamberg et al., PRD106 (2022) 3, 034014 (JAM22)

> TMD w/ SIDIS

Precisely extract small Pretzelocity & Worm-Gear asymmetries
 Link to quark OAM

$$L_{z}^{q} = -\int \mathrm{d}x \mathrm{d}^{2}\mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}^{2}}{2M^{2}} h_{1T}^{\perp q}(x,k_{\perp}) = -\int \mathrm{d}x h_{1T}^{\perp(1)q}(x)$$

 $\circ~$ A genuine sign of intrinsic transverse motion

> GPD w/ SIDIS

■ 8 Leading-Twist Generalized Parton Distributions (GPD):

Chiral Even $H^{q/g}, E^{q/g}, \widetilde{H}^{q/g}, \widetilde{E}^{q/g}$

Chiral Odd $H_T^{q/g}, E_T^{q/g}, \widetilde{H}_T^{q/g}, \widetilde{E}_T^{q/g}$

		Quark Polarization											
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)									
_	υ	Н		$2\widetilde{H}_T + E_T$									
larizatior	L		\widetilde{H}	$\widetilde{E}_{\scriptscriptstyle T}$									
Nucleon Pol	т	E	\widetilde{E}	$H_{_T}, \widetilde{H}_{_T}$									

□ Access parton distributions in 3D

X. Ji, PRL 78, 610 (1997)
M. Diehl, Physics Reports 388 (2003) 41–277,
Belitsky, Radyushkin, Physics Reports 418 (2005) 1–387

Connect to FF & PDFs: e.g.							
$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$	Dirac&Pauli						
$\int_{-1}^{-1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$	Form Factors						
$\int_{-1}^{1} dx \widetilde{H}^{q}(x,\xi,t) = G_{A}^{q}(t)$	Axial&Pseudoscaler						
$\int_{-1}^{1} dx \tilde{E}^q(x,\xi,t) = G_P^q(t)$	Form Factors						
$H^{q}(x,0,0) = q(x), x > 0$ $\widetilde{H}^{q}(x,0,0) = \Delta q(x), x > 0$	PDFs						

□ Access Angular Momenta?

✓ Ji's Sum Rule (X. Ji, PRL 78, 610 (1997)

$$J_{q/g} = \lim_{t,\xi\to 0} \frac{1}{2} \int x dx \left[\frac{H^{q/g}}{x}(x,\xi,t) + \frac{E^{q/g}}{x}(x,\xi,t) \right]$$

Generalized Parton Distributions (GPD)

> SIDIS/Jpsi Setup for GPDs:

> SIDIS/Jpsi Setup for GPDs:

□ Time-Like Compton Scattering (SoLID-TCS, E12-12-006A):

- ✓ Parallel data taking with J/Psi
- $\checkmark\,$ Different angular moments for TCS & BH Interference-terms

$$\sigma_{INT}^{TCS,unpol} \propto \boldsymbol{cos\phi} Re \widetilde{M}^{--}, \ \sigma_{INT}^{TCS,cir-pol} \propto \boldsymbol{sin\phi} Im \widetilde{M}^{--}$$
$$\tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \eta}{1 + \eta} \Big[F_1 \mathcal{H}_1 - \eta (F_1 + F_2) \widetilde{\mathcal{H}}_1 - \frac{t}{4M^2} F_2 \mathcal{E}_1 \Big]$$

Deep-Virtual Meson Production (SoLID-DVMP, E12-10-006A):

- ✓ First neutron DVMP experiment
- ✓ In parallel with E12-10-006 (SIDIS with polarized He3)
- \checkmark Exclusive events from missing mass reconstruction
- \checkmark Analyze angular modules to decouple GPDs

$$A_{UT}^{\sin(\phi-\phi_s)} \sim \frac{d\sigma_{00}^{+-}}{d\sigma_L \left(\frac{++}{00} \right)} \sim \frac{\operatorname{Im}(\tilde{E}^* \tilde{H})}{\left| \tilde{E} \right|^2} \text{ where } \tilde{E} \gg \tilde{H}$$

> Under development: DVCS with both polarized neutron and protons

> DDVCS with new setup

- □ SoLID is likely the best place to do Doubly-DVCS measurement
- Detector upgrade needed to detect muons

New SoLID-DDVCS Configuration

 ✓ DDVCS with J/Psi +muon detectors → New LOI submitted to PAC51 in 2023

$-t= 0.25 \text{ GeV}^2, \xi=0.135$

- ✓ Easy recofiguration between PVDIS and SIDIS&J/Psi)
- ✓ CLEO magnet, DAQ, Electronics
- ✓ Share GEM, LGC, SPD & ECal
- ✓ Baffle for PVDIS only
- ✓ Polarized Targets for SIDIS only

Detector Requirements:

- High rate capabilities
- High background
- High radiation
- Large Area
- Low systematics
- Huge data size

> Two Detector Setups:

Pre-R&D items: LGC, HGC, GEM's, DAQ/Electronics, Magnet

> The CLEO Magnet:

- □ 1.5 T, 1.0 meter in radius, super-conducting
- □ Transferred from Cornell to Jlab (2016)
- □ Assembly completed
 - $\checkmark\,$ Cryogenic system assembled and commissioned
 - $\checkmark\,$ Instrumentation and control system commissioned
 - \checkmark Energized the coil with 120 A.
 - ✓ 4K cold test in March 2023 (Data analysis in progress)

□ Engineering & Designs of Detector Support Structure

- \checkmark Universal mounting system for each detector group.
- \checkmark Same concept for internal magnet and endcap locations.
- \checkmark Uses off the shelf rails and bearings.

> Detector R&D Activities:

- ✓ \$600K for detector beam test (ANL, Duke, Temple, UVA)
- ✓ \$400K for DAQ at JLab

- 2nd DOE founded preR&D (2022-2023)
 - ✓ Continue supporting detector beam test
 - ✓ Continue supporting DAQ development at JLab

> Detector R&D Activities:

□ mRPC with <30ps resolution (enriched for Kaon-SIDIS etc)

- ✓ Sealed mRPC with intrinsic time resol. <17ps (Tsinghua)
- ✓ Initial test at Fermi-Lab MRPC in 2022 (Tsinghua + UIC)
- ✓ Plan on 2023/2024 beam test at Jlab (Tsinghua + UIC)

□ Shashlyk-Ecal super-modules (Tsinghua & Shandong Univ)

- \checkmark Performance of a full shower in a super-module
- ✓ Optimize supporting structure (designed by ANL)
- $\checkmark\,$ Excersice assembly, quality-check, and calibration, etc.
- ✓ Plan on 2023/2024 beam test at Jlab with new MCP-PMT

GEM and uRWELL tracking detector R&D by USTC

About SoLID

> Recent Progresses:

- □ Submitted pre-conceptual design report (pCDR) in 2014, and updated in 2017 & 2019 with new cost-estimation
- □ Jlab director reviews in 2014, 2017 & 2019
- □ 2020: MIE submitted to DOE; 2021, DOE Science Review, Report is positive and recommends to move forward

□ Actively contribute to the Long-Range-Plan (LRP)

- SoLID White-Paper (arXiv:2303.03428, accepted by J. Phy. G)
- QCD town meeting identify SoLID as part of Recommendation#1

□ Last PAC (2022), all SoLID proposals went through jeopardy process/review

- All 5 SoLID proposals were re-approved.
- 4 retaining A rating, 1 upgrade from A- to A.
- Newly approved experiment:
 - ✓ Single beam normal spin asymmetry approved (E12-22-004, 38 days, A- rating)
 - ✓ PVEMC (<u>PR12-22-002</u>, conditional approved)
- New Proposals under development: DDVCS, DVCS, more run-group proposals

□ SoLID@JLab22

About SoLID

> Tentative Run-Plan (2021 Science Review):

- \Box Start with standard dependencies (polarized ³He, LH₂)
- □ Minimize switchover time (radiation level)
- □ Assuming starting data taking from FY2029 and ~ 50% efficiency)

	2028			2028 2029 2					20	2030			2031			2032				2033				2034				
	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4
He3																												
Change Target																												
J/Psi																												
Change Target																												
NH3																												
Change Configuration																												
LD2/LH2																												

SoLID @ 22GeV

1) SIDIS: Collins Asymmetry: 20 GeV and 12GeV

3) PVDIS@JLab20+:

a) Standard Model test with deuterium, Alex Emmert/Xiaochao Zheng

b) Precision study of strange sea,

Mark/Dalton

4) Electron weak coupling C3 with e+ and e-LOI by Xiaochao Zheng

5) DDVCS,

.

Alexandre Camsonne

SoLID Collaboration

□ 270+ collaborators, 70+ institutions from 13 countries

□ Large international participations and anticipate contributions

□ Strong theory support

Summary

□ SoLID detector provides both high luminosity & large acceptance, with both polarized neutron and

proton targets

□ Will Maximize the science return of the 12-GeV CEBAF upgrade

□ Physics on SoLID are rich and unique:

- ✓ Pushing the phase space in the search of new physics
- ✓ Sensitive to gluon energy, proton mass
- ✓ 3D nucleon structure with SIDIS experiment (TMD & GPD)

□ Jlab Direction Review in 2014, 2017 & 2019; MIE submitted to DOE and Science Review in 2021

□ Very Active detector R&D

□ Strong support from Jlab management and staff scientists

□ Working closely with JLab, DOE/ONP to move SoLID forward

Backup

SoLID Publication

- Y. Wang, et al., "A MRPC prototype for SOLID-TOF in JLab", JINST 8 (2013) P03003.
- J. P. Chen, et al. "A White Paper on SoLID (Solenoidal Large Intensity Device)". (2014) https://arxiv.org/abs/1409.7741
- ^{3.} Z. Ye et al., "Unveiling the nucleon tensor charge at Jefferson Lab: A study of the SoLID case", Phys. Lett. B767 (2017) 91.
- 4. Y. Tian et al., "Electromagnetic Calorimeter Prototype for the SoLID Project at Jefferson Lab", Springer Proc. Phys. 213 (2018) 80
- 5. C. Peng, et al., "Performance of photosensors in a high-rate environment for gas Cherenkov detectors", JINST 17 (2022) 08, P08022
- John Arrington, et al. "The Solenoidal Large Intensity Device (SoLID) for JLab 12 GeV", (2022) https://arxiv.org/abs/2209.13357

Transverse Momentum Distributions

- □ Transverse Momentum Distribution Functions (TMDs) → describe 3D motion in momentum space of all quarks & gluons in a nucleon
 - 3D = 1D Longitudinally Momentum + 2D Transverse Momentum
 - \checkmark Spin contributions from valance quarks, sea quarks and gluons

✓ Also contributed by quarks & gluons' orbital angular momenta (OAM)

Key Features of TMDs:

✓ Represent the intrinsic confined motion of quark & gluons
✓ Off-Diagonal TMDs vanish if no orbital angular momentum
✓ Most of TMDs are due to the spin-orbit correlations

8 Quark-TMDs (leading twist)

> TMD w/ SIDIS

Look for K[±] production in SIDIS using both the transversely polarized 3He and NH3 Targets
 Extract K[±] Collins, Sivers and other TMD asymmetries
 Flavor decomposition of u, d and sea quarks' TMDs
 Kaon-Identification: HGC + 30ps MRPC-TOF

Projection on Collins K+

□ Enhanced configuration

- ✓ MRPC modules contributed by Chinese resources (Tsinghua, USTC, etc.)
- ✓ High-time resolution Readout electronics possibly contributed by other US funding resources (UIC, etc.)

Generalized Parton Distributions

Deep Virtual Compton Scattering (DVCS):

□ Golden channel to study GPD

✓ Decouple GPDs by angular modulations:

$$d\sigma_{UU}^{I} = \frac{-K_{I}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{3} c_{n,\text{unp}}^{I} \cos(n\phi), \qquad d\sigma_{LU}^{I} = \frac{-K_{I}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=1}^{2} s_{n,\text{unp}}^{I} \sin(n\phi),$$
$$d\sigma_{UU}^{\text{DVCS}} = \frac{1}{Q^{2}} \sum_{n=0}^{2} c_{n,\text{unp}}^{\text{DVCS}} \cos(n\phi), \qquad d\sigma_{LU}^{\text{DVCS}} = \frac{1}{Q^{2}} s_{1,\text{unp}}^{\text{DVCS}} \sin\phi,$$

Polarization	Asymmetries	CFFs
Longitudinal Beam	A_{LU}	$Im\{{\cal H}_p,{\widetilde {\cal H}}_p,{\cal E}_p\}$ $Im\{{\cal H}_n,{\widetilde {\cal H}}_p,{\cal E}_n\}$
Longitudinal Target	A_{UL}	$Im\{\mathcal{H}_{p},\widetilde{\mathcal{H}}_{p}\}\ Im\{\mathcal{H}_{n},\mathcal{E}_{n},\widetilde{\mathcal{E}}_{n}\}$
Long. Beam + Long. Target	A_{LL}	$\mathcal{R}e\{\mathcal{H}_{p},\widetilde{\mathcal{H}}_{p}\}\ \mathcal{R}e\{\mathcal{H}_{n},\mathcal{E}_{n},\widetilde{\mathcal{E}}_{n}\}$
Transverse Target	A_{UT}	$Im\{{\cal H}_p,{\cal E}_p\}\ Im\{{\cal H}_n,{\cal E}_n\}$
Long. Beam +Trans.Targt	A_{LT}	$\mathcal{R}e\{\mathcal{H}_p, \mathcal{I}_p\}\ \mathcal{R}e\{\mathcal{H}_n, \mathcal{I}_n\}$

> Exclusive processes to fully extract GPDs

Generalized Parton Distributions

> Jlab12GeV DVCS Experiments:

□ DVCS not directly sensitive to flavor → proton & neutron needed for u & d
 □ Need multiple observables to decouple 8 CFFs, → XS, BSA, TSA, DSA

□ 3D → wide kinematic-coverage + high rate

Approved 12GeV DVCS experiments:

- E12-16-010B (Hall-B): unpol. proton, XS
- E12-11-003 (Hall-B): unpol. Deuteron, BSA
- E12-06-119 (Hall-B): long-pol proton, BSA, TSA,
- C12-12-010 (Hall-B): *conditional approved*, trans. pol. Proton, TSA, BSA
- C12-15-004 (Hall-B): *conditional approved*, long. pol. Deuteron, TSA, BSA
- E12-06-114 (Hall-A&C): unpol. proton, XS & BSA, limited coverage
- E12-13-010 (Hall-C): unpol. proton, XS,
- E12-15-001 (Hall-C): proton, XS
- <u>LOI:</u> nDVCS w/ TDIS setup (Hall-A), tagged neutron, XS
- SoLID (SIDIS configuration) will provide:
 - ✓ DVCS asymmetries w/ polarized beam & target data
 - ✓ DVCS neutron data (Deuteron or He3)

GPDs on SoLID

Solid-TCS: (E12-12-006A, M. Boer, P. Nadel-Turonski, J. Zhang, Z. Zhao)

GPDs on SoLID

> SoLID-DVMP:

□ In parallel with E12-10-006 (SIDIS with polarized He3)

□ Exclusive events from pion-DVMP reactions (first neutron DVMP experiment)

Analyze angular modules to decouple GPDs

$$A_{UT}^{\sin(\phi-\phi_s)} \sim \frac{d\sigma_{00}^{+-}}{d\sigma_L \left(\stackrel{++}{00} \right)} \sim \frac{\operatorname{Im}(\tilde{E}^*\tilde{H})}{\left| \tilde{E} \right|^2} \text{ where } \tilde{E} \gg \tilde{H}$$

$$\begin{aligned} A_{UT}^{\sin(\phi_S)} &\sim \mathrm{Im}[M_{0+++}^* M_{0-0+} - M_{0-++}^* M_{0+0+}], \\ &\text{helicities: [pion, neutron, photon, proton]} \\ \mathcal{M}_{0-,++} &= e_0 \sqrt{1 - \xi^2} \int \mathrm{d}x \mathcal{H}_{0-,++} H_T, \\ \mathcal{M}_{0+,\pm+} &= -e_0 \frac{\sqrt{t_{\min} - t}}{4m} \int \mathrm{d}x \mathcal{H}_{0-,++} \bar{E}_T. \end{aligned}$$

GPDs on SoLID

SoLID-DVMP: (E12-10-006B, Z. Ahmed, G. Huber, Z. Ye)

DVMP advantages:

- ✓ Direct probe of quark flavor
- ✓ Vector mesons sensitive to H and E
- ✓ Pseudoscaler mesons sensitive to \tilde{H} and \tilde{E} (uniquely w/ neutron)
- ✓ Sensitive to transverse GPDs $(H_T, E_T, \tilde{H}_T, \tilde{E}_T)$

DVMP disadvantages:

- ✓ Usually requires $Q^2 > 10 \text{ GeV}^2$ for factorization
- ✓ Higher twist contaminations
- ✓ Long. photons to link to GPD (LT separation)

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_{\rm L}}{dt} + \frac{d\sigma_{\rm T}}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{\rm LT}}{dt} \cos \phi + \epsilon \frac{d\sigma_{\rm TT}}{dt} \cos 2\phi$$

DVMP w/ asymmetries: Belitsky & Műller PLB 513(2001)349, CIPANP 2003).

 \checkmark

$$A_L^{\perp}$$
 displays factorization even at only Q²~2-4 GeV²:
 $A_L^{\perp} = \frac{\sqrt{-t'}}{m_p} \frac{\xi \sqrt{1-\xi^2} \operatorname{Im}(\tilde{E}^* \tilde{H})}{(1-\xi^2)\tilde{H}^2 - \frac{t\xi^2}{4m_p}\tilde{E}^2 - 2\xi^2 \operatorname{Re}(\tilde{E}^* \tilde{H})}.$

Generalized Parton Distributions

> Deep Virtual Compton Scattering (DVCS):

 $\Box \text{ With polarization: } \sigma^{BH+I+DVCS} = \sigma_{UU} + P_L \sigma_{LU} + S_{L,T} \sigma_{UL,UT} + P_L S_{L,T} \sigma_{LL,LT}$ $unpol \quad beam \ pol \quad target \ pol \quad double \ pol$

D Asymmetry:
$$A = \frac{I}{\left|\tau_{DVCS}\right|^2 + I + \left|\tau_{BH}\right|^2} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

Polarization	Asymmetries	CFFs
Longitudinal Beam	A_{LU}	$Im\{\mathcal{H}_{p},\widetilde{\mathcal{H}}_{p},\mathcal{E}_{p}\}$ $Im\{\mathcal{H}_{n},\widetilde{\mathcal{H}}_{p},\mathcal{E}_{n}\}$
Longitudinal Target	A_{UL}	$egin{aligned} ℑ\{{\mathcal H}_p, {\widetilde {\mathcal H}}_p\}\ ℑ\{{\mathcal H}_n, {\mathcal E}_n, {\widetilde {\mathcal E}}_n\} \end{aligned}$
Long. Beam + Long. Target	A_{LL}	$\mathcal{R}e\{\mathcal{H}_{p},\widetilde{\mathcal{H}}_{p}\}\ \mathcal{R}e\{\mathcal{H}_{n},\mathcal{E}_{n},\widetilde{\mathcal{E}}_{n}\}$
Transverse Target	A_{UT}	$Im\{\mathcal{H}_{p},\mathcal{E}_{p}\}$ $Im\{\mathcal{H}_{n},\mathcal{E}_{n}\}$
Long. Beam +Trans.Targt	A_{LT}	$\mathcal{R}e\{\mathcal{H}_p,\mathcal{E}_p\}\ \mathcal{R}e\{\mathcal{H}_n,\mathcal{E}_n\}$

Belitsky, Mueller, PRD (2009,2010), NPB (2014)
Decouple by angular modulations:

$\mathrm{d}\sigma_{UU}^{\mathrm{I}} = \frac{-K_{\mathrm{I}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{3} c_{n,\mathrm{unp}}^{\mathrm{I}} \mathrm{c}$	os($n\phi$), $d\sigma_{LU}^{I} = \frac{-K_{I}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)}\sum_{n=1}^{2}s_{n,\mathrm{unp}}^{I}\sin(n\phi),$
$\mathrm{d}\sigma_{UU}^{\mathrm{DVCS}} = \frac{1}{Q^2} \sum_{n=0}^{2} c_{n,\mathrm{unp}}^{\mathrm{DVCS}} \cos(n\phi),$	$\mathrm{d}\sigma_{LU}^{\mathrm{DVCS}} = \frac{1}{Q^2} s_{1,\mathrm{unp}}^{\mathrm{DVCS}} \sin\phi,$
<i>— H</i> ony	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$ H + \widetilde{H}$	
<i>H</i> + <i>H</i> + <i>L</i> <i>BH</i>	
JLab, Hall-A, Camacho PRL 97 262002	$\begin{array}{c} 0.005\\ 0.01\\ 0.015\\ 0.02\\ 0.02\\ 0.02\\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

37/27

SoLID at 22GeV

> Larger Phase-Space

SoLID-SIDIS at 22GeV

SoLID-SIDIS at 22GeV

